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Abstract.

A global carbon cycle model is used to reconstruct the carbon budget,

balancing emissions from fossil fuel and land use with carbon uptake by the oceans, and
the terrestrial biosphere. We apply Bayesian statistics to estimate uncertainty of carbon
uptake by the oceans and the terrestrial biosphere based on carbon dioxide and carbon
isotope records, and prior information on model parameter probability distributions. This
results in a quantitative reconstruction of past carbon budget and its uncertainty derived
from an explicit choice of model, data-based constraints, and prior distribution of
parameters. Our estimated ocean sink for the 1980s is 17 = 7 Gt C (90% confidence
interval) and is comparable to the estimate of 20 = 8 Gt C given in the recent
Intergovernmental Panel on Climate Change assessment [Schimel et al., 1996]. Constraint
choice is tested to determine which records have the most influence over estimates of the
past carbon budget; records individually (e.g., bomb-radiocarbon inventory) have little
effect since there are other records which form similar constraints.

1. Introduction

Projections of future global climate change have led to the
consideration of actions intended to limit the buildup of green-
house gases in the atmosphere [United Nations (UN), 1992].
Uncertainty in projections of the climate response to future
emissions of greenhouse gases remains a critical factor in de-
termining when and what actions are taken. One contributor in
the overall uncertainty is the relation between emissions of
carbon dioxide and the resulting atmospheric concentration of
carbon dioxide determined from the behavior of the carbon
cycle within the ocean-biosphere-atmosphere system. Emitted
carbon dioxide increases the atmospheric concentration, which
is then thought to increase the rate at which carbon is taken up,
for example, by dissolution in the oceans and by enhanced
growth of the terrestrial biosphere. Models used to project
future concentrations of atmospheric carbon dioxide can ap-
proximate the behavior of the Earth’s past carbon cycle, at
least to the extent we have observations and measurements
that constrain its possible past behavior. Global carbon cycle
exhibits exchanges of carbon between the biosphere and atmo-
sphere and the oceans and atmosphere at annual rates (~100
billion tons of carbon per year each) that far exceed the annual
emissions of carbon dioxide by the burning of fossil fuels (~6
billion tons of carbon per year). Possible shifts in the exchanges
of carbon between the Earth’s reservoirs in unexpected ways
remain a source of uncertainty in projections of the behavior of
future carbon cycle that is difficult to assess. Nevertheless, the
accuracy with which we can reconstruct the workings of the
past carbon cycle forms an important factor leading into an
assessment of the uncertainty of projections of future atmo-
spheric response.
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Many estimates of the past global carbon budget have been
made, as reviewed by Siegenthaler and Sarmiento [1993] and
Schimel et al. [1995]. The sink of carbon dioxide into the oceans
has been estimated by models that attempt to reproduce ocean
circulation and transport [Maier-Reimer, 1993; Maier-Reimer
and Hasselmann, 1987; Sarmiento et al., 1992] and by paramet-
ric models that use ocean concentrations of radiocarbon for
model calibration or validation [Broecker and Peng, 1994; Jain
et al., 1995; Oeschger et al., 1975; Siegenthaler and Joos, 1992].
The uncertainty of the ocean sink contribution to the global
carbon budget has been estimated using ocean carbon cycle
models [Schimel et al., 1995; Siegenthaler and Sarmiento, 1993]
for which the ocean inventory of bomb radiocarbon [Broecker
et al., 1980, 1995] has been used for model validation. Heimann
and Maier-Reimer [1996], Quay et al. [1992], and Tans et al.
[1993] have considered the effect of carbon 13 constraints on
the global-average ocean sink of carbon as an alternative to
radiocarbon constraints. The anthropogenic signal in the ocean
has also been estimated from the observations from changes in
preformed carbon using techniques originally proposed by
Brewer [1978] and Chen and Millero [1979] and recently refined
by Gruber et al. [1996]. In addition, tritium and CFCs have
been used to calibrate or validate various regions of ocean
models [Bullister, 1989; Doney et al., 1993]; for example, Mensh
et al. [1998] used CFCs to calibrate the high latitudinal deep
ocean component of their carbon cycle model. Keeling et al.
[1996] have considered trends in atmospheric oxygen concen-
tration as a constraint on the recent carbon budget.

The range of results of different models was considered as
one measure of model uncertainty [Bruno and Joos, 1997; En-
ting et al., 1994; Schimel et al., 1996], even though the results of
these models are not all consistent with isotopic records as
shown by Jain et al. [1995]. Furthermore, a generic weakness of
using model intercomparisons to estimate uncertainty is that
the model results that are intercompared are usually the “best
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guess” results of each model, and the relation between best
guess results and the uncertainty of the mean estimate is un-
clear. However, model intercomparisons can give indications
of differences in model results which cannot be simulated by
variation of existing model parameters due to differences in
model structure (e.g., resolution, mechanisms, and formula-
tion); model structure uncertainty is an important consider-
ation in model-based estimation of uncertainty.

In this study we consider the extent to which measured
concentrations of carbon dioxide and carbon isotopes and es-
timates of emissions determine the past carbon budget. We do
this by applying Bayesian estimation of the parameters of a
global carbon cycle model using data-based records as con-
straints. In this study we consider only aggregated records of
carbon dioxide and carbon isotopes for the global atmosphere,
oceans, and ocean mixed layer. Spatially resolved data do,
however, provide additional information that could be used in
comparisons to spatially resolved models to further our quan-
titative understanding of carbon cycle. Including records of, for
example, oxygen, tritium, and CFCs as well as considering
other model structures would also add more information and
thus lead to better estimates and is recommended for future
studies. In section 2 we describe the method of Bayesian pa-
rameter estimation as applied to this problem. In this applica-
tion of Bayesian parameter estimation a carbon cycle model
and a prior probability distribution of model parameter values
are specified. The carbon cycle model is designed to have
sufficient degrees of freedom to well represent the past carbon
budget. These degrees of freedom are characterized by a set of
parameters or model inputs. The globally aggregated model
for carbon cycle used in this analysis is described in section 3
and is the same model that has been used both to reconstruct
past records [Jain et al., 1995, 1996, 1997] and to make future
projections of the atmospheric response to emissions [Jain et
al., 1994; Kheshgi et al., 1996, 1997. The prior estimate of model
parameters is based on information about the parameters prior
to application of constraints. Model parameters include model
inputs which are well known, for example, CO, emission rates
from the burning of fossil fuels, for which we specify a narrow
prior probability distribution, as well as parameters that are
not well known, e.g., the effective vertical diffusivity of the
oceans, for which we specify a wide prior probability distribu-
tion. In section 4, model inputs and parameters are discussed,
and a base-case set of prior estimates is defined. Data-based
constraints on model outputs are used in addition to prior
parameter estimates in Bayesian parameter estimation in or-
der to calculate a posterior (i.e., after imposition of the con-
straints) estimate of the model parameters which will have a
narrower probability distribution than the prior estimate. In
section 5 we describe a base-case set of observation-based
measures of the distribution of carbon dioxide and carbon
isotopes which are used as constraints on the model output.
Constraints based on data analyses exhibit varying degrees of
accuracy which we represent by a specified probability distri-
bution. Posterior estimates are calculated, and results are re-
ported in section 6.

Effects of the choice of constraints and prior parameter
estimates are tested to determine which records have the most
influence over estimates of the past carbon budget. The sen-
sitivity of posterior estimates and the reconstructed carbon
budget to prior parameter estimates and constraints is exam-
ined by applying alternative sets (other than the base-case sets)
of priors and constraints. We make comparisons between our
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approach and previous analyses of the uncertainty in the re-
construction of the past carbon budget by examining the effect
of subsets of constraints on posterior estimates of model out-
puts and parameters. We discuss, in the final section, conclu-
sions that can be drawn from this study and implications for the
determination of the uncertainty of future projections of the
atmospheric response to emission.

2. Bayesian Framework for Estimation
of Uncertainty

The method by which we apply the data constraints is Bayes-
ian parameter estimation [Press, 1989], which we describe in
this section. Let a be an m-dimensional vector of the true
model parameters which we will try to estimate, and let M («)
be a d-dimensional vector of model predictions, which obvi-
ously depends on «. Let D be a d-dimensional vector of data,
differing from M by error y(«) which is, in general, an a-de-
pendent random d-vector. Then, the following error model
applies:

D = M(a) + y(a). (€]

We assume that the errors are modeled statistically; that is, the
conditional probability density of y for known a, P_(y|a), has
been determined. Then if « is known, we have the conditional
probability density of D given by

Pp(D|a) = P(D — M(a)|a) = P (y]a). 2)

In the Bayesian framework, « is considered a random vector
and this device allows incorporation of prior knowledge of the
likely behavior of parameters through a prior probability den-
sity P, («). This distribution expresses our state of knowledge
of the values of the model parameters before the data con-
straints are applied.

From the law of total probability the unconditional proba-
bility density of the data is

Po(D) = f Po(D|@)P.(a) da. 3)
Qa

From Bayes’ rule, the probability density of the unknown vec-
tor of parameters «, after the data have been obtained, is

Pp(D|a)P (@)

Po(alD) = =5 “)

where P_(«a|D) is the posterior probability density of o and
contains all known information about the parameters after the
data constraints have been incorporated with the prior infor-
mation.

In this study we apply some simplifying assumptions to the
analysis. First, we assume that the probability distribution of
both the data and the prior estimates of the model parameters
are Gaussian. This allows us to characterize uncertainty by a
covariance matrix. While the actual probability distribution
might not actually be Gaussian, the probability distribution of
the data and the prior parameter estimates are not well known,
making the specification of a detailed probability distribution
quite subjective. Second, we assume that the model response is
linearly dependent on model parameters in the neighborhood
of the prior estimate of the parameters. While the model
response, in general, is not linear, this simplifies the analysis
and interpretation of results. This approach can, nonetheless,
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be extended to consider a nonlinear model response using
Monte Carlo methods; however, estimation of the posterior
probability distribution using such methods [Duran and White,
1995] with the number of parameters considered here would
be extremely computationally intensive. To examine the effects
of nonlinearity, the estimation problem could potentially be
simplified (reducing the number of parameters and constraints
by, for example, principal component analysis) based on the
linear analysis reported here; nonlinear effects will likely be
critical if parameter estimates were used to examine the un-
certainty of projections of the future atmospheric response to
emissions. If the model response is linear, and the probability
distribution of both the data and the prior estimates of the
model parameters is Gaussian (assumed), then the posterior
probability distribution of the model parameters will also be
Gaussian.

The prior probability density of parameters is specified to be
the Gaussian distribution

= €X _1/2 Q& — Qyprior Tcir%or Q& — Qyprior
P ey = P LY@~ o) Cubla — )] o
Jdet (27C i0r)
where C;., is the covariance matrix of the prior parameter

estimate, and ., is the mean. We assume that the errors in
the prior estimate of the parameters are not correlated with
each other, making C,,;,, a diagonal matrix with the diagonal
entries o'fm-or where o, is the standard error.

The probability density of the error is, likewise, specified to
be the Gaussian distribution

exp[—1/2(D = M())"C oo (D — M(a)))]

PD(D|a) = Vdet(zwcerror) (6)

where C.,,., is the covariance matrix of the error between the
model result and the data, and the mean of the error is as-
sumed to be zero. We first assume that the error is predomi-
nantly due to (measurement) error in the data. This is an
important assumption in this study. A deficient model formu-
lation should be expected to not be able to represent the true
(yet unknown) values of the constraints. Alternative models
could be used to test for sensitivity to this assumption. We then
assume that the covariance matrix C.,,,, is independent of .
We assume that data errors are not correlated to each other,
making C,,.. a diagonal matrix with the diagonal entries equal
t0 0%, the square of the standard error o,,.

Next, we approximate the model as its linearization about
the mean value of the prior estimate « to give

prior
M ‘ ((X - aprior) + M(aprior) =~ M(a) (7)

where M is the model sensitivity matrix to parameters a about
the mean value of the prior estimate

o

@prior

which is generated by finite differences of model results.

Finally, (1)—(8) are combined to give the posterior estimate
which also has a Gaussian distribution. The mean value of the
posterior estimate is given by

« = aprior + Cposterior[MTCgrlor(D - M(aprior)):L (9)

posterior
where the posterior covariance is

Cposterior = [MTCe_rlorM + C;r]ior]il' (10)
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The posterior covariance matrix gives the posterior estimate of
the uncertainty of model parameters. Note that the second
term in (9) is associated with the data constraints, while the
first term incorporates only prior information on parameter
values. The sum gives the proper weighting according to our
knowledge of statistical error. Thus parameters well identified
by data constraints will be insensitive to the prior distribution.
However, parameters not well determined by the data will not
wander during estimation, since they are constrained by the
prior density.

The improved estimate of model outputs is found by evalu-
ating the model with the mean value of the posterior estimates
of model parameters, M (& poseerior) OF, alternatively, approxi-
mating the model as being linearly dependent on the model
parameters about the mean prior estimate of parameters, as
was done in (7):

M(aposterior) ~M:- (apuslerior - (11)

To find the posterior estimate of the uncertainty in model
outputs, the covariance matrix for the model outputs is calcu-
lated from

aprior) + M( aprior) .

MCposteriorM T' (12)

Model outputs include model predictions of data, as given by
(1), and can also be extended to include quantities desired as
outputs (augmenting D to contain desired quantities) for
which there is no data-based estimate; the uncertainty of these
quantities with which D has been augmented is infinitely large,
which is approximated in computations by specifying a large
number for the corresponding diagonal terms in C,,. The
associated diagonal terms of the posterior covariance for the
outputs C . calculated using (12) are, nevertheless, finite.

Coutput =

3. Parametric Model for Global Carbon Cycle

Bayesian parameter estimation is applied to the linearized
form (equations (7)—(9)) of the parameterized model for a
globally aggregated carbon cycle which was used by Jain et al.
[1996] to reconstruct the past carbon cycle and isotopic varia-
tions in the atmosphere and oceans, which is described in
section 3.1. These reconstructions of carbon budget depend on
a set of model parameters and model inputs which are not
necessarily known with precision. To make these reconstruc-
tions, model parameters were calibrated [Jain et al., 1996] to
match a subset of the observation-based constraints considered
in this study; and these parameter values are used as the mean
prior estimate of model parameters in this study (see Table 1)
which also serves as the point in parameter space about which
the model is linearized; see (7) and (8) as described in section
3.2. Note that this model reconstruction will differ from the
budget based on the posterior estimate of model parameters
given in section 6. Finally, in section 3.3 we discuss degrees of
freedom designed into the model, which will be important for
interpreting results.

3.1. Model Description

The model of the global carbon cycle depicted in Figure 1 is
used to simulate the exchange of carbon dioxide, >C and 'C
between the atmosphere, reservoirs of carbon in the terrestrial
biosphere, and the ocean column and mixed layer [Jain et al.,
1995, 1994, 1996; Kheshgi et al., 1996]. The model consists of a
homogeneous atmosphere, an ocean mixed layer and land-
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Table 1. Prior and Posterior Estimates of Model Parameters
Prior Estimates of Posterior Estimates of
Model Parameters Mean Model Parameters Mean
Value = 90% Confidence Value = 90% Confidence
Description of Model Parameters Interval Interval

1. Fossil emission (1765-1980) 158 20 Gt C 158.54 = 18.40 Gt C

2. Fossil emission (1980-1990) 55+x5GtC 55.17+472GtC

3. Land use emission (1765-1980) 133 £ 100 Gt C 110.48 = 70.13 Gt C

4. Land use emission (1980-1990) 11+11GtC 931 +855GtC

5. Average annual fossil fuel *C content (1765-1990) —24.7 £ 2.2%o0 —24.9 = 2.1%o0

6. '*C atmospheric inventory (1950-1965) 2.54 + 0.25 X 10?® atoms 2.58 + 0.10 X 10?® atoms

7. 'C atmospheric inventory (1965-1990) —1.54 = 0.15 X 10*® atoms —1.52 = 0.06 X 10*® atoms

8. Translocation Q, 2.+ 4°C 2.06 = 3.83°C

9. Respiration O, 2. £ 4°C 1.63 = 3.60°C

10. NPP Q,, 14 £ 3°C 1.48 £2.98°C

11. NP Q,, 1.53 = 3°C 1.47 £ 3.00°C

12.  Fractionation factor (atmosphere to biosphere)
13.  Fractionation factor (atmosphere to ocean)

14.  Fractionation factor (ocean to atmosphere)

15.  Fractionation factor (ocean to marine biosphere)
16. Fertilization factor, 3

17.  Upwelling velocity

18.  Vertical diffusivity

19. Ocean NPP

20. Mixed layer depth

21. Atmospheric rate of exchange, k,,

22.  Ocean parameter

23.  Apparent climate sensitivity

24.  Cosmogenic generation of 4C

25. Terrestrial NPP (1765)

26. Preindustrial CO, concentration (1765)

0.9821 = 0.005
0.9982 = 0.0003
0.9895 = 0.0003
0.9770 = 0.005

0.9833 = 0.0049
0.9982 = 0.0003
0.9895 = 0.0003
0.9770 = 0.0050

0.39 £ 0.8 0.37 £ 0.52

3.5 =20 m/yr 0.25 = 7.55 m/yr
4.7 =20 X 10°> m%yr 4.90 * 1.25 X 10°> m?/yr
8.5 = Gt Clyr 7.48 = 6.18 Gt C/yr
75 £ 45m 7297 = 44.16 m

0.109 = 0.3 yr ! 0.11 £ 0.02yr™’
05 x2. 0.07 = 1.36
25 x5°C 1.91 £ 1.12°C

2.01 *+ 0.03 atom/cm?/s
57.79 = 28.97 Gt Clyr
278.05 + 4.95 ppm

2. + 0.5 atom/cm?/s
62 + 30 Gt Clyr
278 = 10 ppm

Mean values and 90% confidence intervals of Gaussian distributions are shown. Posterior estimates of model parameters after application of

the full set of constraints are listed in Table 2.

biosphere boxes, and a vertically resolved upwelling-diffusion
deep ocean. The detailed description of the ocean and land-
biosphere components of this model are given by Jain et al.
[1995] and Kheshgi et al. [1996], respectively. In our model the
thermohaline circulation is schematically represented by polar
bottom-water formation, with the return flow upwelling
through the one-dimensional (1-D) water column to the sur-
face ocean from where it is returned, through the polar sea, as
bottom water to the bottom of the ocean column, thereby
completing the thermohaline circulation. The response of bot-
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Figure 1. Schematic diagram of the coupled atmosphere-
ocean-biosphere model for the global carbon cycle.

tom-water carbon concentration to changes in the mixed layer
concentration is modeled parametrically by the parameter .
as described in detail by Jain et al. [1995]. A marine biosphere
source term is included in the deep sea associated with the
oxidation of the organic debris exported from the mixed layer
where it is produced by photosynthesis [Jain et al., 1995; Volk
and Hoffert, 1985].

To estimate terrestrial biospheric fluxes, a six-box globally
aggregated terrestrial biosphere submodel is coupled to the
atmosphere box (Figure 1). The terrestrial biosphere model is
made up of six boxes that represent ground vegetation, non-
woody tree parts, woody tree parts, detritus, mobile soil with a
turnover time 70 years, and resistant soil with a turnover time
500 years. The mass of carbon contained in the different res-
ervoirs and their turnover times as well as the rates of exchange
between them have been based on the analysis by Harvey
[1989a] and Kheshgi et al. [1996]. The effects of land use are
included by changing (decreasing with time) the total produc-
tive land area covered by the terrestrial biosphere. The carbon
mass in each of the boxes is proportional to the total produc-
tive land area. Decreases in area lead to CO, emissions due to
changes in land use as well as a decrease in the global rate of
carbon exchange with the (smaller) biosphere. A simple model
representation of biospheric feedbacks to changes in the at-
mospheric concentration of CO, and the global mean annual
near-surface temperature are included. An increase in the rate
of net photosynthesis (NP) of ground vegetation or net primary
productivity (NPP) of trees by terrestrial biota, relative to
preindustrial times, is modeled to be proportional to the log-
arithm of the relative increase in atmospheric CO, concentra-
tion from its preindustrial value. The magnitude of the mod-
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eled biospheric sink depends primarily on the chosen value of
the proportionality constant 8 known as the CO, fertilization
factor [Harvey, 1989b; Keeling, 1973; Wigley, 1993]. In addition,
the rate coefficients for exchange to and from terrestrial bio-
sphere boxes (respiration and photosynthesis) vary with global
mean annual temperature, which is calculated by an energy
balance climate model [Jain et al., 1994] consistent with the
model used by the Intergovernmental Panel on Climate
Change (IPCC) [Schimel et al., 1996; Watson et al., 1990],
according to a Q,, formulation, i.e., where net primary pro-
duction and respiration rates are proportional to (Q,,)”"'%°¢,
where T is the global-mean temperature, and Q,, is a model
parameter [Harvey, 1989a]. The mechanism for biospheric
feedbacks is not well characterized, leading to significant un-
certainty in the prediction of the behavior of the future carbon
cycle. The past net biospheric uptake, however, is constrained
by the past carbon budget. We do not expect the past uptake of
carbon isotopes to be highly sensitive to the mechanism for
biospheric feedback, nor the split of the net biospheric uptake
between emissions from changes in land use or biospheric
feedback. If this expectation holds true for the modeled sys-
tem, then isotopic data considered in section 5 will primarily
constrain the net biospheric sink (and its location should spa-
tially resolved data be used) and will have limited use in con-
straining the cause for changes in biospheric carbon.

The cycles of '*C and '*C are modeled by additional systems
of equations of similar form as for total carbon, except for the
inclusion of fractionation, radioactive decay of '*C, and cos-
mogenic production of '*C. A detailed description of the
model equations for the atmosphere, ocean, and terrestrial
reservoirs of CO, and its isotopes are given by Jain et al. [1995],
Kheshgi et al. [1996], and Jain et al. [1996]. In this paper the *C
concentrations are expressed as 8'>C [Jain et al., 1996], and *C
concentrations are expressed here in the A'*C notation [Jain et
al., 1995]. The model also takes into account the effects of
radioactive decay. The radioactive decay constant for “C is
A =121 X 10" *yr !, whereas it is zero for the stable isotopes
2C and "C.

3.2. Reconstruction of Anthropogenic Effects
on the Past Carbon Budget

Estimates of the history of CO, emissions (measured in Gt
C/yr) from the burning of fossil fuels E ;. 4 ar€ greater than
the sum of the modeled uptake of carbon by the oceans plus
the observed accumulation of carbon (in the form of CO,) in
the atmosphere. In an attempt to balance the carbon budget
we attribute the difference to the net uptake of carbon by the
terrestrial biosphere [Enting et al., 1994; Siegenthaler and Oe-
schger, 1987; Wigley, 1993].

To reconstruct the past carbon budget, we calculate the
history of land use emissions from

dN, dN, dN,
- W = dt W - Efnssil fuel - (13)
dN,
dt = biospheric feedbacks Eland use * (14)

The observed record of CO, concentration from the Siple ice
core [Friedli et al., 1986], and from atmospheric measurements
at the Mauna Loa Observatory in Hawaii [Keeling et al., 1995;
Neftel et al., 1985], smoothed by a spline fit, is used to calculate
the rate of change dN,/dt of the carbon mass in the atmo-
sphere. We adopt the estimate of the global emission rate
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E ¢ ossit tue1 Of CO, by the burning of fossil fuels given by Marland
et al. [1994]. The ocean carbon cycle model [Jain et al., 1995] is
used to calculate the rate of accumulation dN,/dt of mass of
carbon N, in the oceans with the atmospheric concentration of
CO, specified to be the spline fit to the observed record. The
net uptake of carbon by the terrestrial biosphere dN,/dt is
calculated from (13). To match the estimate of land use emis-
sions of 11 Gt C [Schimel et al., 1996] for the decade of the
1980s, we calibrate the CO, fertilization factor B to equal 0.39.
Land use emissions are then calculated from the rate of uptake
of carbon by terrestrial biosphere feedbacks Sy,;ospheric fecdbacks
calculated in response to the spline fit to the observed history
of atmospheric CO, [Kheshgi et al., 1996], and dN,/dt by (14).
In this way the modeled carbon cycle is forced to replicate the
smoothed history of atmospheric CO, concentration. A similar
approach was used by the IPCC [Schimel et al., 1996] to re-
construct the past carbon budget.

The past reconstruction of the **C and '*C cycles are created
on the basis of the reconstruction for total carbon as done by
Jain et al. [1996]. We start from a model steady state. The '*C
steady state is determined by the fractionation of '*C relative
to '>C and the exchanges of total carbon. The radiocarbon
steady state adds the effects of a cosmic radiation source of
radiocarbon in the atmosphere and decay of radiocarbon in all
the carbon reservoirs. The model reconstruction departs from
steady state driven by changes in fossil fuel, land use, and
bomb-produced radiocarbon sources. The model reconstruc-
tion is determined, in part, by the set of model parameters
discussed in the following section.

3.3. Parameterized Degrees of Freedom for Modeling
Past Carbon Budget

A fundamental assumption in this use of Bayesian parame-
ter estimation is that the parametric model contains sufficient
degrees of freedom to approximate the behavior of past carbon
cycle, so the error given in (1) is predominantly due to data
errors and not the ability of the model to reproduce the data.
Degrees of freedom should be included where there are weak-
nesses in our understanding of carbon cycle. Excessive degrees
of freedom, however, will lead to an overestimate of uncer-
tainty of the carbon budget. These degrees of freedom are
represented in this analysis by the choice of parametric model
for carbon cycle and the choice of prior parameter estimates.

The terrestrial carbon cycle model contains feedbacks driven
by both CO, concentration and global temperature change,
which allows a wide range of carbon source/sink rate. Fraction-
ation factors common to all photosynthetic fixation of carbon
in the model are used independent of, for example, the plants
responsible. Detailed regional studies have used prescribed
dependence of fractionation factor on water availability and
plant type in their analysis [e.g., Ciais et al., 1995]. We have not
included ranges of possible behaviors of fractionation factors,
and this may unduly alter the effects of isotopic constraints on
terrestrial carbon cycle. Reliable globally aggregated data on
terrestrial carbon isotopic content are lacking [Harrison et al.,
1993] and therefore have not been included in this study; this
makes it difficult to evaluate the potential effect of this degree
of freedom.

While ocean carbon cycle models that have been used to
reconstruct the global carbon budget [Enting et al., 1994; Jain et
al., 1995] exhibit various degrees of resolution, from a few
carbon reservoirs to three-dimensional general circulation
models, most models include air/sea exchange and tracer trans-
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port (convection and diffusion) modified by biologically caused
particulate transport. The relation between deep sea tracers
and ocean carbon uptake differs between models with different
convection schemes, and these differences cannot be repre-
sented by the two parameters, upwelling velocity w and diffu-
sion coefficient k, conventionally used in an upwelling diffu-
sion model [Jain et al., 1995]. In addition, ocean transport may
not be time invariant as is often assumed, contributing to
additional differences between modeled deep ocean tracers
and carbon uptake. Both of these are potential contributors to
uncertainty in modeled ocean carbon uptake to be considered.
Neither is captured in the time-invariant transport parameters
for upwelling or diffusion used in this model. We use the ocean
bottom-water parameter . as a device to add a degree of
freedom to account the effects of these two considerations on
uncertainty estimates.

The bottom-water formation in the higher-latitude belts is
quite well known [Broecker and Peng, 1982]. In this model, the
downwelling flow in a polar sea zone represents the bottom-
water-forming regions of the world oceans. This leads to a path
for recently absorbed atmospheric CO, to reach the deep
ocean. Rapid vertical exchange between the polar surface wa-
ters and the deep ocean has been considered in modeling the
carbon cycle [Siegenthaler, 1983]. Tracers in high-latitude wa-
ters have been used to calibrate exchange coefficients with
high-latitude waters in other model studies [Kheshgi et al.,
1991; Shaffer and Sarmiento, 1995]. In this model, bottom-
water concentration is controlled by a bottom-water parameter
7., which is the ratio of the change in concentration of bot-
tom-water N, from its initial (1765) value N, to the change in
concentration of the mixed layer N,, from its initial (1765)
value N,,:

Ny, — Ny (15)

N, — N,

A value of 7, = 1 implies that the change in bottom-water
concentration is the same as the change in mixed layer con-
centration. Note that the ratio of **C/*C (or other preanthro-
pogenic tracers) in the deep sea is insensitive to the value of
@, since . does not affect the initial concentration of *C
which dominates the current deep sea concentration. This in-
sensitivity limits the extent to which 7, can be calibrated by
tracers indicating the preanthropogenic state, which is as-
sumed to be steady in this reconstruction. The use of this
parameter therefore is to add a degree of freedom to the
model which allows transport of surface water carbon to the
deep sea independent of the initial concentration. Uncertainty
in this parameter is used as a device to represent the effects of
differing model structure on the relation of deep sea tracers to
ocean uptake, and the effects of time-varying transport (trans-
port not fully constrained by the preanthropogenic state) on
the estimation of the past carbon budget.

Note that if the convection/diffusion field of ocean carbon
cycle models are time invariant, then the globally aggregated
carbon and isotope uptake of these models can be approxi-
mated by a single (Green’s) function notwithstanding the spa-
tial resolution of the model [Kheshgi and White, 1996; Joos et
al., 1996]. An alternative to the ocean carbon cycle model used
in this study could be the calibration of the Green’s function
subject to prior information which could be generated by more
complex (e.g., three dimensional) but cumbersome models,
although the characterization of time-varying convection
would remain an obstacle.

e

KHESHGI ET AL.: CARBON BUDGET UNCERTAINTY

4. Prior Estimates of Global Carbon Cycle
Model Parameters

In this section we describe our choice of the base-case set of
model parameters and the prior estimate of their probability
distribution. We assume that the prior estimates are not cor-
related. The prior distribution of a parameter can therefore be
characterized by its mean value and its standard deviation (or
90% confidence limit which is equal to 1.65 times the standard
deviation); values are summarized in Table 1 with a detailed
discussion in Appendix A.

Of the model parameters listed in Table 1 some are based on
independent studies which prescribe an uncertainty, while oth-
ers are not well known and will be better determined by Bayes-
ian parameter estimation. For well-known parameters the
mean values and standard deviation have been estimated in
other studies from data independent from the data-based con-
straints that will be applied using Bayesian parameter estima-
tion; for these parameters we adopt the estimates of their
distributions. An example of a parameter well characterized by
independent data is the history of fossil fuel emissions. Other
model parameters are not easily measured, and their values
have often been characterized using constraints. For these
model parameters we choose a mean value that is consistent
with the model calibration (see section 3.2) carried out by Jain
et al. [1996] but specify a large standard deviation. By doing so
we can assess the sensitivity to model parameters at their mean
values which will give a fair representation of the model sen-
sitivity over the constrained range of model parameters; by
choosing a large standard deviation for these parameters we
will not bias results with prior information, which has little
basis beyond the constraints, which we will specify in section 5.

5. Definition of Constraints on Global Carbon
Cycle

In this study we explicitly apply an extensive set of data-
based constraints, summarized in Table 2 and discussed in
detail in Appendix B, on the parametric model of the global
carbon cycle. We consider only globally and annually aggre-
gated (note that our carbon cycle model does not simulate
seasonal variations) constraints, consistent with our model for-
mulation. Spatial distributions of tracers could further con-
strain more detailed models of the global carbon cycle, but the
extent to which the constraints can be strengthened has not
been examined.

We have selected the discrete set of constraints and their
data-based values given in Table 2 with consideration of the
ill-defined characteristics of the data. Since the errors of the
data-based estimates from the true values are assumed not to
be correlated to each other, our selection does not include
constraints that are expected to be correlated; for example, we
do not include both the ocean inventory and the penetration
depth of bomb-produced radiocarbon in the oceans, since
these are based on some of the same sets of data and would
introduce little additional information. Nor do we include time
series data that may have correlated errors. The assumed
Gaussian probability distributions of the constraints are char-
acterized by their mean and variance which are chosen con-
sidering the previous studies that have made observation-based
estimates along with the way in which we use the estimates as
constraints. While the definition of constraints is subjective,
the constraints are related to observation-based studies; fur-
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Table 2. Data-Based Constraints and Uncertainties Described in Section 5 Compared to Model Output Generated Using
the Mean Prior Estimate of Model Parameters and the Posterior Estimate of Model Parameters Given in Table 1

Model Output for
Mean Prior Estimate

Data Constraint Mean

Value + 90% Confidence

Model Output for
Posterior Estimate of
Model Parameters Mean
Value * 90% Confidence

Model Output/Data Description* of Model Parameters Interval Interval
1. Atmospheric CO, accumulation (1765-1980) 126.1 Gt C 126 £ 11 Gt C 124.05 =937 Gt C
2. Atmospheric CO, accumulation (1980-1990) 33.0GtC 33+4GtC 33.72 £ 3.65GtC
3. Atmospheric CO, (1990) 354.5 ppm 354 = 2 ppm 353.99 + 1.97 ppm
4. Average ocean total carbon (1975) 2.355 gC/m? 2.33 + 0.05 gC/m> 2.33 + 0.05 gC/m?
5. Temperature change (1860-1990) 0.53°C 0.45 = 0.15°C 0.45 £ 0.15°C
6. Atmospheric §"°C (1956) —7.04%o0 —6.79 = 0.17%o0 —6.93 * 0.08%0
7. Atmospheric §"°C (1990) —7.978%o0 =790 = 0.17%o0 —7.86 = 0.13%o0
8. Atmospheric 8'°C change (1800-1953) —0.586%0 —0.44 = 0.23%o0 —0.49 = 0.07%o0
9. Atmospheric §"°C change (1978-1990) —0.352%o0 —0.40 = 0.17%o0 —0.34 = 0.07%o0
10.  Surface ocean §">C (1975) 1.88%0 2.0 £ 0.17%0 2.01 = 0.12%0
11.  Surface ocean 8'3C change (1970-1990) —0.352%0 —0.40 = 0.23%o0 —0.32 = 0.07%o0
12.  Surface ocean §"°C change (1800-1970) —0.522%0 —0.5 = 0.5%0 —0.41 = 0.10%o0
13.  Ocean §"C inventory change (1970-1990) —151.6%0 m —208 * 103%0 m —150.68 = 33.53%0 m
14.  Atmospheric A™C change (1860-1950) —20.1%o0 —20 = 8%o0 —20.28 = 7.97%0
15.  Surface ocean A'*C change (1900-1950) —5.60%0 —12 = 13%0 —5.99 = 1.24%o0
16. Surface ocean A™C (1975) 111.8%0 110 *+ 18%o0 110.14 = 17.68%0
17.  Bomb-'*C ocean inventory change (1950-1975) 3.27 X 10® atoms 3.05 = 0.5 X 10?® atoms 3.12 = 0.33 X 10?® atoms
18.  Average ocean A'C concentration (1975) —158.5%0 =160 = 8%o0 —160.13 = 7.95%o0

3.51 X 10%® atoms

3.2 + 0.4 X 10*® atoms

3.19 = 0.38 X 10%® atoms

19. 'C ocean + biosphere inventory change (1965-1990)

*All ranges of years listed are defined to be at their beginning (i.e., January 1).

thermore, the sensitivity of our final results to the choices
made is studied explicitly.

6. Results of Bayesian Estimation of the
Global Carbon Budget

6.1. Application of the Base-Case Set of Constraints
and Prior Information

We apply Bayesian parameter estimation to arrive at poste-
rior estimates of model parameters, and model outputs char-
acterized by their mean values oo crior and M (@ pogierior)> and
the covariance matrices Cogerior aNd Coyipu- When we apply
the full set of constraints listed in Table 2, we arrive at the
posterior estimate (listed in Table 1) of model parameters with
narrower distributions than the priors shown in Table 1. Com-
parison to the prior estimates in Table 1 shows that the con-
fidence interval of some of the parameters has decreased sig-
nificantly in size, whereas others have remained nearly
unchanged: according to (10) the confidence interval of the
posterior estimate must be narrower than that of the prior. For
instance, the confidence interval for ocean upwelling velocity
and vertical diffusivity decrease considerably due, in part, to
the constraint on average ocean A'*C concentration; whereas
the intervals for the climate effects of the terrestrial biosphere
(the Q, factors) are not affected greatly because of the lack of
information in the constraints specified in Table 2 that is per-
tinent to these parameters. Note that these are ranges of pa-
rameters for the linearized model (7) to which the constraints
have been applied and not the full nonlinear model described
in section 3.

Key degrees of freedom which affect the ocean uptake of
carbon in this model are parameterized by the w, k, and 7,
[Jain et al., 1995]. The components of the posterior covariance
matrix Cogerior give the correlation coefficients relating these
three parameters:

1 -0.69 -0.66
0.46

1

correlation coefficient(w, k, 7,) = 1

(16)

which indicates a negative correlation between w and either k
or .. This means, for example, that for values of w higher
than its mean estimate (contained in pqgerior)> POth k and .
will be more likely to have a value lower than their mean
estimate. These parameters are partially constrained by the
average ocean A'*C concentration. Even with this constraint,
however, the posterior estimate of upwelling velocity (0.25 =
7.55 m/yr) has a much wider range of values than the range
from zero to 4 m/yr that has been previously used [Enting et al.,
1994; Hoffert et al., 1981; Kheshgi et al., 1991; Shaffer and
Sarmiento, 1995; Volk, 1984; Volk and Liu, 1988]. However, in
using posterior estimates of parameters, their covariance (off-
diagonal elements of C ) should, of course, not be
neglected.

The set of constraints (Table 2) has little effect on the
estimates of many of the parameters. This leads to little dif-
ference between the posterior and prior estimates of many of
the parameters. For example, the estimate of fossil emissions
(1980-1990) of 55.17 * 4.72 Gt C is only slightly improved
from the prior estimate of 55 = 5 Gt C, implying that the data
were not an effective constraint on the estimate of fossil fuel
emissions. In another example the terrestrial net primary pro-
ductivity (NPP) had a prior estimate of 62 = 30 Gt C/yr and a
posterior estimate of 57.79 * 28.97 Gt C/yr. Broecker and Peng
[1993] postulated that '*C could form an effective constraint
on the size of the terrestrial carbon exchange reservoir, if more
accurate data-based estimates of changes in *C inventories
could be made. The constraints that we have imposed did not
reduce the range of the terrestrial NPP estimate, which is

posterior
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Table 3. Posterior Estimate of Model Outputs of Ocean and Terrestrial Carbon Sources/Sinks Resulting From Different
Sets of Constraints Compared to the Model Output for the Mean Prior Estimate of Parameters

Model Output

Model Output for Posterior Estimate of Model Parameters

for Mean Mean Value = 90% Confidence Interval
Prior

Parameter All No "C No ¥C No 13C or C

Estimate Constraints Constraints Constraints Constraints
Ocean CO, accumulation (1765-1980) 101.36 79.44 + 4464 Gt C 80.94 + 58.00 Gt C 98.43 = 65.22GtC 107.07 +97.12 Gt C
Ocean CO, accumulation (1980-1990) 19.84 17.05 = 747GtC 1724 =1045GtC  19.30 = 1098 Gt C  20.94 + 17.57 Gt C
Net biospheric source (1765-1980) 69.21 4496 £50.63Gt C 47.04 £61.97GtC  66.04 = 70.75 Gt C 74.57 = 100.21 Gt C
Net biospheric source (1980-1990) -1.72 —441+979GtC  —419+1204GtC —-231+1275GtC —0.72 = 1846 GtC

related to the turnover time for the model terrestrial biosphere
Ieservoirs.

A posterior estimate of model outputs is calculated using
(11). Table 2 lists the mean value and the confidence interval
of the posterior estimate of the model outputs which can be
compared to the data-based values also in the table. For all of
the model outputs the confidence interval is smaller than that
of the data-based constraint; this is a consequence of (10).
Also, the distributions of model outputs overlap with, or are
contained within, the distributions of the data-based values.
The ability of the model to simulate the variety of constraints
given in Table 2 has been used as evidence of our ability to
reconstruct the global carbon budget [Broecker et al., 1995; Jain
et al., 1996; Kheshgi et al., 1996; Siegenthaler and Sarmiento,
1993]. While many of the outputs exhibit a similar size confi-
dence interval, for some the confidence interval is much
smaller. For example, the posterior confidence interval for the
surface ocean A'*C change from 1900 to 1950 is much smaller
than that of the data constraint (output 15 in Table 2). This
implies both that the best estimate of this quantity has a
smaller range (—6 = 1%o) than the data-based value (—12 *
13%o0), and that the data are not an effective constraint on
other quantities; of course, this conclusion is subject to the
assumptions implicit in this approach.

Estimates of the mean value and covariance matrix of model
output for which there are not data-based constraints can also
be calculated. In Table 3 the mean value and the confidence
interval of the oceanic and net biospheric sinks of carbon for
the decade of the 1980s and for the time period 1765-1980 are
given and can be compared to various studies of uncertainty in
the contemporary carbon budget. The confidence interval of

the ocean sink for the 1980s applying all the constraints is 17 *
7 Gt C, which is not significantly different than that stated in
recent reviews [Schimel et al., 1995; Siegenthaler and Sarmiento,
1993] which give a nominal value with a 90% confidence in-
terval of ocean carbon sink of 20 = 8 Gt C for the 1980s. The
estimate for the net biospheric source for the 1980s of —4 = 10
Gt C (see Table 4) is roughly equal to the ocean accumulation
(sink) plus atmospheric accumulation minus the fossil fuel
emission assuming that the uncertainty of each are not corre-
lated (implying that the errors sum geometrically); this com-
pares to the value inferred from the recent IPCC assessment of
—2 *= 10 Gt C [Schimel et al., 1996]. This implies also that the
prior estimate of land use emissions does not significantly
improve the estimate of the net biospheric source. Further-
more, since the net biospheric source is equal to land use
emissions minus other biospheric sinks (CO, fertilization and
climate effects in this model [cf. Kheshgi et al., 1996]) and since
the variance of estimates of land use emissions and the net
biospheric source are similar, then the estimate of other bio-
spheric sinks (often called the missing sink) is correlated to the
estimate of land use emissions as well as the net biospheric
sink.

The parametric model used in this study is based on the
linear response of the globally aggregated model shown in
Figure 1 to changes in model parameters, about the mean prior
estimate of the model parameters. While this model will be a
close approximation to the nonlinear model in the neighbor-
hood of the mean prior parameter values, the linear model will
depart from results of the nonlinear model for parameter val-
ues much different from the mean prior values. As can be seen
in Table 1, both the prior and the posterior estimates of the

Table 4. Variance (Standard Error Squared) of Estimates Decreases If the Prior

Uncertainty of a Parameter is Decreased

Relative Change in Variance of Estimates

Determined Prior Parameter

1980s Ocean Sink

1980s Net Biospheric Source

22.  Ocean parameter,

17.  Upwelling velocity

18.  Vertical diffusivity

24. Cosmogenic generation of “C

6. 'C atmospheric inventory (1950-1965)
19.  Ocean NPP

—0.868 —0.465
—0.410 —0.233
—0.319 -0.192
—0.248 —0.132
—0.163 —0.087
—0.133 —0.093

We examined the relative decrease in the posterior estimate of the variance of the 1980s ocean sink in
the case where all constraints given in Table 2 are applied with the prior information given in Table 1, to
the case where the prior confidence interval of one parameter is set to zero (= {variance with one
parameter determined and the remaining priors as stated in Table 1}/{variance with priors in Table 1} — 1).
All 26 parameters given in Table 1 are tested. Listed are the parameters which, when determined (i.e., the
prior confidence interval set to zero), lead to the largest decrease in the variance of the 1980s ocean sink

estimate.



KHESHGI ET AL.: CARBON BUDGET UNCERTAINTY

31,135

Table 5. Posterior Estimates of Model Outputs of Ocean and Terrestrial Carbon Sources/
Sinks Resulting the Case When All Constraints Are Applied and the Prior Estimate of
Ocean Bottom-Water Parameter 7, Is Set to 0.5 Compared to Results With Base Case

Priors (Table 3)

Model Output for Posterior Estimate
of Model Parameters Mean Value = 90%
Confidence Interval

c

T, 0.5 Base Case Priors

Ocean CO, accumulation (1765-1980)
Ocean CO, accumulation (1980-1990)
Net biospheric source (1765-1980)
Net biospheric source (1980-1990)

92.28 £ 18.20Gt C
19.24 272Gt C
56.89 + 33.60 Gt C
—-231*£716GtC

79.44 £ 44.64 Gt C
17.05 =747 Gt C
44.96 £ 50.63 Gt C
—441 £9.79GtC

model parameters do depart far from the mean prior values. If
the nonlinear model is run with the mean posterior estimate of
the linear model parameters (all constraints imposed) given in
Table 1, for example, the calculated 1990 atmospheric concen-
tration of CO, is 351.93 ppm, which is remarkably close to the
posterior estimate of the linear model of 353.99 ppm (Table 2),
given the significant difference in model parameters between
the mean posterior estimate and the mean prior estimate
(about which the model was linearized). For this case, how-
ever, the 1980s ocean uptake calculated by the nonlinear
model is 20 Gt C as opposed to 17 Gt C from the linear model
(Table 3), which is well within the uncertainty of the estimates
but, nonetheless, different; both results are near the 1980s
ocean uptake of 20 Gt C (Table 3) calculated with the mean
prior parameter values. In this study, constraints are applied,
and the parameters of the linear model are estimated, not the
parameters of the nonlinear model. For this reason it is not
appropriate to use parameter estimates from the linear anal-
ysis as input to the nonlinear model. For the range of param-
eter values given in Table 1 the nonlinear model may well give
wild results that would not be consistent with the constraints. It
is clear from results thus far that a wide range of model be-
havior is needed to yield an uncertainty in the carbon budget
comparable to expectations [e.g., Schimel et al., 1996]. To ex-
tend this analysis to a more detailed analysis using a full non-
linear model will require acceptance of that model behavior
over a wide parametric range. Key processes and constraints
indicated by this linear analysis may facilitate analysis of a
nonlinear estimation problem.

The estimates of this study are the result of the explicit
application of a Bayesian estimation framework. These results
depend on subjective choice of model, priors, and constraints,
as opposed to the subjective probability distributions of the
components of the carbon budget reported in recent reviews
[Schimel et al., 1995; Siegenthaler and Sarmiento, 1993]. The
effect of these subjective choices on estimates can be evaluated
using our framework, which is objective given the choice of
model, priors, and constraints which are stated explicitly. Using
this framework, the effect of more accurate constraints, which
might come from emerging data or the neglect of constraints
on estimates of the carbon budget, can be evaluated.

6.2. Sensitivity of Results to the Prior Distribution
of Model Parameters

Posterior estimates of the ocean and biosphere carbon up-
take are sensitive to the choice of prior distribution of model
parameters. To test the effect of prior information for each
parameter on the carbon budget, we compare the posterior

estimate (with the base set of constraints applied) of the vari-
ance (standard error squared) of the ocean sink and the net
terrestrial source for the decade of the 1980s when one of the
26 parameters listed in Table 1 is determined (standard error
of the parameter set to zero). The variance with one parameter
determined is always less than or equal to the variance for the
base set of priors given in Table 1. Table 4 lists the relative
change in ocean sink and the net terrestrial source variance for
the parameters with the six largest effects on ocean sink vari-
ance. The largest effect is caused by the ocean bottom-water
parameter ., which accounts for 87% of the variance in the
1980s ocean uptake and 47% of the variance in the 1980s net
terrestrial source (confidence intervals given in Table 3). The
next largest effects are caused by the prior uncertainty of
upwelling velocity and the vertical ocean diffusivity.

The posterior estimate of the carbon budget, calculated
when the ocean bottom-water parameter . is specified to be
exactly 0.5 (prior estimate = 0.5 = 0), is shown in Table 5 and
has a much narrower probability distribution than the carbon
budget shown in Table 3 for the base set of priors and con-
straints. The confidence interval of ocean uptake over both
time intervals (1765-1980 and 1980-1990) decreases from the
base case to a greater extent than that of the net biospheric
source. In this case (Table 5) the uncertainty in fossil emissions
and atmospheric accumulation contribute more to the poste-
rior confidence interval of the net biospheric source than the
uncertainty of the ocean uptake, due to the reduced interval
size (associated with fixing 7r,.) of the posterior estimate of the
ocean uptake relative to that of the atmospheric accumulation
(Table 2) or fossil emissions (Table 1). While the mean values
of the ocean sink and biospheric source of the carbon budget
shown in Table 5 are similar to that of previous assessments
[Schimel et al., 1996], the confidence intervals are much
smaller.

Associated with determination of 7., the posterior estimates
of model parameters become more accurate. Uncertainty in
ocean upwelling and diffusivity remain the leading remaining
causes of uncertainty in ocean uptake although the magnitude
of their uncertainty is reduced from that listed in Table 1.
Ocean upwelling w and diffusivity k remain negatively corre-
lated when 7, is determined; from the C elements,

< 11.88 m?/yr?

posterior
—1.36 X 10° m*/yr?

cov (w, k) = 0.45X10° m*/yr?

) )]

and the correlation coefficient between w and k is —0.59.
We conclude that estimates of the uncertainty of past ocean
uptake are affected primarily by the lack of prior determina-



31,136

tion of the ocean bottom-water parameter 7, in our formula-
tion of the parameter estimation problem. However, as noted
in section 4 and Appendix A, further increase in the width of
the prior confidence interval of 7, has a diminishing effect on
posterior estimates. As discussed in section 3.3, our introduc-
tion of a 7, with a wide confidence interval adds a degree of
freedom to the system which decouples the relation between
model parameters (and thus the modeled carbon budget) and
constraints to the initial (1765) ocean steady state. Therefore
while average ocean radiocarbon forms a constraint on w and
k, it does not form a strong constraint on .. An effect of this
degree of freedom is to avoid the constraints implicit in the
model structure (time-invariant ocean transport and approxi-
mate deep ocean transport) which would otherwise highly con-
strain contemporary ocean uptake of carbon with data from
deep ocean tracers. For comparisons shown in the remainder
of this paper we shall use the base set of prior information
listed in Table 1.

The use of 7, is an important point of departure from other
studies of model calibration and uncertainty. For example,
Enting and Pearman [1987] used the method of constrained
inversion, a method related to Bayesian parameter estimation,
to calibrate a carbon cycle model although they did not report
the uncertainty of their posterior parameter estimates. In their
analysis, data constraints were stated with larger uncertainties
than used here (e.g., the specified standard error of their deep
ocean A'C constraint was +50%o compared with our *5%o),
and a small uncertain time gradient in ocean vertical diffusion
was allowed in their prior distribution of model parameters;
this yielded a comparable range of uncertainty as in this study
but by a different path. Alternatively, Heimann and Maier-
Reimer [1996] used air/sea balances as partial carbon cycle
models, avoiding issues of deep sea transport; however, their
analysis resulted in larger estimates of uncertainty than found
here, which is due, in part, to consideration of a subset of the
constraints included in Table 2, as is discussed in detail in
section 6.3.

6.3. Effectiveness of >C Versus '*C Constraints
on the Carbon Budget

Subsets of the constraints listed in Table 1 lead to wider
distributions of posterior estimates in model parameters as
well as model outputs. Table 3 shows the model estimate of the
reconstructed carbon budget for four sets of constraints. The
first set of constraints (discussed above) is the application of all
constraints listed in Table 2. The second is the result of ne-
glecting all "*C constraints (constraints 14-19 in Table 2). The
third is the result of neglecting all '*C constraints (constraints
6-13 in Table 2). The fourth is the result of neglecting all **C
and C constraints (constraints 6-19 in Table 2).

When isotopic constraints are not imposed, the probability
distributions of ocean and biospheric uptake are considerably
wider than the case where all isotopic constraints are imposed.
This gives one set of measures of the degrees of freedom
allowed by the model structure, prior estimates of parameters,
and the remaining constraints. The wide range is caused in part
by the wide range chosen for some of the model parameter
priors, such as the fertilization factor (B), ocean upwelling
velocity, ocean vertical diffusivity, bottom-water .., and ocean
net primary production.

The effect of either '*C or "*C constraints is to narrow the
uncertainty of the budget from that with no isotopic con-
straints. As can be seen in Table 3, '*C constraints reduce
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uncertainty slightly more than '*C constraints. Together, **C
and 'C constraints reduce uncertainty even further. An impli-
cation of this result is that globally aggregated ocean models
calibrated with the radiocarbon [see Jain et al., 1995; Siegent-
haler and Joos, 1992] miss the possibly stronger constraining
effects of '*C (whether this is also the case with spatially
resolved data remains to be shown).

Heimann and Maier-Reimer [1996] compared the effects of
various constraints implied by '*C data on the 1980s carbon
budget. In an attempt to make their evaluation of data con-
straints on the carbon budget model-independent, they applied
globally aggregated mass balances as their model and then
performed the equivalent of a Bayesian parameter estimation.
In order to see if the results of our analysis are comparable to
those of Heimann and Maier-Reimer [1996], we choose a subset
of the constraints in Table 2 to enforce the primary constraints
in the Heimann and Maier-Reimer [1996] analysis: all the
nonisotopic constraints (1-5 in Table 2) along with a subset of
the *C constraints (7-11 and 13 in Table 2). Application of
this set of constraints leads to an estimate of 1980s ocean sink
of 21.7 = 11.3 Gt C using our framework. Whereas Heimann
and Maier-Reimer’s [1996] combined the three '>C balances,
they considered and arrived at an estimate of 1980s ocean sink
of 21 * 15 Gt C (90% confidence interval). We do not directly
reproduce the budgets as stated by Heimann and Maier-Reimer
[1996], because the definitions of our constraints and our
model, which simultaneously accounts for all the balances,
differ from those of Heimann and Maier-Reimer [1996] whose
results show a wider confidence interval. Of course, application
of both *C and '*C constraints yields a much narrower distri-
bution.

6.4. Strength of Individual Constraints on the Carbon
Budget

To test the effect of each constraint on the carbon budget,
we compare estimates of the variance (standard error squared)
of the ocean sink for the decade of the 1980s when (1) all but
one constraint is applied and (2) the uncertainty of one con-
straint is reduced by half. Table 6 shows the increase in the
variance estimate, relative to that for the case when all con-
straints in Table 2 are applied, for the constraints with the six
largest effects. Average ocean A'*C concentration in 1975 is
the constraint with the largest effect on estimated variance of
the ocean sink.

Omission of many individual constraints had only a minor
effect on posterior estimates. For example, the constraint (con-
straint 19) on the atmospheric inventory plus bomb production
of radiocarbon over the period from 1965 to 1990 had very
little effect; omitting this constraint increased the 1980s ocean
sink variability by 0.007 (relative, compare Table 6), which was
the 15th largest effect of the 19 constraints. This is consistent
with our previous conclusion [Jain et al., 1997] that the uncer-
tainty of the data-based estimate of this quantity was too great
to make this an effective constraint on global carbon budget.

Average ocean radiocarbon concentration limits the turn-
over time for the deep sea, which is parameterized in the
model by ocean transport parameters: upwelling velocity and
diffusivity. Note that the average ocean A'*C is primarily a
measure of the preanthropogenic deep sea A'C which is not
affected by . in the model, as is evident in (15).

Strengthening of constraints (i.e., reduction of the uncer-
tainty of on one of the data-based constraints) reduces the
variance of the ocean sink estimate somewhat. The ordering of
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Table 6. Variance (Standard Error Squared) of Estimates Increases If the Number of
Constraints Applied Is Reduced, and the Variance Decreases If Any of the Constraints

Are Strengthened

Relative Change in Variance of 1980s
Ocean Sink Estimate

Omission of One Uncertainty of One

Constraint Constraint Constraint Halved
18. Average ocean A'C concentration (1975) 0.337 —-0.070
16. Surface ocean A™C (1975) 0.226 —0.006
7. Atmospheric §"*C (1990) 0.130 —-0.079
17.  Bomb-'*C ocean inventory change (1950-1975) 0.094 —-0.152
13.  Ocean §"C inventory change (1970-1990) 0.075 —-0.026
14.  Atmospheric A™C change (1860-1950) 0.067 —0.0004

We examine the change in the variance of the 1980s ocean sink, from the case where all constraints are
applied, to the cases where one constraint is altered (= {variance with one constraint altered}/{variance
with all constraints} — 1). In one set of results the altered constraint was removed (i.e., all but one
constraint is applied), whereas in the second set of results, the uncertainty of the altered data-based
constraint is reduced by a factor of 2 (i.e., one constraint is strengthened). All 19 constraints listed in Table
2 were tested. Listed are the constraints which when omitted lead to the largest increase in variance.

the constraints with the largest effect is different in this test
(see Table 6) than in the test where a constraint is omitted. The
largest effect is seen by reducing the uncertainty in the change
in bomb-radiocarbon inventory (constraint 17), as opposed to
the average ocean A'*C (constraint 18) which had the largest
effect when omitted. However, reducing the uncertainty in this
constraint by a factor of 2 results in a reduction of the 1980s
ocean sink variance by only 15%.

Omitting or strengthening constraints has a similar effect on
uncertainty estimates of the terrestrial biospheric source as on
ocean uptake. Omitting the average ocean A'*C (constraint
18) leads to the largest increase in the variance of the esti-
mated 1980s terrestrial biospheric source, as with the 1980s
ocean uptake. The largest effect of strengthening a constraint
on the 1980s terrestrial biospheric source is found by reducing
the uncertainty in the change in bomb-radiocarbon inventory
(constraint 17), as with the 1980s ocean uptake; however, re-
ducing the uncertainty in this constraint by a factor of 2 results
in a reduction of the 1980s terrestrial biospheric source vari-
ance by only 10%.

7. Concluding Discussion

We have estimated the net uptake of carbon by the oceans
and the terrestrial biosphere by using a globally aggregated
model for carbon cycle along with carbon isotopic data which
form constraints on the contemporary global carbon budget.
By means of Bayesian parameter estimation we have made a
quantitative reconstruction of the past carbon budget and
characterized its uncertainty. Many studies have used subsets
of carbon isotopic data to estimate the magnitude of ocean and
terrestrial carbon sinks but often without a full characteriza-
tion of the uncertainty of their estimates. In this study, model
parameters and model outputs are characterized by their mean
estimated value and covariance matrix. Our estimate, for ex-
ample, of the ocean sink for the 1980s resulting from the
application of the full set of constraints shown in Table 2 is
17 £ 7 Gt C (90% confidence interval), which is consistent with
that stated in recent reviews [Schimel et al., 1995; Siegenthaler
and Sarmiento, 1993]. It is important to note, however, that the
wide range of model parameters that are required to arrive at
this degree of uncertainty are not portrayed in projections of

future growth of atmospheric CO, concentration [Schimel et
al., 1995].

Estimates of the net uptake of carbon by the oceans and the
terrestrial biosphere depend on prior estimates of model pa-
rameters. We see a large reduction of uncertainty in our esti-
mate of ocean carbon uptake if we prescribe a narrow prior
distribution of the ocean bottom-water parameter ., a pa-
rameter that allows transport of mixed layer carbon (and iso-
topes) to the deep sea without affecting the preanthropogenic
concentration depth structure of our model ocean. We use this
parameter as a device to represent potential uncertainty
caused by assuming a model transport structure and time-
invariant transport parameters. There are many other alterna-
tives to the use of this specific device, and we recommend that
these be considered, especially if estimating the uncertainty of
projections of atmospheric response to future emissions. Nev-
ertheless, we found a degree of freedom, such as that intro-
duced by an uncertain 7, is needed to arrive at an uncertainty
in the carbon budget as large as that stated in recent reviews
[Schimel et al., 1995; Siegenthaler and Sarmiento, 1993]. With-
out this degree of freedom we arrive at much more certain
estimates of ocean and terrestrial carbon sinks; for example,
the 1980s ocean sink is estimated to be 19 = 3 Gt C (see Table 5).

The framework applied in this study allows evaluation of the
effect of more accurate constraints that might come from
emerging data or the neglect of constraints on estimates of the
carbon budget. The effect of either **C or '*C constraints is to
narrow the uncertainty of the budget from that with no isotopic
constraints. As can be seen in Table 3, 1*C constraints reduce
uncertainty slightly more than '*C constraints. Together, '*C
plus '“C constraints reduce uncertainty even further. We find
that omission of the average ocean A'“C concentration has the
largest effect on our modeled carbon budget of the constraints
that we have considered [cf. Oeschger et al., 1975]. This is the
primary constraint on exchange between the deep ocean and
the surface waters. While transient measures of ocean compo-
sition, such as bomb-'*C inventories, have been the focus of
many recent analyses [cf. Heimann and Maier-Reimer, 1996;
Jain et al., 1995, 1997], this globally aggregated study shows
that neglect of any one of these constraints has but a small
effect on the uncertainty of the ocean and terrestrial sinks
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since other constraints contain closely related information
making the constraints nearly redundant. However, if single
constraints are strengthened, then the change in ocean bomb-
!4C inventories has the largest effect on budget estimates.

There are several implications of this approach to estimating
uncertainty. First, a single model can be devised which is con-
sistent with the many carbon dioxide and isotopic constraints
but yields a greater uncertainty than implied by comparisons of
different model best guesses [cf. Bruno and Joos, 1997]. Sec-
ond, the primary mode of uncertainty (or degree of freedom)
for the ocean sink in this study is mechanisms that affect the
relation between deep ocean tracers and transport between the
ocean surface and deep waters. Finally, while the uncertainty
of the ocean and terrestrial sinks are large, for example, for the
recent decade (1980-1990), they are forced to cancel in order
to balance the carbon budget. This effect results in correlation
of posterior estimates of model parameters found in this study.
While these uncertainties do cancel in the recent past, we
expect that this will not be the case for projections of the
distant future. In future projections, nonlinear and uncertain
mechanisms could limit the effects of data-based constraints
from the past; this will be the next step in our research.

One could go further with this approach by carrying out a
full nonlinear analysis and using complex terrestrial biosphere
and ocean carbon cycle models (e.g., three dimensional) which
give detailed and realistic simulations of carbon cycle, once the
degrees of freedom in these models have been characterized
and represented by probability distributions of model param-
eters. This would, in theory, allow the use of spatially disag-
gregated data which would include more information. In this
study we used a parametric carbon cycle model and found,
however, that the parameter m. was needed as a device to
account for the anticipated effects of model structure uncer-
tainty. With complex models the characterization of model
structure uncertainty will need to be addressed as well and may
negate some of the advantages that complex models provide.

8. Key Conclusions and Recommendations

1. The global records of carbon dioxide and carbon isoto-
pic constraints considered in this study lead primarily to an
estimate of ocean carbon uptake, which results in a terrestrial
source or sink estimated as the residual of the carbon budget.

2. Our limited understanding of what controls exchange
with deep ocean water is the key factor in estimates of the
carbon budget in this study. In the global carbon cycle model
shown in Figure 1, this process is represented by parameters
for the carbon concentration of newly formed bottom water,
upwelling, and diffusivity. These three parameters, in that or-
der, are the primary factors determining the uncertainty of
carbon budget estimates.

3. Leaving the parameter representing the carbon concen-
tration of newly formed bottom water poorly determined led to
an estimate of ocean carbon uptake comparable to its expected
range. Fixing this parameter, as is implicitly done in many
carbon cycle models, leads to an overconstraint of the estima-
tion problem. Development of alternative model formulations,
which better capture the effect of this model degree of free-
dom, is recommended.

4. A large uncertainty in model parameters is needed to
represent our current expectation of the accuracy of the carbon
budget.

5. '3C records provide a slightly stronger constraint than
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14C records. The two sets of records, taken together, lead to a
stronger constraint and a more certain carbon budget.

6. Omission of the average ocean A'*C constraint leads to
the largest increase in estimated uncertainty of the carbon
budget.

7. Decreasing the uncertainty of the global bomb-'*C in-
ventory constraint leads to the largest decrease in estimated
budget uncertainty. However, the improvement of the budget
estimate is small for a significant decrease in constraint uncer-
tainty.

8. Alternative constraints from other data records (e.g.,
O,/N, records), or alternative priors from detailed process
studies (which can make use of spatially resolved data) could
be better paths to reductions in carbon budget uncertainty than
efforts to further reduce uncertainty of data-based constraints
used in this study. Such additional information could be in-
cluded in a Bayesian estimation procedure as used here by
inclusion of additional data constraints or by modification of
priors.

9. Improvements in the estimation procedure used here
could be made by consideration of alternative model struc-
tures, consideration of nonlinear parameter effects by using
nonlinear estimation methods, and improved prior estimates
based on physical considerations (e.g., nonnegative prior dis-
tributions of model parameters). Parameters and constraints
found to be unimportant in this study could be used to simplify
more detailed studies of the past carbon budget.

10.  Factors that are not important in estimation of the past
carbon budget can be important in estimates of the future
carbon cycle response to emissions. For example, climate-
sensitive processes (e.g., represented by Q,, factors in this
study) will be important in the future if there is a substantial
change in climate. This estimation procedure could be ex-
tended to look at the relation between past carbon budget and
future estimates of carbon cycle.

Appendix A: Description of Prior Parameter
Estimates
Al. Fossil Emission (1765-1980) and (1980-1990)

Values of fossil fuel emissions are taken from Marland et al.
[1994]. The 90% confidence interval for the 1980s of £9% is
consistent with that of the recent IPCC assessment [Schimel et
al., 1996], and we choose a somewhat higher (+13%) interval
for the 1765-1980 period to reflect greater uncertainty in fossil
fuel use data over this period.

A2. Land Use Emission (1765-1980) and (1980-1990)

Values of land use emissions and its confidence interval for
the 1980s are taken to be equal to the source due to tropical
deforestation minus the sink due to Northern Hemisphere
forest regrowth (errors assumed uncorrelated) assessed in the
recent IPCC assessment [Schimel et al., 1996]. Land use emis-
sions for the 1765-1980 time period match those required for
the model to reconstruct the atmospheric record of CO,, as
done by previous studies [Jain et al., 1995; 1996; Kheshgi et al.,
1996], when evaluated with the mean prior values of the model
parameters. The relative confidence interval for this period is
taken to be slightly less than that for the 1980s because of the
large reduction of temperate forests evident in historical
records [Schimel et al., 1995].
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A3. Average Annual Fossil Fuel >C Content (1765-1990)

The time evolution of 8'*C in the atmosphere, oceans, and
biosphere is calculated with the addition of information on the
8'3C history of fossil fuel emissions. For 8§'*C of fossil fuel
emissions from 1850 to 1950 we use the estimates given by
Tans [1981a]. After 1950 we use the estimates given by Andres
et al. [1995], which is based on updated fossil and cement
production data [Marland et al., 1994]. The estimated value of
8'3C in 1990 is —28%o, which is 4%o less than the estimated
1850 value of —24%o. Prior to 1850 we assume that the §*C of
fossil fuel emissions is equal to the 1850 estimate. We maintain
the time profile of the §'>C of fossil fuel emissions but allow for
scaling of the entire series. We define this parameter as the
average of the annual §'°C values from 1765 to 1990 and assign
a confidence interval of =9% to this value.

A4, C Atmospheric Inventory (1950-1965) and (1965-1990)

Prior to 1950 the time evolution of A'*C in the atmosphere,
oceans, and biosphere is calculated. After 1950, aboveground
testing of nuclear weapons led to a source of radiocarbon in
the atmosphere. The rate of bomb production of radiocarbon,
however, is not well known. In this study we prescribe the
global-average observed atmospheric A'C after 1950 [Bro-
ecker and Peng, 1994; Tans, 1981b], calculate the response of
A'C in the oceans and biosphere, and infer the bomb-'*C
production rate from the rate of change of the changes in
atmosphere/oceans/biosphere inventory of *C. To represent
uncertainty in the prescribed time course of atmospheric '*C
inventory, we choose two time periods, one for the period of
intense nuclear weapons testing and a correspondingly high
14C source in the atmosphere (1950-1965) and the other show-
ing a decrease in '*C, and prescribe a confidence interval for
each of +10%.

AS. Q,, Factors

These factors represent the temperature dependence of ex-
change coefficients to and from the reservoirs of the biosphere
model. Their mean values were chosen to equal that prescribed
in previous studies [Harvey, 1989a; Kheshgi et al., 1996], and the
confidence interval of these parameters was chosen to repre-
sent the poor understanding of the past changes in these ex-
change rates.

A6. Fractionation Factor Atmosphere = Ocean,
Ocean = Atmosphere, Atmosphere = Terrestrial
Biosphere, and Ocean = Marine Biosphere

The '3C fractionation coefficients (and standard errors) be-
tween the atmosphere and ocean are taken from Siegenthaler
and Miinnich [1981]. The '*C fractionation coefficients for
terrestrial and marine biospheres are taken from Broecker and
Peng [1982] and Keeling et al. [1989], respectively. The *C
fractionation coefficients for all processes are the square of
those for '*C [Keeling, 1981].

A7. Fertilization Factor

The specified mean prior value of B = 0.39 (along with the
mean priors of the other parameters) leads to a reconstruction
of the past carbon budget [Jain et al., 1996] which is consistent
with a land use emission estimate of 11 Gt of carbon (Gt C) for
the 1980s [Schimel et al., 1996]. The confidence intervals is
chosen large enough to reflect the large uncertainty in esti-
mates of the strength of this effect.
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A8. Upwelling Velocity and Vertical Diffusivity

The mean values of these parameters were found by Jain et
al. [1995] to match the global-average vertical profile of radio-
carbon concentration which is related to constraints 16 and 18
listed in Table 2. The confidence intervals of both parameters
is chosen large enough so that their prior information does not
constrain the model carbon budget.

A9. Ocean NPP

A marine biosphere source term is included in the deep sea
associated with the oxidation of the organic debris exported
(net production) from the mixed layer where it is produced by
photosynthesis [Jain et al., 1995; Volk and Hoffert, 1985]. In our
model the surface ocean marine biogenic flux of carbon is 8.5
Gt C/yr which lies near the center of the observed range of
2-20 Gt CHr [Siegenthaler and Sarmiento, 1993; Sundquist,
1985]. Again, the confidence interval is chosen large enough so
that this prior information does not constrain the model car-
bon budget.

A10. Mixed Layer Depth

The mean prior value of mixed layer depth is identical to
that used in prior studies [Jain et al., 1995, 1996]. The confi-
dence interval of this parameter is chosen large enough to
incorporate the range of depths used in other studies.

All. Atmospheric Rate of Exchange, k,

A global-mean gas-exchange rate at a preindustrial CO,
concentration of 278 ppm of 17.0 mol/m?/yr was estimated to
satisfy the '*C balance between the atmosphere and the ocean
surface reservoirs for the steady state (1765) concentrations of
radiocarbon given preindustrial expectations of concentrations
of radiocarbon in the atmosphere and ocean mixed layer [Jain
et al., 1995]. This value is slightly lower than 17.4 mol/m*/yr
adopted by Hesshaimer et al. [1994] or 17.8 mol/m?/yr esti-
mated by Broecker and Peng [1994], and higher than 16.6 mol/
m?/yr estimated by Toggweiler et al. [1989] or 15.2 mol/m?/yr
estimated by Siegenthaler and Joos [1992]. This value corre-
sponds to an atmospheric rate of exchange of k, = 0.109 yr !
[Jain et al., 1995] for which we assign a standard error of 0.02
yr~ ' which encompasses the different estimates of global-mean
gas-exchange rate.

Al12. Ocean 7, Parameter

This parameter represents the effect of mixed layer concen-
tration on that of produced bottom water; see (15). The mean
value is equal to that used by Jain et al. [1995], and the confi-
dence interval is chosen large enough so that this prior infor-
mation does not affect posterior estimates of the model carbon
budget.

Al13. Apparent Climate Sensitivity

Climate sensitivity relates changes in global-mean—annual
temperature to changes in global forcing of climate for dou-
bling of CO, concentration. In this study we use the sensitivity
as a parameter to represent the range of past changes in the
global-mean—-annual temperature which form a constraint on
this parameter.

Al4. Cosmogenic Generation of *C

The changes in atmospheric **C are effected by changes in
14C production rates which are correlated to the sunspot index
[Stuiver and Quay, 1980]. While variations in the production
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rate of *C are evident, these variations have a negligible effect
on "C ratio [Bacastow and Keeling, 1973] over the timescale of
100 years (1850-1950); we do not therefore account for this
effect in our calculations and thus assume a constant rate of
cosmic '*C production. The production rate does, however,
determine the initial state of radiocarbon in our model system
as described by Jain et al. [1995]. The mean production rate of
14C from cosmic rays has been estimated to be 2 atoms/cm?/s’
[Craig, 1957; Suess, 1955]. More recently, O’Brien [1979] esti-
mated cosmogenic production rate over the period 1937-1970
to vary between 1.88 and 2.12 atoms/cm?/s, and Stuiver and
Quay [1980] estimated the mean '*C production rate from
neutron flux and sunspot index measurements to be 1.88 *
0.38 atoms/cm?/s over the period from 1868 to 1967. However,
when the sunspot index is assumed zero, the estimated mean
14C production rates of O’Brien [1979] and Stuiver and Quay
[1980] are both ~2.0 atoms/cm?/s, consistent with the value
used in this study. We choose a mean production rate of *C
from cosmic rays to be 2.0 atoms/cm?/s with a confidence
interval of 0.5 atoms/cm?/s.

A15. Terrestrial NPP (1765)

The net primary productivity of the terrestrial biosphere is
adjusted in the model by scaling all exchange coefficients to
and from the reservoirs of the biosphere. The mean prior value
is identical to that of previous studies [Harvey, 1989a; Kheshgi
et al., 1996]. The variance of estimates of current terrestrial
NPP [Schlesinger, 1991] indicates the level of uncertainty in
estimates of NPP.

A16. Atmospheric pCO, (1765)

The initial atmospheric p CO,, assumed to be at steady state,
is taken from the Siple ice core [Friedli et al., 1986; Neftel et al.,
1985] with the confidence interval estimated from the variance
of ice core data.

Appendix B: Description of Data-Based Constraints
B1. Atmospheric CO, Concentration

In the initial calibration of the model, as discussed in section
3.2, an inverse model calculation is run with the time history of
atmospheric CO, specified and the time history of land use
emissions calculated. Thereafter, the model is run as a forward
calculation, so as parameters are varied, the modeled atmo-
spheric concentration will deviate from the observed values. In
addition, estimates of land use emissions are used (see section
4) to modulate the amplitude of the land use emission time
series found by inverse model calculation. We characterize the
time history of atmospheric CO, by the atmospheric concen-
tration (annually averaged) at the beginning of 1990 along with
the change in atmospheric content over two time periods: 1765
to the beginning of 1980 and 1980 to 1990 (the decade of the
1980s). The uncertainty that we prescribe for these constraints
stems from the uncertainty that the estimate represents the
true global mean-annual CO, concentration of the atmosphere
and the natural variability (e.g., interannual variability of the
global mean) that the CO, concentration exhibits (which our
parametric model has not been designed to simulate).

An estimate of atmospheric accumulation of CO, from 1765
to 1980 of 126 Gt C [Kheshgi et al., 1996] is calculated from the
changes in atmospheric CO, concentration measured from the
Siple ice core [Friedli et al., 1986] and at the Mauna Loa
Observatory [Keeling et al., 1989; Keeling and Whorf, 1993]. The
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uncertainty of this estimate is dominated by the uncertainty of
the estimate of the 1765 concentration of CO, of 280 ppm
which we take to have a 90% confidence interval (= 1.65 times
the standard error) of 5 ppm (11 Gt C) based on the variability
of ice core records of CO, concentration.

An estimate of atmospheric accumulation of CO, from 1980
to 1990 of 32 Gt C was given in the [PCC 1994 special report
[Schimel et al., 1995] along with an uncertainty estimate of 2 Gt
C (90% confidence interval) presumably based on atmospheric
sampling error. This estimate was revised in the IPCC Second
Assessment Report to 33 Gt C with the same uncertainty
estimate [Schimel et al., 1996]. In this study we add to the
uncertainty the expected size of anomalies in the atmospheric
content which we take to have a standard deviation of ~1 ppm
which then corresponds to a standard error of 2 Gt C. The
assumption that these two sources of error are uncorrelated
leads to a total uncertainty of 4 Gt C (90% confidence inter-
val). Note that the anomalies are a larger source of uncertainty
than our ability to measure the global-mean atmospheric con-
centration.

An estimate of the seasonally smoothed atmospheric con-
centration of CO, at the end of 1989 of 354 ppm is inferred
from data from the Mauna Loa Observatory [Keeling and
Whorf, 1993]. The uncertainty is taken to be the same as for the
1980s interval of 2 ppm (90% confidence interval).

B2. Average Ocean Total Inorganic Carbon Concentration

The deep ocean average dissolved inorganic carbon at the
time of the GEOSECS survey was estimated by Hoffert et al.
[1981] to be 2.33 gC/m? for use in constructing an upwelling
diffusion model of the oceans. Alternatively, Takahashi et al.
[1981] estimated a slightly lower value (2.31 gC/m?) from GE-
OSECS data. We adopt a value of 2.33 gC/m” with a standard
error of 0.03 gC/m°.

B3. Global Temperature Change

In our modeled reconstruction of carbon cycle, changes in
temperature are taken to affect the rate coefficients between
reservoirs of the terrestrial biosphere model as well as the
partial pressure of carbon dioxide of seawater. We specify the
observed trend of global near-surface temperature change
from 1860 to 1990 of 0.45°C in order to constrain the range of
temperature change over the period of our reconstruction. The
90% confidence interval of 0.15°C is taken to reflect the IPCC
assessment [Schimel et al., 1996] that there has been a global
increase in temperature from 0.3°C to 0.6°C since the late 19th
century.

B4. Atmospheric 3"°C

Friedli et al. [1986] measured the atmospheric §"*C of CO,
from the ice core taken at Siple Station in Antarctica from
1765 to 1953. The ice core measured values in ~1800 and in
1953 were —6.41 and —6.85%o0 [Friedli et al., 1986]. Accuracy
of the 8'*C ice core measurements is =0.10%o, as determined
by analyzing artificial CO, in air-mixtures and from the scatter
of the Siple results around the smooth line. We adopt an
overall change from 1800 to 1953 of —0.44%0 with an esti-
mated standard error of +0.14%eo.

Atmospheric §'°C is also measured directly at the Mauna
Loa Observatory and a continuous record extends back to
1978. Prior to 1978 a measurement of —6.79%o0 from the
Mauna Loa Observatory is available for the year 1956 [Keeling
et al., 1979]. Recent Mauna Loa data for 1990 show a §'°C of
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—7.90%0 and a change from 1978 to 1990 of 0.40%o. The
uncertainty in approximating the globally averaged value with
the Mauna Loa data has been estimated to have a standard
error of +0.024%o0 [Keeling et al., 1995]. However, there is
considerable interannual variability that led Heimann and
Maier-Reimer [1996] to use a standard error of 0.1%o for the
atmospheric ratio and standard error of 50% for the recent
trend. We adopt an atmospheric 8'°C for 1956 of —6.79 +
0.1%o0, a change from 1978 to 1990 of —0.40 = 0.1%o, and for
1990 of —7.90 = 0.1%o (standard error).

B5. Surface Ocean §°C

Ocean surface water §°C from recent to preindustrial
(~1800) times is available from analyses of local coral and
sclerosponge. Results of '*C analyses were reported by Nozaki
et al. [1978] of a Bermuda coral and Druffel and Benavides
[1986] of a Jamaican sclerosponge. The Nozaki et al. study
indicates a §'°C change of —0.46%o in the ocean surface water
over the period 1800-1970 with a standard error of 0.10%o.
Druffel and Benavides [1986] measured the change of —0.5%o
from 1800 to 1972 with a standard error of £0.07%0. We adopt
the constraint of 8'>C mixed layer change from 1800 to 1970 of
—0.5%0 * 0.3%o; the high standard error accounts for the
poor of spatial coverage and the high spatial variability evident
in GEOSECS data for the Atlantic [Zans et al., 1993].

An estimate based primarily on GEOSECS data showed
that the average surface water 8'°C was ~2.0%o, but local
values were highly variable due to biological and air-sea mixing
processes [Kroopnic, 1985; Tans et al., 1993]. Kroopnic [1985]
estimated the uncertainty of this average to be *0.10%o0
[Kroopnic, 1985]. As one constraint on surface §"*C, we adopt
a 1974 value of 2.0 = 0.10%o (standard error). Note that this
value combined with an atmospheric 8'°C give an implied
constraint on air/sea disequilibrium which was used in earlier
studies [Heimann and Maier-Reimer, 1996; Tans et al., 1993].

Quay et al. [1992] used additional data to estimate a change
in 8"°C of —0.4%o from 1970 to 1990 in the mixed layer of the
Pacific Ocean and assigned an uncertainty of =0.04%o to this
estimate. This uncertainty is significantly smaller than either of
the above estimates for the GEOSECS global average. We
adopt a the constraint of §'>C mixed layer change from 1970 to
1990 of —0.4%0 * 0.14%o (standard error assuming an uncor-
related standard error of *0.1%o0 at each end of the time
range).

B6. Ocean 5"°C Inventory

Quay et al. [1992] estimated the change in the depth-
integrated 8'C and penetration depth between 1970 and 1990
based on 8°C measurements in the Pacific Ocean and the
ocean-wide extrapolation with the use of the bomb-'*C distri-
bution. Since penetration depth and inventory are correlated,
we choose to include only the inventory. The Quay et al. [1992]
estimate of inventory of —208 = 45%o0 m was reconsidered by
Heimann and Maier-Reimer [1996], who explained that the
standard error of *45%c0 m did not include all sources of
uncertainty and made a new estimate of a standard error of
62%o0 m which we adopt.

B7. Atmospheric A'*C

Stuiver and Quay [1981] measured, with high precision, tree-
ring **C in the state of Washington. They found a reduction in
A™C of —20 + 1.2%o0 between 1860 and 1950. However, Tans
[1978] measured the decrease of A'“C for trees grown in Eu-
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rope of —25%o. We adopt a change in atmospheric A"C of
—20 *= 5%o (standard error) over the period 1860-1950.

BS. Surface Ocean A“C

The decline of surface ocean A'*C recorded by corals varies
from location to location. Florida coral recorded a change of
—11%o0 from 1900 to 1952 [Druffel and Linick, 1978]. Belize
coral showed a change of —12%o during this period [Druffel,
1980]. Galapagos coral showed the smallest change of —6%o,
and the Bermuda coral showed the largest change of —20%o in
A'C of the ocean surface layer over the same time period
[Druffel, 1981]. We use a surface ocean A'*C change of —12%o
over the period 1900-1950 based on the average of Florida,
Belize, Galapagos, and Bermuda corals and assign a standard
error of £8%o.

Coral data also show a large rise of surface ocean A'*C
concentration from about 1954 to 1975, which we attribute to
the net transfer of bomb-produced '*C from the atmosphere to
the surface ocean. Radiocarbon in both Florida and Belize
coral show an overall increase over the period 1954-1975 of
214%; presumably due to the increase of bomb-produced *C
in the surface waters of the Gulf System. Broecker et al. [1985]
estimated the mean surface ocean A'*C increase of 155%o
over the period 1955-1975. Their value of 155%o is based on
the prebomb surface water samples [Broecker, 1985] and GE-
OSECS data, and the uncertainty of their estimate is not spec-
ified. We impose a constraint on global-mean surface ocean
radiocarbon at the time of the acquisition of GEOSECS data
of 11%o with a standard error of *11%eo.

B9. Ocean Bomb-'“C Inventory

The ocean inventory of bomb-produced radiocarbon is con-
sidered an important constraint on the ocean uptake of CO.,.
We use the recent estimate of 3.05 X 10*® atoms for January 1,
1975, which had a reported uncertainty (assumed standard
error) of 10% [Broecker et al., 1995]. We assign a 90% confi-
dence interval of 0.50 X 10?® atoms.

B10. Average Ocean '*C Concentration

While the average ocean radiocarbon concentration will be
correlated to some extent to the surface ocean A'*C, its values
is primarily dependent on deep sea A'*C, and so we treat it as
an independent constraint. The total ocean A¥C was esti-
mated by Oeschger et al. [1975] to be 160%o, and this value is
consistent [Jain et al., 1995, 1996; Shaffer and Sarmiento, 1995]
with an integration of GEOSECS ocean average data with
depth down to 4 km, the depth of the model ocean. We adopt
a value of 160%0 with a standard error of this estimate of 5%o,
roughly half that of the surface A™C.

B1l. 'C Ocean Plus Biosphere Inventory Change
(1965-1990)

Over the period of nuclear weapons testing, radiocarbon has
been injected primarily into the stratosphere. Estimates have
been made of the changing production rate of bomb-produced
radiocarbon, as well as observation-based estimates of the
change in atmospheric inventory (troposphere plus strato-
sphere) over this period [Broecker and Peng, 1994; Broecker et
al., 1995; Hesshaimer et al., 1994; Jain et al., 1996, 1997]. Con-
servation of radiocarbon dictates that the bomb production of
radiocarbon minus the change in the atmospheric radiocarbon
inventory is equal to the change in the ocean plus terrestrial
biosphere inventories plus the decay of radiocarbon. There,
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however, is great uncertainty in the rate of bomb production of
radiocarbon based only on the cumulative explosive power of
bombs [Jain et al., 1997]. Over the period following the nuclear
weapons test ban (1963) the rate of testing dropped precipi-
tously, decreasing the uncertainty in radiocarbon production
over this period relative to the uncertainty in the change in
atmospheric inventory. By 1965 the disequilibrium between the
stratospheric and the tropospheric concentrations had, in large
part, subsided, decreasing the uncertainty in the data-based
estimate of total atmospheric radiocarbon inventory. We
therefore use the {(bomb-'*C production) minus (change in
atmospheric inventory)} over the period from 1965 to 1990 as
a constraint on the model sinks of this radiocarbon which equal
the {(bomb-'*C decay) plus (change in ocean '*C inventory)
plus (change in terrestrial biosphere '*C inventory)}. For this
quantity we use the value of 3.2 X 10%® atoms with a 90%
confidence interval of =0.4 X 10*® atoms estimated by Jain et
al. [1997].
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