

Exploring the Sensitivity of Terrestrial Ecosystems and Atmospheric Exchange of CO_2 to Global Environmental Factor

Atul Jain

P. Meiyappan, Y. Song and R. Barman

University of Illinois, Urbana-Champaign, IL, USA Email: jain1@uiuc.edu

<u>Acknowledgements</u>

US DOE, NASA-LCLUC

Environmental Factors Impacting the Exchange of CO2 between Terrestrial Ecosystems and Atmosphere

Terrestrial Ecosystems and Environmental Factors CO_2 Climate N **Terrestrial** Land Use Fertilizer, **Ecosystems** Change Deposition **Biomass** Atmospheric Burning Chemistry

Questions?

- What are the relative contributions of
 - Land use
 - natural ecosystem dynamics
 - climate variability
 - N deposition
 - agriculture management
 - fire

on ecosystems and carbon dynamics

What are their synergistic effects?

 What are their potential future trends?

Methods

- ➤ We use the terrestrial component of the Integrated Science Assessment Model (ISAM), which simulates C and N fluxes within the terrestrial biosphere
- The model includes feedback processes such as CO2 fertilization, climate effects on photosynthesis and respiration and increased carbon fixation by nitrogen deposition.
- Changes in land cover classifications are driven by clearing forest for cropland, reforestation and abandonment (reforestations), pasturelands, wood harvest.
- Mineral nitrogen deposition rates are based on chemical transport model.
- \triangleright Changes in temperature and precipitation, and CO_2 are based on observation data
- > Soil carbon sequestration in soils is estimated using empirically-based sequestration estimates coupled with ISAM.

Global Terrestrial C-N ISAM

- 18 Biome types
- 0.5 x 0.5 degree resolution
- Carbon cycle
- Nitrogen cycle
- · Feedbacks: Climate-C-N-LUC...

Biome Types

Tropical Evergreen

Tropical Deciduous

Temperate Evergreen

Temperate Deciduous

Boreal Forest

Savanna

Grassland

Shrubland

Tundra

Desert

Polar Desert

Cropland

Pastureland

Sec. Tropical Evergreen

Sec. Tropical Deciduous

Sec. Temperate Evergreen

Sec. Temperate Deciduous

Sec. Boreal Forest

Yang et al. (2009, GBC)

Global Terrestrial C-N ISAM

- Long-term Inter-site
 <u>D</u>ecomposition
 <u>E</u>xperiment (LIDET)
 and other site specific data
- Leaf, wood and root litter decomposition data
 - C:N
 - Lignin:N
 - Climate

Use of FLUXNET and Other Ground-Based Data in the ISAM Land Surface Model Development

Stöckli et al. (2008) JGR, 113, doi:10.1029/2007JG000562

Modeled vs. Measured Data

Modeled vs. Measured Data

SESSION: B22D. Improving Predictions of the Global Carbon Cycle and Climate in Earth System Models: New Mechanisms, Feedback Sensitivities, and Approaches for Model Benchmarking I 10:20 AM - 12:20 PM; Room 3012

11:05 AM - 11:20 AM

B22D-04. Studying Uncertainties in Climate-Terrestrial Biogeochemical Feedbacks in the Northern High Latitudes using a Flexible Earth System Modeling Framework

Rahul Barman; Forrest M. Hoffman; David M. Lawrence; Yang Song; Prasanth Meiyappan; Atul K. Jain; Robert L. Jacob; Mariana Vertenstein

Experiments Performed

- ISAM run to equilibrium with [CO2] ~ 280 ppm and climate for early 1900s
- NEE is calculated with accounting all environmental factors (Case 1)
- Five scenarios examined <u>without</u> following changes (1765-2010) (Case 2)
 - Increasing CO2
 - Changes in N deposition
 - Climate variability (Temp. and Precip.)
 - Changes in land cover and land use (LCLUC)
 - Forest Fires
- The contribution of individual factor to NEE is calculated by subtracting Case2 from Case 1.
- Above five scenarios are extended until 2050 based on two IPCC scenarios: RCP 4.5 and RCP 8.5

Historical Data for Environmental Factors

- Climate Data (i.e., Temperature and precipitation) Climate Research Unit Time series (CRU-TS) observation data
- > CO2 Concentrations: CO₂ concentrations from the Mauna Loa (Hawaii) (CDIAC, 2011)
- LCLUCs: Sustainability and the Global Environment (SAGE), History Database (IPCC, AR5)
 - > Cropland, Pastureland & Wood-harvest
- ➤ N Deposition: Both wet and dry atmospheric depositions (Galloway et al., 2004)

Estimated NEE Average for 2000-2009

negative is net C gain by the terrestrial ecosystems

Estimated NEE Average for 2000-2009

negative is net C gain by the terrestrial ecosystems

Regional Contribution of Different Environmental Factors to NEE (gC/m²/yr) (Average 2000-2009)

Regional Contribution of Different Environmental Factors to NEE (gC/m²/yr) (Average 2000-2009)

- Higher CO2 increase in plant-derived carbon input into soils from leaf and root detritus.
- No N-limitation
- No Land use change, but abandonment and reforestation
- Climate change: warm and moist climate leads to rapid litter decomposition

Contribution of Various Environmental Factors to NEE

negative is net C gain by the terrestrial ecosystems

Contribution of Various Environmental Factors to NEE

negative is net C gain by the terrestrial ecosystems

Net Land Use Emissions Based on Three Different Data sets 10-yr Mean (GtC/Yr)

SAGE: Ramankutty et al. (2008)

HYDE: Goldewijk et al. 2011

HH: Houghton (2008)

Net Land Use Emissions
Based on Three
Different Data Sets
(gC/m²/yr)
Average for 2000-2009

negative is net C gain by the terrestrial ecosystems

Jain et. al. (2011, GBC)

Estimated Impact of N Dynamics on Terrestrial C Uptake (gC/m²/yr) Average for 2000s

negative is net C gain by the terrestrial ecosystems

- N dynamics reduces CO₂ fertilization effect
- Climate change increase mineral N available to the plants
 - Less of a source with N dynamics
- N dynamics result in less C storage

Jain et. al. (2009, GBC)

The Net Exchange of C for the 2000s in Secondary Forests (SAGE Data)

C fluxes are not constrained by N dynamics

·In some regions accumulation of carbon is reduced where nitrogen is a limiting nutrient or enhanced if the additional N is deposited in the forest regrowing regions

Yang et. al. (2010, Biogeosciences)

Management: Soil Carbon Sequestration

Modeled Soil Carbon Sequestration Potential (Conventional Tillage to No Tillage)

Averaged Over the Period 1981-2000 (MgC/ha/yr)

Estimated Distribution of Net C Exchange Attributed to Biomass Burning (gC/m²/year)

Positive fluxes represent a net loss of CO2 to the atmospheric

Terrestrial Response to Changes in CO2, Climate, LUC, N Deposition

2000s NEE

Negative flux is net C gain by the terrestrial ecosystem

Conclusions

- Global ecosystems and soils absorbed about 1.1 GtC/yr during the 2000s compared to the 8 GtC/yr release of C due to fossil fuel burning
- The dominated sink is located in the secondary temperate forests along the East Coast in the US and Latin America and Africa
 - Uncertainty in these estimates are large, because the uncertainty in the input data for environmental factors
- CO2 fertilization accounts for a major portion of today's carbon sink
- Other factors such as forest regrowth (secondary forest), agriculture soils and N deposition also contributed to the net C sink.

Thank you..