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1 Questions?

What are the relative contributions
of

- Land use

- natural ecosystem dynamics

- climate variability

- N deposition

- agriculture management

- fire

onh ecosystems and carbon dynamics

What are their synergistic effects?

What are their potential future
trends?




Methods

> We use the terrestrial component of the Integrated Science
Assessment Model (ISAM), which simulates C and N fluxes within the
terrestrial biosphere

» The model includes feedback processes such as CO2 fertilization,
climate effects on photosynthesis and respiration and increased carbon
fixation by nitrogen deposition.

» Changes in land cover classifications are driven by clearing forest for
cropland, reforestation and abandonment (reforestations),
pasturelands, wood harvest.

» Mineral nitrogen deposition rates are based on chemical transport
model.

» Changes in temperature and precipitation, and CO, are based on
observation data

» Soil carbon sequestration in soils is estimated using empirically-based
sequestration estimates coupled with ISAM.
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Global Terrestrial C-N ISAM 1
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+ Long-term Inter-site
Decomposition
Experiment (LIDET)
and other site-
specific data

Leaf, wood and root
litter decomposition
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- CN

- Lignin:N

- Climate

0
0123456728910
Year

Yang et al. (2009)




Observations: FLUXNET, a global network
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Modeled vs. Measured Data
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Modeled vs. Measured Data
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Experiments Performed

ISAM run to equilibrium with [CO2] ~ 280 ppm and
climate for early 1900s

NEE Is calculated with accounting all environmental
factors (Case 1)

Five scenarios examined without following changes
(1765 2010) (Case 2)

Increasing CO2

Changes in N deposition

Climate variability (Temp. and Precip.)
Changes in land cover and land use (LCLUC)
Forest Fires

The contribution of individual factor to NEE is calculated
by subtracting Case2 from Case 1.

Above five scenarios are extended until 2050 based on
two IPCC scenarios: RCP 4.5 and RCP 8.5




Historical Data for
Environmental Factors

» Climate Data (i.e., Temperature and
precipitation) - Climate Research Unit Time
series (CRU-TS) observation data

> CO2 Concentrations: CO, concentrations from
the Mauna Loa (Hawaii) (CDIAC, 2011)

» LCLUCs: Sustainability and the Global
Environment (SAGE), History Database (IPCC,
ARD)

» Cropland, Pastureland & Wood-harvest

» N Deposition: Both wet and dry atmospheric
depositions (Galloway et al., 2004)




Estimated NEE

Average for
2000-2009

negative is net C gain by
the terrestrial ecosystems
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Contribution of Different
Environmental factors to
NEE (gC/m?/yr)
Average 2000-2009)
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Regional Contribution of Different Environmental
Factors to NEE (gC/m?/yr)
(Average 2000-2009)
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Regional Contribution of Different Environmental
Factors to NEE (gC/m?/yr)
(Average 2000-2009)
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Contribution of Various
Environmental Factors to NEE
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Contribution of Various
Environmental Factors to NEE
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Net Land Use Emissions Based on
Three Different Data sets
10-yr Mean (GtC/Yr)
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Net Land Use Emissions
Based on Three
Different Data Sets
(g€/m?é/yr)
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Estimated Impact of N Dynamics on

Terrestrial C Uptake (gC/m?/yr)
Average for 2000s

= N dynamics
reduces CO,
fertilization effect

Climate change
increase mineral N
available to the
plants

- Less of a source
with N dynamics

N dynamics result
in less C storage

Jain et. al. (2009, GBC)
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The Net Exchange of C for the 2000s
in Secondary Forests (SAGE Data)
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C fluxes are not constrained by ‘In some regions accumulation of

N dynamics carbon is reduced where nitrogen
is a limiting nutrient or enhanced
if the additional N is deposited
in the forest regrowing regions

Yang et. al. (2010, Biogeosciences)



Management: Soil Carbon

Sequestration




Modeled Soil Carbon Sequestration PoTen’rialﬂ

(Conventional Tillage to No Tillage)
Averaged Over the Period 1981-2000
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Estimated Distribution of Net C Exchange

Attributed to Biomass Burning
(gC/m?/year)
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Positive fluxes represent a net loss of CO2 to the atmospheric




Terrestrial Response to Changes in
COZ2, Climate, LUC, N Deposition
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Conclusions

* Global ecosystems and soils absorbed about 1.1 GtC/yr
during the 2000s compared to the 8 GtC/yr release of
C due to fossil fuel burning

The dominated sink is located in the secondary
temperate forests along the East Coast in the US and
Latin America and Africa

- Uncertainty in these estimates are large, because the
uncertainty in the input data for environmental factors

+ CO2 fertilization accounts for a major portion of
today's carbon sink

Other factors such as forest regrowth (secondary
forest), agriculture soils and N deposition also
contributed to the net C sink.







