
induced magnetization in the present field and,
second, that it could be a viscous remanent mag-
netization (VRM) acquired during prolonged ex-
posure of the magnetic minerals to the planetary
field and hence reflecting an unknown, but youn-
ger, age than that of the smooth plains. Although
both of these physical processes are likely to
operate, induced magnetizations cannot fully
explain the observed HPF field strengths, and
the net effect of VRM will be that our estimates
of ancient field strength are lower bounds (10).
Within the range of uncertainty of crustal

thickness (22–24) and magnetized layer source
depths (10), most or all of the magnetization
could reside withinMercury’s crust (Fig. 4). We
investigated whether such a scenario is consist-
ent with thermal evolution models, given mag-
netizations acquired at ~4 Ga. We estimated the
depth to Tc for a range of thermal gradients (Fig.
4). The Curie temperature was taken to be 325°C
(that of pyrrhotite) as a conservatively low value
for our calculations, and we used the maximum
average daily surface temperature predicted for a
range of Mercury’s orbital eccentricities from 0 to
0.4 (10, 25). The results indicate that even for high
thermal gradients at 4 Ga (26) the depth to Tc in
the Suisei Planitia region is at least 20 km. For
thermal gradients less than 8 K/km and upper
limits on the crustal thickness in the region, the
entire crust remains below Tc. These results im-
ply that acquisition and subsequent preservation
of an ancient crustal remanence bymagnetic car-
riers with Tc values of at least 325°C are con-
sistent with thermal models (10, 26–28), and for
carriers with higher Tc some remanence may be
carried by upper mantle material. Such a conclu-
sion is predicated on the assumption that the
surface temperature pole locations have remained
stationary in a body-fixed coordinate system since
the time that the remanent magnetization was
acquired (10). The symmetry of the ancient field
with respect to the present rotation axis supports
such a presumption by suggesting that, since that
epoch, there has been no substantial reorientation
of the crust (“true polar wander”) with respect to
the planet’s axis of greatest moment of inertia.
The simplest interpretation of the results pre-

sented here is that a core dynamo was present
early in Mercury’s history. If the dynamo was
thermochemically driven [e.g., (6, 29)], this find-
ing provides a strong constraint on models for
the thermal evolution of Mercury’s interior. In
particular, the existence of a core dynamo at the
time of smooth plains emplacement presents a
new challenge to such models. An early core
dynamo can be driven by superadiabatic cool-
ing of the liquid core, but in typical thermal
history models this phase has ended by 3.9 Ga.
A later dynamo can be driven by the combined
effects of cooling and compositional convection
associated with formation of a solid inner core
(26–28), but in most thermal history models
inner core formation does not start until well after
3.7 Ga. Further progress in understanding the
record of Mercury’s ancient field can also be
made with improved petrological constraints on
crustal compositions [e.g., (30)], information

on the candidate magnetic mineralogies implied,
and knowledge of their magnetic properties.
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CARBON CYCLE

The dominant role of semi-arid
ecosystems in the trend and
variability of the land CO2 sink
Anders Ahlström,1,2* Michael R. Raupach,3† Guy Schurgers,4 Benjamin Smith,1

Almut Arneth,5 Martin Jung,6 Markus Reichstein,6 Josep G. Canadell,7 Pierre Friedlingstein,8

Atul K. Jain,9 Etsushi Kato,10 Benjamin Poulter,11 Stephen Sitch,12 Benjamin D. Stocker,13,14

Nicolas Viovy,15 Ying PingWang,16 AndyWiltshire,17 Sönke Zaehle,6 Ning Zeng18

The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization
is characterized by large interannual variability, mostly resulting from variability in CO2 uptake
by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional
ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-
surfacemodels and an empirical observation-based product of global gross primary production,
we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial
ecosystems are dominated by distinct biogeographic regions.Whereas the mean sink is
dominated by highly productive lands (mainly tropical forests), the trend and interannual
variability of the sink are dominated by semi-arid ecosystemswhose carbon balance is strongly
associated with circulation-driven variations in both precipitation and temperature.

S
ince the 1960s, terrestrial ecosystems have
acted as a substantial sink for atmospheric
CO2, sequestering about one-quarter of an-
thropogenic emissions in an average year
(1). This ecosystem service, which helpsmit-

igate climate change by reducing the rate of in-
crease of atmospheric greenhouse gases, is due to

an imbalance between the uptake of CO2 through
gross primary production (GPP, the aggregate
photosynthesis of plants) and the release of car-
bon to the atmosphere by ecosystem respiration
(Reco) and other losses, including wildfires (Cfire).
The net carbon flux (net biome production,
NBP = GPP – Reco – Cfire) results from the small
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imbalance between the much larger uptake and
release fluxes. Consequently, small fractional var-
iations in either of these fluxes can cause sub-
stantial absolute variations innet carbon exchange
with the atmosphere. These variations account
almost entirely for year-to-year variations around
the overall trend in atmospheric concentrations
of CO2 (2, 3).
Modeling studies suggest a large uncertainty

of the future magnitude and sign of the carbon
sink provided by terrestrial ecosystems (4–8). Ro-
bust projections are crucial to assessments of fu-
ture atmospheric CO2 burdens and associated
climate change, and are therefore central to the
effectiveness of futuremitigation policies. Reduc-
ing the uncertainty of these projections requires
better knowledge of the regions and processes
governing the present sink and its variations. In-
ventories suggest that since the beginning of in-
dustrialization, themajority of carbon sequestered
by the terrestrial biosphere has accumulated in
forest ecosystems of the tropics and temperate
zones (9). However, the relative contributions of
ecosystems of different, climatically distinct, re-
gions to variations in the land sink on inter-
annual to multidecadal time scales are not well
characterized. Here, we investigated relative re-
gional contributions to themean sink, to its trend
over recent decades, and to the interannual var-
iability (IAV) around the trend.
We used LPJ-GUESS (10–12), a biogeochemical

dynamic global vegetationmodel, to simulate the
geographic pattern and time course of NBP. LPJ-
GUESS explicitly accounts for the dependency of
plant production anddownstreamecosystempro-
cesses on the demography (size structure) and
composition of simulated vegetation. We forced

the model with historical climate (13) and CO2

concentrations, accounting for emissions from
land use change and carbon uptake due to re-
growth after agricultural abandonment (14). We
compared the results to an ensemble of nine
ecosystem and land surface model simulations
from the TRENDY model intercomparison proj-
ect (12, 15) (hereinafter TRENDY models; table
S1). The TRENDY ensemble is similarly based on
historical climate and CO2 but uses a static 1860
land use mask.
GlobalNBP, as simulated byLPJ-GUESS, shows

strong agreement (r2 = 0.62) with the Global
Carbon Project (GCP) estimate of the net land
CO2 flux—an independent, bookkeeping-based
estimate derived as the residual of emissions, at-
mospheric growth, and ocean uptake of CO2 (1)
(Fig. 1A). TRENDY models do not account for
land use change. Relative to the GCP land flux
estimate, they consequently predict a higher aver-
age NBP but similar interannual variation. More-
over, the offset between the TRENDY model

ensemble mean and the GCP land flux estimate
is comparable to the GCP estimate of mean land
use change emission flux for the period 1982–
2011 (fLUC).
We divided the global land area into six land

cover classes, following the MODIS MCD12C1
land cover classification (12, 16): tropical forests
(Fig. 1B), extratropical forest, grasslands and
croplands (here combined), semi-arid ecosystems
(Fig. 1C), tundra and arctic shrub lands, and
sparsely vegetated lands (areas classified as bar-
ren) (figs. S1 and S2).
When the global terrestrial CO2 sink (average

NBP) and its trend (1982–2011) are partitioned
among land cover classes, we find that tropical
forests account for the largest fraction (26%,
0.33 Pg C year−1) of the average sink over this pe-
riod (1.23 Pg C year−1) (Fig. 1D). In contrast, we find
that semi-arid ecosystems dominate the posi-
tive global CO2 sink trend (57%, 0.04 Pg C year−2;
global, 0.07 Pg C year−2) (Fig. 1E). The TRENDY
model ensemble shows a consistent pattern, with
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Fig. 1. Global and regional NBP mean, trend, and variations (1982–2011). (A) Global NBP from LPJ-
GUESS (red line) and GCP land flux time series (black line) with T0.8 Pg C uncertainty range (shaded
gray area). TRENDYmodels mean (blue line) and first and third quartiles (shaded blue area) are plotted
on a separate axis with a time-invariant offset corresponding to the time period average GCP fLUC
estimate (1.2 P Pg C year-1). (B) Tropical forest NBP. LPJ-GUESS (red line) includes emissions from land
use change. TRENDY models average (blue line) and first and third quartiles of the ensemble (shaded
blue area) do not include emissions from land use change. (C) NBP of semi-arid ecosystems from LPJ-
GUESS (including land use change emissions) and TRENDY models (excluding land use change emis-
sions); colors and shading as in (B). (D) Contribution of land cover classes to global mean NBP
(1982–2011) (mean NBP of land cover class as a proportion of mean global NBP). Horizontal lines in
box plots show, from top to bottom, 95th, 75th, 50th, 25th, and 5th percentiles. (E) Contribution of
land cover classes to global NBP trend (land cover class NBP trend as a proportion of global NBP
trend). (F) Contribution of land cover classes to global NBP IAV (Eq. 1).



tropical forests dominating themean sink (median
24%) and semi-arid ecosystems dominating the
trend (median 51%). The predominance of semi-
arid ecosystems in explaining the global land sink
trend is consistent with widespread observations
of woody encroachment over semi-arid areas (17)
and increased vegetation greenness inferred from

satellite remote sensing over recent decades (17–19).
Likewise, a recent study attributes the majority
of the record land sink anomaly of 2011 to the
response of semi-arid ecosystems in the Southern
Hemisphere, Australia in particular, to an anom-
alous wet period; the study further postulates a
recent increase in the sensitivity of carbon uptake

to precipitation for this region, which is attributed
to vegetation expansion (20).
We further partitioned IAV in global NBP

among land cover classes according to the con-
tribution of individual regions (grid cells or land
cover classes) to global NBP IAV (12). To this end,
we adopted an index that scores individual geo-
graphic locations according to the consistency,
over time, with which the local NBP flux res-
embles the sign and magnitude of global NBP
(fig. S4):

f j ¼
∑
t

xjt jXt j
Xt

∑
t
jXt j ð1Þ

where xjt is the flux anomaly (departure from a
long-term trend) for region j at time t (in
years), and Xt is the global flux anomaly, so that
Xt = ∑ jxjt. By this definition fj is the average
relative anomaly xjt/Xt for region j, weighted
with the absolute global anomaly |Xt|. Regions
receiving higher and positive average scores
are inferred to have a larger contribution in
governing global NBP IAV, as opposed to regions
characterized by smaller or negative (coun-
teracting) scores (fig. S3). The index we adopt
does not characterize the variability of ecosystems
of different regions, as, for example, the standard
deviation would do (fig. S5); rather, it enables a
comparison of their relative importance (contri-
bution) in governing global IAV.
Semi-arid ecosystems were found to account

for the largest fraction, 39%, of global NBP IAV,
exceeding tropical forest (19%), extratropical for-
est (11%; all forest, 30%), and grasslands and
croplands (27%) (Fig. 1F). The TRENDY model
ensemble shows a similar partitioning, with semi-
arid ecosystems accounting for 47% (median;
tropical forests, 28%; extratropical forest, 6%; all
forest, 35%). The overall contributions per land
cover class are the sum of both positive and neg-
ative contributions that result from differences
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Fig. 2. Climatic covariates of semi-arid ecosystem GPP variations. (A) Distribution by latitude of the
empirical GPP product anomalies normalized by average standard deviation of GPP in semi-arid lands.
The distribution is colored according to average local climatic covariates per latitude zone and
distribution bin. (B) LPJ-GUESS GPP distribution calculated and colored as in (A). (C) Covariation of the
multivariate ENSO index [MEI (31, 32)] anomalies with the empirical GPP product. (D) Covariation of MEI
and modeled GPP anomalies per latitudinal zone. Note that the figure shows the covariates of latitudinal
average local GPP anomalies, and not the average covariates based on GPP IAVcontribution to NBP IAV.

Fig. 3. Climatic covariates of NBP extremes. (A) Climatic covariates of LPJ-GUESS negative NBP extremes (1st to 10th percentiles). (B) Mean climatic
covariates of TRENDYmodels’ negative NBPextremes (1st to 10th percentiles). (C) Covariates of LPJ-GUESS positive NBP extremes (90th to 99th percentiles).
(D) Mean climatic covariates of TRENDYmodels’ positive NBP extremes (90th to 99th percentiles).



in phase between IAV of individual grid cells com-
pared with global IAV (fig. S4). The extent to
which negative contributions reduce the overall
land cover class contributions is minor for all re-
gions except grasslands and croplands (fig. S6)
(LPJ-GUESS, –13%; TRENDY median, –13%) be-
cause the latter are distributed widely across cli-
mate zones, and because both climate variations
and the sensitivity of NBP to climate variations
differ among regions.
To partition the global NBP IAV among com-

ponent fluxes (GPP, Reco, Cfire) and among land
cover classes, we applied Eq. 1. We found that
global NBP IAV is most strongly associated with
variation inGPP; interannual GPP anomalies con-
tribute 56% of the global NBP IAV in LPJ-GUESS
and a median of 90% in the TRENDY model en-
semble. Comparing different land cover classes,
the GPP anomalies of semi-arid ecosystems alone
contribute 39% in LPJ-GUESS and a median of
65% in the TRENDY model ensemble to global
NBP IAV (fig. S7). Semi-arid vegetation produc-
tivity thus emerges clearly as the single most im-
portant factor governing global NBP IAV.
We used two complementarymethods to attri-

bute the variability inGPP—as the inferredprimary
driver of global NBP IAV—to its environmental
drivers. First, we analyzed simulation results from
LPJ-GUESS, linking output GPP anomalies to var-
iability in the climatic input data. Second, we
used a time-resolved gridded global GPP product
derived from upscaled flux tower measurements
(12, 21) (hereafter, empirical GPP product). This
product uses an empirical upscaling of flux mea-
surements and is thus entirely independent of
the modeled GPP in our study.
The three main climatic drivers—temperature

(T), precipitation (P), and shortwave radiation
(S)—are interdependent and correlated. To account
for the combined effects of these drivers, we
adopted an analysis of GPP variations from an
“impact perspective” (22–24): We first identified
GPP anomalies and then extracted their climatic
covariates. The primary challenge of such an anal-
ysis on an annual scale is to target climate indices
that adequately characterize the “period of cli-
matic influence” (e.g., growing season average,
annual averages, minima or maxima of a given
climatic forcing). To overcome this challenge, we
used semiannual time series of climate drivers
constructed via an optimization procedure that
weights monthly anomalies of a given climate var-
iable (T, P, or S), accounting for time lags of up to
24 months while making no additional prior
assumptions as to the period of influence (12). For
each GPP event, we extracted climatic covariates
as z scores of the semiannual climatic drivers.
We evaluated the climatic covariates of GPP

anomalies for semi-arid ecosystems from the em-
pirical GPP product andmodeled by LPJ-GUESS,
focusing on T and P, and found similar responses
of GPP to climate with both approaches across all
latitude bands (Fig. 2, A and B). Negative GPP
anomalies in semi-arid ecosystems are mainly
driven by warm and dry (low rainfall) climatic
events in most latitudes, suggestive of drought.
By contrast, positive GPP anomalies are domi-

nated by cool and wet conditions. Averaging the
distributions over latitudes (Fig. 2, A and B) and
extracting the climatic covariates per percentile
of the GPP distributions shows that GPP varies
with climatic conditions on a straight line in T-P
space (fig. S8), with a stronger covariation with P
than with T. This implies that the full GPP dis-
tributions are drivenby similar climatic patterns—
that is, anomalies that differ in size and sign
covary with corresponding differences in size
and sign in the drivers. GPP extremes (the tails of
the distribution of GPP among years) covary with
El Niño–Southern Oscillation (ENSO) across all
latitudes (Fig. 2, C and D). In both the model and
the empirical GPP product, GPP anomalies are
more strongly associated with the positive phase
of ENSO (El Niño) than with the negative phase
(La Niña); the sign of the relationship varies with
latitude. Positive ENSO tends to coincide with
negative GPP anomalies in the tropics (30°S to
20°N) and with positive GPP anomalies north
of 20°N.
The agreement between climatic covariates of

the data-based empirical GPP product and mod-
eled GPP alongside the comparatively robust pat-
tern of the covariation with climate suggests that
GPP IAV for semi-arid ecosystems is mediated by
climate. Because ENSO covaries with a consider-
able portion of theGPP distribution, we infer that
ENSO is the dominating mode of global circula-
tion variations driving GPP IAV over semi-arid
ecosystems. Recent modeling studies have found
that extreme El Niño events could become more
common under climate change (25), which, to-
gether with an increased atmospheric demand
for water associated with global warming, might
exacerbate the impact of El Niño events over
semi-arid ecosystems and further increase the
role of semi-arid regions in driving global NBP
IAV (26–28).
We repeated the calculation of climatic covar-

iates to simulated NBP for LPJ-GUESS and each

of the TRENDY models. The resulting maps of
covariates in T-P space are shown as average co-
variates of negative NBP extremes (Fig. 3, A and
B) and positive NBP extremes (Fig. 3, C and D).
In general, semi-arid ecosystems stand out as
regions in which strong CO2 uptake events are
consistently associated with cool and moist con-
ditions, and strong CO2 release events with warm
and dry conditions. In tropical forests, NBP covar-
ies with both T and P as in semi-arid regions, but
also with T alone. In high latitudes, wet or warm
andwet conditions lead to negativeNBP extremes,
whereas dry or warm and dry conditions tend to
lead to positive extremes, although the spatial
heterogeneity of the covariates is large in this
region (Fig. 3).
Our approach offers detailed spatial and tem-

poral disaggregation of drivers and responses,
which is important when analyzing drivers or
covariates of global NBP IAV because of the high
temporal and spatial variability in P (figs. S9 to
S11). Using four upscaling levels with increasing
spatial and temporal disaggregation [ranging
from land surface mean P and T to semiannual P
and T, averaged according to the spatial origin of
each year’s globalNBP anomaly (eqs. S5 and S6)],
we found that P and NBP IAV become more cor-
related at higher levels of disaggregation. At the
highest disaggregation level, P is almost as strong-
ly correlated with NBP IAV as T, suggesting a
strong influence of soil moisture variations on
global NBP IAV (28). This strong increase in P
correlations with disaggregation resolves an ap-
parent conflict between our findings and those of
studies using regionally averaged drivers that em-
phasize the role of T in governing IAV in at-
mospheric CO2 (28–30). For semi-arid ecosystems,
T correlations withNBP IAV are slightly stronger
than P correlations with NBP IAV (Fig. 4B), part-
ly because of an asymmetric distribution of P
and/or an asymmetric response of NBP to P IAV
(fig. S12). The correlation of tropical forest P with
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Fig. 4. Correlations
between climatic
drivers IAV (P and T)
and global NBP IAV
(mean of all 10 mod-
els). (A) Global P and
T correlations to global
NBP IAV. From black to
white and left to right,
bars represent annual P
and T IAV correlations
to global NBP IAV with
increasing spatial and
temporal disaggregation of P and Twhile averaging to global time series. Black bars represent averaged
global land surface P and Tweighted by grid cell area; dark gray bars represent P and Tweighted by 30-
year average contribution to global NBP IAV (Eq. 1 and fig. S4); light gray bars represent averaged P and
Tweighted by each year’s contributions, thus accounting for the difference in the spatial distribution of
contributions between years (eqs. S5 and S6); white bars represent semiannual climate drivers averaged
to global time series using the annual spatial contributions (as for light gray bars), thereby accounting for
the “period of climatic influence” and time lags of up to 24 months. (B) Correlations between P and T
IAV and global NBP IAV for semi-arid ecosystems. Weights, where applicable, are based on contri-
butions to global NBP IAV as in (A) but with P and T averaged over semi-arid ecosystems only. (C)
Correlations between P and T IAV and global NBP IAV for tropical forest. Weights, where applicable, are
based on contributions to global NBP IAV as in (A) but with P and T averaged over tropical forest only.
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NBP IAV increases when we use the semiannual
drivers,which suggests the importance of account-
ing for time lags and the “period of climatic influ-
ence” of P variations (12), but P correlations with
NBP IAV are still weaker than T correlations with
NBP IAV (Fig. 4C).
Our analysis provides evidence that semi-arid

ecosystems, largely occupying low latitudes, have
dominated the IAV and trend of the global land
carbon sink over recent decades. Semi-arid re-
gions have been the subject of relatively few tar-
geted studies that place their importance in a
global context. Our findings indicate that semi-
arid regions and their ecosystemsmerit increased
attention as a key to understanding and predict-
ing interannual to decadal variations in the glob-
al carbon cycle.

REFERENCES AND NOTES

1. C. Le Quéré et al., Earth Syst. Sci. Data 6, 235–263 (2014).
2. C. D. Keeling, T. P. Whorf, M. Wahlen, J. van der Plichtt, Nature

375, 666–670 (1995).
3. C. Le Quéré et al., Nat. Geosci. 2, 831–836 (2009).
4. A. Ahlström, G. Schurgers, A. Arneth, B. Smith, Environ. Res.

Lett. 7, 044008 (2012).
5. P. Friedlingstein et al., J. Clim. 19, 3337–3353 (2006).
6. A. D. McGuire et al., Glob. Biogeochem. Cycles 15, 183–206

(2001).
7. S. Schaphoff et al., Clim. Change 74, 97–122 (2006).
8. S. Sitch et al., Glob. Change Biol. 14, 2015–2039

(2008).
9. Y. Pan et al., Science 333, 988–993 (2011).
10. A. Ahlström, P. A. Miller, B. Smith, Geophys. Res. Lett. 39,

L15403 (2012).
11. B. Smith, I. C. Prentice, M. T. Sykes, Glob. Ecol. Biogeogr. 10,

621–637 (2001).
12. See supplementary materials on Science Online.
13. I. Harris, P. D. Jones, T. J. Osborn, D. H. Lister, Int. J. Climatol.

34, 623–642 (2014).
14. G. Hurtt et al., Clim. Change 109, 117–161 (2011).
15. S. Sitch et al., Biogeosciences 12, 653–679 (2015).
16. M. A. Friedl et al., Remote Sens. Environ. 114, 168–182

(2010).
17. N. Andela, Y. Y. Liu, A. I. J. M. van Dijk, R. A. M. de Jeu,

T. R. McVicar, Biogeosciences 10, 6657–6676 (2013).
18. R. J. Donohue, T. R. McVicar, M. L. Roderick, Glob. Change Biol.

15, 1025–1039 (2009).
19. R. Fensholt et al., Remote Sens. Environ. 121, 144–158

(2012).
20. B. Poulter et al., Nature 509, 600–603 (2014).
21. M. Jung et al., J. Geophys. Res. 16, G00J07 (2011).
22. J. Zscheischler et al., Environ. Res. Lett. 9, 035001

(2014).
23. M. Reichstein et al., Nature 500, 287–295 (2013).
24. M. D. Smith, J. Ecol. 99, 656–663 (2011).
25. W. Cai et al., Nat. Clim. Change 4, 111–116 (2014).
26. K. E. Trenberth et al., Nat. Clim. Change 4, 17–22

(2014).
27. A. Dai, Nat. Clim. Change 3, 52–58 (2013).
28. X. Wang et al., Nature 506, 212–215 (2014).
29. W. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 110, 13061–13066

(2013).
30. P. M. Cox et al., Nature 494, 341–344 (2013).
31. K. Wolter, M. S. Timlin, in Proceedings of the 17th Climate

Diagnostics Workshop (University of Oklahoma, Norman, OK,
1993), pp. 52–57; www.esrl.noaa.gov/psd/enso/mei/WT1.pdf.

32. K. Wolter, M. S. Timlin, Weather 53, 315–324 (1998).

ACKNOWLEDGMENTS

This paper is dedicated to the memory of Michael Robin Raupach
(1950–2015), whose scientific integrity and novel contributions
leave a long-lasting legacy in the field of carbon cycle sciences.
The MODIS MOD12C1 land cover product was obtained through
the online Data Pool at the NASA Land Processes Distributed
Active Archive Center (LP DAAC), USGS/Earth Resources
Observation and Science (EROS) Center, Sioux Falls, South Dakota
(https://lpdaac.usgs.gov/data_access). Supported by the Royal
Physiographic Society in Lund (Birgit and Hellmuth Hertz

Foundation), Swedish Research Council grant 637-2014-6895,
and the Mistra-SWECIA program (A. Ahlström); EC FP7 grant
LUC4C (603542) (A. Arneth); OCE Distinguished Visiting Scientist
to the CSIRO Ocean and Atmosphere Flagship, Canberra (B.S.);
EC FP7 grant EMBRACE (282672) (A. Arneth, M.R., and B.D.S.); the
Australian Climate Change Science Program (J.G.C.); NSF grant
AGS 12-43071, U.S. Department of Energy grant DE-SC0006706,
and NASA LCLUC program grant NNX14AD94G (A.K.J.); the
Environmental Research and Technology Development Fund (S-10)
of the Ministry of Environment of Japan (E.K.); CSIRO strategic
research funds (Y.P.W.); and NOAA grants NA10OAR4310248 and
NA09NES4400006 and NSF grant AGS-1129088 (N.Z.). This

study is a contribution to the Lund Centre for Studies of Carbon
Cycle and Climate Interactions (LUCCI) and the strategic
research areas MERGE and BECC.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/348/6237/895/suppl/DC1
Materials and Methods
Figs. S1 to S12
References (33–56)

26 October 2014; accepted 24 April 2015
10.1126/science.aaa1668

GLACIER MASS LOSS

Dynamic thinning of glaciers on the
Southern Antarctic Peninsula
B. Wouters,1* A. Martin-Español,1 V. Helm,2 T. Flament,3 J. M. van Wessem,4

S. R. M. Ligtenberg,4 M. R. van den Broeke,4 J. L. Bamber1

Growing evidence has demonstrated the importance of ice shelf buttressing on the inland
grounded ice, especially if it is resting on bedrock below sea level. Much of the Southern
Antarctic Peninsula satisfies this condition and also possesses a bed slope that deepens
inland. Such ice sheet geometry is potentially unstable. We use satellite altimetry and
gravity observations to show that a major portion of the region has, since 2009,
destabilized. Ice mass loss of the marine-terminating glaciers has rapidly accelerated from
close to balance in the 2000s to a sustained rate of –56 +− 8 gigatons per year, constituting
a major fraction of Antarctica’s contribution to rising sea level. The widespread,
simultaneous nature of the acceleration, in the absence of a persistent atmospheric
forcing, points to an oceanic driving mechanism.

I
ce shelves have been identified as sensi-
tive indicators of climate change (1). Their
retreat along the coast of the Northern Ant-
arctic Peninsula has been noted over recent
decades (2) and associated with a sudden

and prolonged increase in discharge of the in-
land grounded ice (3–5), especially for those gla-
ciers overlying deep troughs (6). The potential
future contribution to sea-level rise of these gla-
ciers relatively modest because their catchments
are small compared with those further south (7).
The Southern Antarctic Peninsula (SAP), includ-
ing Palmer Land and the Bellinghausen Coast,
rests on bedrock below sea level with a retro-
grade slope (deeper inland) (8), which is be-
lieved to be an inherently unstable configuration
(9), permitting rapid grounding line retreat and
mass loss to the ocean. Recent modeling results
suggest that this marine ice sheet instability
may have already been initiated for part of West
Antarctica (10, 11).
The SAP is home to a number of fast flow-

ing, marine terminating glaciers, many of which
are still unnamed. Laser [ICESat, 2003–2009
(12)] and radar [Envisat, 2003– 2010 (13)] alti-
metry identified moderate surface-lowering con-

centrated within a narrow strip along the
coast, in particular near the grounding line of
the Ferrigno Ice Stream (14), contrasted by wide-
spread thickening further inland. Observa-
tions from the Gravity Recovery and Climate
Experiment (GRACE) mission show that these
opposing signals compensated each other, re-
sulting in a near-zero mass balance for 2002–
2010 (15).
The Cryosat-2 satellite, launched in April 2010,

provides elevation measurements of land and
sea ice at a high spatial resolution up to a latitude
of 88°. In contrast to conventional altimetry
missions such as Envisat, Cryosat-2’s dual anten-
na and Doppler processing results in improved
resolution and geolocation of the elevation mea-
surement (16). Because of the long satellite re-
peat period of 369 days, it has a dense track
spacing in our region of interest, which is a major
advantage compared with the roughly 10-times-
coarser ICESat track spacing. Two recent studies
using Cryosat-2 data observed thinning along the
coast of the Bellinghausen Sea (17, 18). Such ele-
vation changes may result from either a decrease
in surface mass balance (SMB) (accumulation
minus ablation), compaction of the firn col-
umn, or an increase in the ice flow speed (also
termed dynamic thinning). Both studies attri-
buted the surface-lowering to interannual changes
in SMB, based on the strong accumulation varia-
bility observed in the Gomez ice core (70.36°W,
73.59°S) (18, 19). Here, we take SMB and firn
compaction into account and show that the
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Materials and Methods 
 
LPJ-GUESS simulations 

The dynamic global vegetation model (DGVM) LPJ-GUESS (10, 11) was forced by 
climate from CRU TS3.21 (13) and time-variant information on land use (14). LPJ-
GUESS is a second-generation DGVM in which vegetation dynamics result from growth 
and competition for light, space and soil resources among woody plant individuals and a 
herbaceous understory in each of a number (100 in this study) of replicate patches in each 
grid cell. The patches account for the distribution within a landscape representative of the 
grid cell as a whole of vegetation stands with different histories of disturbance and stand 
development (succession). Disturbances are implemented as stochastic events with an 
expected frequency of 0.01 yr−1 at patch level. In addition, wildfires are simulated 
prognostically based on fuel (litter) load, dryness and physical conditions (33). GPP, 
autotrophic and heterotrophic respiration, carbon allocation and phenology, canopy gas 
exchange, soil hydrology and organic matter dynamics follow the approach of LPJ-
DGVM (34, 35). Plant functional type (PFT) settings were as described in (10). 
 
TRENDY-models 

The ensemble of TRENDY-model results is a combination of results prepared for 
the global carbon budget of 2013 (1) and 2014 (36) through the TRENDY project, where 
the latest available version has been used. We use the S2 simulations where a time 
invariant pre-industrial land use mask (14) was applied (year 1860). The TRENDY 
model results presented here thus represent carbon cycle responses of the biophysical 
land surface to climate and CO2 change, omitting emissions due to land use change or 
regrowth. Simulations are forced with climate information from CRU-NCEP (37).The 
ensemble consists of results from nine ecosystem models and land surface models (Table 
S1).  
 
 
Table S1. TRENDY models. 

Model name Carbon budget 
year 

Spatial resolution 
(longitude x latitude) 

Land surface 
model 

Dynamic 
vegetation 

Disturbance 
types Source 

CABLE 2014 0.5° x 0.5° yes no - (38, 39) 

ISAM 2014 0.5° x 0.5° yes yes - (40-42) 

JULES 2014 1.875° x ~1.6° yes yes - (43) 

LPJ 2013 0.5° x 0.5° no yes fire (35, 44) 

LPX-Bern 2014 1° x 1° no yes fire (45) 

ORCHIDEE 2013 0.5°x 0.5° yes yes crop harvest (46) 

O-CN 2013 1° x 1.2° yes no - (47, 48) 

VEGAS 2014 0.5° x 0.5° yes yes fire (49, 50) 

VISIT 2014 0.5° x 0.5° no no fire, erosion (51, 52) 
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Empirical GPP product 
The empirical GPP product originates from upscaled FLUXNET eddy-covariance 

tower measurements (21). The overall upscaling procedure involves three main steps: (I) 
processing and quality control of the FLUXNET data, (II) training a machine learning 
based regression algorithm (Model Tree Ensembles, MTEs (53)) for tower observed 
monthly GPP using site-level explanatory variables and satellite observed fraction of 
absorbed photosynthetic active radiation, and (III) applying the established MTEs for 
global upscaling, using gridded data sets of the same explanatory variables. 25 individual 
model trees were forced for each biosphere-atmosphere flux using gridded monthly 
inputs from 1982 to 2011. The best estimate of a biosphere-atmosphere flux for further 
analysis is the median over the 25 estimates for each pixel and month.  

Half-hourly FLUXNET eddy covariance measurements were processed using 
standardized procedures of gap filling and quality control (54, 55), and the data were 
subsequently aggregated into monthly means. 29 explanatory variables of four types were 
used to train the model tree ensemble to predict biosphere-atmosphere fluxes globally 
(see also Table 1 in 21), including (I) monthly fAPAR from the SeaWiFS sensor, 
precipitation, and temperature (both in situ measured); (II) annual changes of the fAPAR 
that describe properties of vegetation structure such as minimum, maximum, mean, and 
amplitude; (III) mean annual climate such as mean annual temperature, precipitation, 
sunshine hours, relative humidity, potential evapotranspiration, climatic water balance 
(precipitation–potential evaporation), and their seasonal dynamics; and (IV) the 
vegetation type according to the IGBP classification plus a flag regarding the 
photosynthetic pathway (C3, C4, C3/C4) (in situ information).   
 
Land cover classes 

We defined six land cover classes together covering the global land area, tropical 
forest, extra-tropical forest (boreal and temperate), semi-arid ecosystems, tundra and 
arctic shrub land, grasslands and land under agriculture (crops, here combined), and areas 
classified as barren (sparsely vegetated). 

The global land surface was first divided into three main classes, forest, savanna and 
shrub lands, and grass lands and crop lands. This classification is based on a MODIS land 
cover classification (MCD12C1, type3) from satellite borne remote sensing (17), 
remapped using a majority filter to a spatial resolution of 0.5x0.5°. The MODIS forest 
category was split to tropical and extra-tropical forest using the Köppen-Geiger climate 
classification system (56). Tropical forest are defined by the Köppen-Geiger A climate 
group, where mean temperature of all months over the study period (1982-2011) do not 
fall below 18°C. Savanna and shrub lands were divided at a natural break at latitude 45°N 
into semi-dry ecosystems (latitudes < 45°N) and tundra and arctic shrub lands (latitudes > 
45°N). 
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Partitioning of interannual variations 
Partitioning of IAV to regions or grid cells follow the definition of Equation S1. For 

a given flux (NBP or GPP, Reco and Cfire), the contribution of the IAV of a grid cell or 
land cover class j to the global NBP IAV is defined as:  
 

 

 

 



 
 

5 
 

 

 
 

 

 



 
 

6 
 

 

 
 

Fig. S1. Map of land cover classes. Tropical forests are shown in light green, extra-
tropical forest in dark green, semi-arid ecosystems in orange, tundra and arctic shrub land 
in grey, grasslands and crops in blue, sparsely vegetated regions in white. 
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Fig. S2. NBP time-series of land cover classes from LPJ-GUESS and TRENDY-models. 
LPJ-GUESS accounts for emissions associated with land use change and the TRENDY-
model results do not, explaining part of the difference between the two datasets. (A)  
NBP from LPJ-GUESS over tropical forest (red line), TRENDY-ensemble mean NBP 
(blue line) and 25th to 75th percentile (1st and 3rd quartiles) NBP (light blue shading). 
(B) Extra-tropical forest. (C) Semi-arid ecosystems. (D) Tundra and arctic shrub land. (E) 
Grasslands + crops. (F) Sparsely vegetated. 
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Fig. S3. Illustration of application of Equation S1. The black solid line represent a global 
signal and the blue and the red lines represent two components that sum to the global 
signal. Since component 1 varies in phase with the global signal with larger anomalies its 
contribution is larger than 100%, in this example, 180%. Component 2 on the other hand 
varies with smaller amplitude and with an opposite phase, and, since it together with 
component 1 sums to the global signal it must have a contribution of -80%, which would 
also be the result of Equation S1. Component 2 is in this example therefore dampening 
the global variations that would arise from only component 1.  
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Fig. S4. Local NBP contributions to global NBP interannual variations. (A) Local NBP 
contributions to global NBP IAV as simulated by LPJ-GUESS (%). (B) Local NBP 
contributions to global NBP IAV, mean of TRENDY models (%). 
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Fig. S5. Standard deviations (sd) of NBP IAV over land cover classes. (A) calculated on 
aggregated local NBP per land cover class; and (B) calculated for each grid cell and 
averaged for each land cover class. Legend as in Figure 1 (D-F). LPJ-GUESS shows 
higher variation among grid cells compared with TRENDY model ensemble owing 
mainly to stochastic representations of vegetation dynamic processes including 
mortality and disturbances. LPJ-GUESS sd is comparable to other models in (A) because 
effects of stochastic disturbances cancel between grid cells, while effects of among-grid 
variability are conserved in (B).  
NB: the figures show local standard deviations per area unit (m-2) and not contributions to 
global IAV. Because the variations are presented per area unit, differences in total extent 
between the land cover classes are not accounted for in these figures.   
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Fig. S6. Regional positive and negative NBP contributions to global NBP IAV. Panels A 
and B sum to the overall contribution to global NBP IAVs presented in Figure 1C. 
Legend as in Figure 1 (D-F). (A) Sum of positive only regional contributions to global 
NBP IAVs. (B) Sum of negative only regional contributions to global NBP IAV. The two 
panels illustrate how the contribution per land cover class could change by assessing a 
subset of a land cover class, e.g. dividing extra tropical forest into temperate and boreal 
forest. Since the overall contribution of a land cover class is the sum of local 
contributions, the maximum contribution of a subset of a land cover class, if all 
negatively contributing grid cells are removed, are shown in panel A. The relatively large 
negative contribution of grasslands and crops is likely due to the distribution of the land 
cover class across climate zones globally resulting in differences in climate variations and 
sensitivities to climate variations between locations. 
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Fig. S7. Regional NBP component contributions to global NBP IAV. Legend as in Figure 
1 (D-F). (A) Regional GPP contributions to global NBP IAV.  (B) Regional ecosystem 
respiration (autotrophic + heterotrophic respiration) contributions to global NBP IAV. 
Decomposition of biomass residues originating from land use change is included in the 
LPJ-GUESS Reco. (C) Regional wildfire emission (Cfire) contributions to global NBP 
IAV.   
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Fig. S8. Climatic covariates and temporal loadings of semi-arid ecosystems. (A) Climatic 
T-P space covariates of GPP percentiles 1-99 averaged over all semi-arid land weighted 
by grid cell area. Circles indicate the climatic covariates of the 5th percentile and 
diamonds indicate the 95th percentile covariates. The similar slope of the empirical GPP 
product and modelled GPP indicates that variations in both datasets covary with similar 
variations in T and P. The full distribution of both GPP datasets covary stronger with P 
than T; indicated by a general slope inclining towards the vertical P axis; over all 
percentiles of the GPP distributions, the corresponding P standardized anomaly is about 
twice that of the standardized T anomaly. (B) Lines indicate the monthly weights of 
monthly T IAV influence on GPP IAV. Bars represent the average T covariates for the 
5th and 95th percentiles. (C) Lines indicate the monthly weights of monthly P IAV 
influence on GPP IAV. Bars represent the average P covariates for the 5th and 9th 
percentiles. (D) Lines indicate the monthly weights of the monthly downward shortwave 
radiation (S) IAV influence on GPP IAV. Bars represent the average S covariates for the 
5th and 9th percentiles. 
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Fig. S9. Spatial properties of interannual variations of temperature and precipitation. (A) 
Correlations between global mean land surface temperature and local temperature 
interannual variations. (B) Correlations between global mean land surface precipitation 
and local precipitation interannual variations. (C) Local correlations between temperature 
and precipitation interannual variations. 
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Fig. S10. Spatial properties of interannual variations of temperature and precipitation 
over tropical vegetated land. (A) Correlations between mean tropical vegetated land 
surface temperature and local temperature interannual variations. (B) Correlations 
between mean tropical vegetated land surface precipitation and local precipitation 
interannual variations. (C) Local correlations between temperature and precipitation 
interannual variations.  
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Fig. S11. Correlations between mean tropical vegetated land precipitation (black line) 
and tropical forest and semi-arid ecosystem interannual variations. The figure illustrates 
how an averaged climate signal can be affected by a region with large variations. In this 
example precipitation anomalies are larger over tropical forest than semi-arid ecosystems, 
leading to a domination of tropical forest precipitation in the aggregated time series. 
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Fig. S12. Climatic covariates of contribution weighted average NBP IAV distributions. 
(A) Climatic covariates of global NBP IAV, spatially weighted by 30-year average 
contributions to global NBP IAV (Eq S1, Fig S4). LPJ-GUESS is shown in red and 
TRENDY-models average in blue. Shaded area illustrates where NBP covaries more with 
T than P, and white where NBP covaries more with P than T. (B) Climatic covariates of 
semi-arid ecosystems NBP IAV, spatially weighted by 30-year average contributions to 
global NBP IAV. Positive anomalies (percentiles >50) covaries more with P than 
negative anomalies due to an asymmetry in the P distribution (positive P anomalies > -
negative P anomalies), and/or an asymmetrical response of NBP to P.  (C) Climatic 
covariates of tropical forest NBP IAV, spatially weighted by 30-year average 
contributions to global NBP IAV.  
NB: The figures show the average climatic (semi-annual) covariates of NBP IAV 
weighted by average contributions over 1982-2011, and is therefore not fully comparable 
to the correlations presented in Figure 4 at the highest level of disaggregation, where the 
global P and T time series are based on the spatial contributions of each year. In contrast 
to the correlations however, the percentile-covariation distributions shown in here are not 
sensitive to the non-normal distribution of P (as in (B)). 
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