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Abstract

Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation poli-

cies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the

climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a

diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in

previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land

cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic dif-

ferences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as

the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncer-

tainty exists in land use projections than currently included in climate or earth system projections. To account for land

use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential

impacts of land cover change on future climate. Additionally, further work is needed to better understand the

assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model

uncertainty and improve the projections of land cover.
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Introduction

Land use and land cover (LULC) change plays an

important role in climate change, biodiversity and the

provision of ecosystem services. LULC change is

believed to be responsible for a substantial proportion

of total carbon dioxide (CO2) emissions, 10–20% since

1990 (Houghton et al., 2012; Le Qu�er�e et al., 2015) and

approximately a third since preindustrial times (Le

Qu�er�e et al., 2015), while land-based, climate mitigation

measures could contribute substantially to the abate-

ment of future greenhouse gas emissions (Rose et al.,

2012). Biogeophysical (e.g. surface albedo and rough-

ness) and biogeochemical effects are also altered by

LULC change and play an important role in changes to

climate and water availability, at regional and global

scales (Levis, 2010; Sterling et al., 2012; Mahmood et al.,

2014; Chen & Dirmeyer, 2016; Smith et al., 2015). Cli-

mate change also impacts LULC, both through direct

effects on crops and natural vegetation and through

land management and land use changes implemented

as adaptation responses (Parry et al., 2004; Howden

et al., 2007). LULC is not only influenced by climate

change, but also by socio-economic factors, such as

population dynamics, wealth, diet and urbanization,

which are important for determining demand for agri-

cultural and forestry commodities (Foley et al., 2011;

Tilman et al., 2011; Smith et al., 2013; Weinzettel et al.,

2013).

Modelling at a range of spatial scales has been

applied to understand the LULC response to climatic

and socio-economic drivers and to assess the potential

for mitigation and adaptation to climate change (Ver-

burg & Overmars, 2009; Fujimori et al., 2012; Calvin

et al., 2013; Meiyappan et al., 2014; Stehfest et al., 2014;

Harrison et al., 2015). Uncertainty arises due to the

range of potential socio-economic and climate futures.

Attempts have been made to characterize the uncer-

tainty in socio-economic drivers through scenarios,

including the IPCC’s special report on emissions sce-

narios (SRES) (IPCC, 2000), and more recently, shared

socio-economic pathways (SSPs) (O’Neill et al., 2015) in

combination with representative concentration path-

ways (RCPs) (van Vuuren et al., 2011). Furthermore,

different modelling approaches have the potential to

produce different LULC outcomes, for example due to

the inclusion of alternative assumptions or in the pro-

cesses represented.

Model intercomparison studies, drawing together

the findings of many different modelling approaches,

have previously considered aspects of LULC, for exam-

ple the agricultural model intercomparison and

improvement project (AgMIP) (von Lampe et al., 2014;

Schmitz et al., 2014), the intersectoral impact model

intercomparison project (ISI-MIP) (Nelson et al., 2014)

and the coupled model intercomparison project (CMIP)

(Brovkin et al., 2013). CMIP deals primarily with the

impact of land use on climate, and AgMIP, which is

closely linked to the agricultural sector of ISI-MIP, has

a broad focus on various aspects of agricultural mod-

els. AgMIP compared the results from 10 global agro-

economic models to 2050, demonstrating significant

LULC change differences, even within the same sce-

nario, due to differences in model assumptions and

parameterization (Robinson et al., 2014; Schmitz et al.,

2014). However, there has been no previous model

intercomparison of LULC projections which examines

uncertainty over the breadth of relevant model types.

Further knowledge gaps exist in understanding the rel-

ative role of model and scenario uncertainty, as well as

the influence of model spatial extent, that is do global

and regional results systemically differ? Understand-

ing uncertainties in LULC projections is critical to

investigating the effectiveness of land-based climate

mitigation policies, in assessing the potential of climate

adaptation strategies and in quantifying the impacts of

land cover change on the climate system.

This study seeks to address these knowledge gaps,

and identify and analyse uncertainties in global and

European LULC, by comparing projections from a

diverse range of models and scenarios. The aim was to

quantify the current range of LULC projections and to

better understand the associated sources and levels of

uncertainty, including ascertaining the role of different

model structure and geographic extent in projected

land cover uncertainty. The study goes beyond existing

comparisons in a number of ways. Firstly, it incorpo-

rates a wider range of model types, including process

or rule-based models in addition to the computable-

general equilibrium and partial equilibrium models

evaluated in AgMIP. Secondly, it compares models

from different spatial extents, including both global

and regional-scale models for the European continent.

Europe was chosen for this comparison because of the

availability of a large number of regional models.

Finally, it incorporates a broader range of socio-eco-

nomic and climate scenarios. Rather than using a small

set of common scenarios (von Lampe et al., 2014; Sch-

mitz et al., 2014), model teams were invited to submit

multiple, potentially dissimilar scenarios, which allows

the potential extent of scenario space to be more fully

covered. The approach also supports the inclusion of a

greater diversity of scenarios and models. For example,

without the requirement to implement particular sce-

narios, models that have been developed for different

purposes, and thus have implemented different scenar-

ios, can still be included. This allows us to achieve a

fuller representation of the range of uncertainty in
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projected LULC change than has previously been possi-

ble in model intercomparisons using aligned scenarios.

Data from 18 models and 75 scenarios were consid-

ered (Table 1). Statistical methods were used to aug-

ment qualitative insights from comparing between the

model results. To quantify the relative importance of

factors associated with the components of the variabil-

ity, a multiple linear regression and analysis of variance

(ANOVA) (Yip et al., 2013; Nishina et al., 2014) were used,

with variables for the initial condition, model and sce-

nario (climate and socio-economic) factors, and residual

or unexplained variability. The robustness of the analy-

sis and completeness of the scenario and model vari-

ables were assessed, including through the use of linear

mixed effects modelling (Bates et al., 2015). The analysis

identifies and draws inference from the variability

between the LULC projections and separates the factors

driving future LULC uncertainty between the impacts

of model-related factors (model type, resolution and

extent) and the scenario characteristics. It is not the

intention to identify which model or scenario is more

plausible or to indicate which model or approach could

be considered more accurate.

Materials and methods

Models of land use or land cover

Modelled data were obtained from 18 models providing sce-

nario results for land use or land cover areas, with either a glo-

bal or European geographic extent. Research groups covering

a further 5 models were approached, but did not submit data.

Table 1 gives details for each of the models included in the

analysis. No attempt was made to align the scenario defini-

tions, initial conditions or other model parameterization. The

land use or cover types from each model were used to provide

the areas of cropland, pasture and forest. The definition of

these types was based on FAOSTAT (2015), for example pas-

ture is land used to grow herbaceous forage crops, either culti-

vated or growing wild, and therefore ranges from intensively

managed grassland through to savannahs and prairies. All

models were able to provide these three types, in some cases

by aggregating more detailed types, except CAPS and MAG-

NET that provided only cropland and pasture areas. The cate-

gorization was selected to avoid some of the definitional

issues, for example between managed and unmanaged forest,

and to maximize the model coverage. Urban and other natural

vegetation or unmanaged areas were not analysed due to the

lower numbers of models able to provide these types.

Models were categorized into four types based on the over-

all approach; computable-general equilibrium (CGE), partial

equilibrium (PE), rule-based and hybrid (Table 1). CGE and

PE are both economic equilibrium optimization approaches,

with CGE models representing the entire economy, including

links between production, income generation and demand,

while PE models cover only part of the economy, in this case

land-based sectors (Robinson et al., 2014). The models catego-

rized as rule-based in contrast need not take an economic

approach, but rather represent processes or behavioural mech-

anisms, for example in an agent-based model, for example

Murray-Rust et al. (2014), or use empirically derived relation-

ships, for example Engstr€om et al. (2016). The hybrid approach

combines demands modelled using economic equilibrium

models with spatial allocations using rule-based approaches

(National Research Council, 2014).

Scenarios

Research groups submitted results for multiple scenarios, to

allow both a broad range of potential land cover results to be

included and the variation from different scenarios to be

determined. A total of 75 scenarios were used (Table 1),

including business-as-usual and scenarios with mitigation

measures. No attempt was made to align the inputs between

models, and consequentially, the results are not based on the

same set of scenarios or parameterization data. The majority

of scenarios were either SSP or SRES based, but in some cases

parameters were adjusted away from the scenario baseline

values, for example FABLE. Alternatively, some models have

conducted experiments where either the socio-economic or cli-

mate scenario was held at present-day values, within an other-

wise SSP or SRES scenario, for example FARM and

CLIMSAVE-IAP. A number of models did not submit any sce-

narios accounting for the impacts of climate change (i.e. AIM,

FALAFEL, GCAM, GLOBIOM, LandSHIFT and MAgPIE). It

is therefore not possible to fully describe the scenarios by

mapping them onto a small number of similar categories (as

done by Busch 2006). Additionally, there are difficulties in

mapping between SRES and SSP/RCP (van Vuuren & Carter,

2014). Consequently, scenarios were described by a series of

values, with default values obtained from the SRES and SSP

descriptions (Table S1) (IPCC, 2000; IIASA, 2015). The aim

was to characterize the scenarios in a way that is consistent

with the scenario and broadly represents it, rather than specify

the exact inputs used. Where a parameter differs from the

default, the adjusted figure was used for that scenario.

Table S2 gives the resultant characterization for all scenarios.

Processing of model results

To provide a spatially and temporally consistent dataset, the

model scenario results submitted were processed as follows:

Interpolation to decadal ends. Model results were analysed at

decadal end years from 2010 to 2100. Ten models did not pro-

vide values for these years, and in these cases, values were lin-

early interpolated between the closest years provided. This

interpolation was performed for AIM, CAPS, CLIMSAVE-

IAP, EcoChange, IMAGE and MAGNET.

Extraction of global and European aggregated areas. The

analysis was conducted on aggregated areas at a global and

European level. The model results were processed to extract

these areas, for example by summing gridded data. The area

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13447
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for Europe was taken as the EU27 member states, that is the

current 28 member states of the European Union excluding

Croatia, which joined in 2013. The EU27 states were selected,

as the set of countries that could be extracted from most mod-

els without the need for further adjustments. Where gridded

global data were provided, a mask was applied to extract land

cover areas for the EU27 states. Regional classification of

GCAM also provided EU27 areas directly. Where model out-

puts did not directly provide areas for the EU27 (e.g. the case

of the AIM model, which produced results for the EU25 only),

pro rata adjustments based on country areas were applied.

The largest adjustment factor applied was an increase of 8.8%

between EU25 and EU27.

Difference to FAO data at 2010. The initial land cover areas

were not constrained to be equal between the models. The dif-

ference for each land cover type, model and scenario at 2010

was calculated from empirical land use data (FAOSTAT,

2015). This initial condition delta was use in the statistical

analysis to determine and account for the variability in the

land cover projections based on the difference in initial condi-

tions.

Statistical analysis of model results

The aim of the statistical analysis was to identify the sources

of variance in the model results. The analysis identified the

variables, related to the models, scenarios and initial condi-

tion, with a multiple linear regression of the areas for each

land cover type, year and spatial extent, associated with the

project land cover areas. The observed variance was then par-

titioned into components attributed to the selected variables in

an analysis of variance approach (ANOVA), to quantify the

sources of variability in the results.

The modelled area for each land cover type and year was

assumed to be a multiple linear function of 10 variables

(Table S3). The factors used can be classified into three groups:

those associated with (i) the model, (ii) the scenario or (iii) the

initial conditions. The models were described by three vari-

ables: (i) model type, (ii) number of cells (iii) and the model

extent. The scenarios were described by five socio-economic

variables and the CO2 concentration, as a proxy to the climate

scenario. The initial condition delta represents the difference

between the model result and historic baseline in 2010 (FAO-

STAT, 2015). The regression fitting process was conducted for

the three land cover types considered at the decadal end years

2010–2100. To avoid overfitting, and to identify the predictive

variables of the modelled areas, an Akaike information crite-

rion (AIC) approach was used (Akaike, 1973). An estimated

‘best approximating model’ can be objectively selected using

AIC (Burnham & Anderson, 2004). The candidate regression

model was selected that minimized the AIC score and there-

fore accounts for the trade-off between goodness of fit and the

model complexity.

ANOVA was used on the regression model to decompose the

variability of the model (Yip et al., 2013; Nishina et al., 2014).

The type II sum of squares values were calculated for each

variable in the fitted regression model. The type II approach

has the important advantage that, unlike type I sums of

squares, they do not depend on the order in which variables

are considered and has been suggested to be suitable for use

with unbalanced data (Langsrud, 2003), although type II sum

of squares are not constrained to sum to the total variance in

the raw data. The interaction terms were not determined

(Nishina et al., 2014), and the variance associated with such

interactions is incorporated within the residual.

Results

Variations in modelled land cover areas

The results display a wide variation for all assessed

land cover types. The global and European land cover

over time are shown in Figs 1 and 2, plotted both as

absolute areas and scaled to match the FAOSTAT

(2015) areas at 2010. Global cropland areas follow the

pattern of the cone of uncertainty, with relatively small

initial differences between scenarios (1290–1650 Mha,

95% interval at 2010), which diverge over time across a

range of scenarios (930–2670 Mha at 2100). However,

the global pasture and forest areas do not fit this pat-

tern. They demonstrate a relatively large initial varia-

tion, which does not change substantially over time.

The main reasons for these discrepancies in initial con-

ditions are due to uncertainty in current areas and dif-

ferences in the definition of land cover (both in models

and in observations). There is a lack of agreement par-

ticularly over what constitutes pasture and forest, for

example how to categorize grazed forest land or semi-

arid grazing (Ramankutty et al., 2008). For example

models, such as GLOBIOM, only considers pasture

which is used for grazing, while others (e.g. CAPS) fol-

low the broader FAOSTAT (2015) definition. Scaling to

a common starting value allows the model trends

without these differences to be observed and shows the

pattern of increasing variability over time (Figs 1-ii and

2-ii). FAOSTAT (2015) data were used to display

historic values and are a commonly used source for

such data at the global scale. A small number of scenar-

ios suggest rapid changes in some types of land cover.

For example, compared to the present day, FALAFEL

under SSP1 gives a reduction in global cropland of 43%

by 2050, and LandSHIFT an increase of 76–107%.

The European land cover areas (Fig. 2) show some of

the same patterns of variations as the global areas

(Fig. 1), including lower initial variation for cropland

than for pasture or forest. Some of the European regio-

nal models produce many of the more extreme area

changes, with CLIMSAVE-IAP, CRAFTY and Eco-

Change all producing the highest or lowest scaled areas

for multiple cover types, although most of the Euro-

pean regional models do not extend past 2050.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13447
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CLIMSAVE-IAP has a relatively high initial value for

pasture, which in the SRES A1 and B1 scenarios

decreases rapidly, while forest is lower and decreases

substantially in all scenarios, in contrast to the majority

of other model results.

Analysing the projected land cover uncertainty

The coefficient of variation, that is the ratio of the stan-

dard deviation to the mean, was used to provide a com-

parative measure of dispersion across model runs

between the global and European areas and the land

cover types considered (Figs 3-i and 4-i). These figures

again illustrate that the initial variation is relatively low

for cropland, but increases over time. Pasture and forest

areas do not exhibit this pattern with global forest area

variability decreasing over time, and pasture area vari-

ability remaining relatively constant over time; both

show a minimum in 2050. The coefficient of variation is

generally higher at the European than the global level,

particularly for pasture and forest areas.

The ANOVA results show the relative importance of

different sources of variance for each land cover type

and decadal end year (Figs 3-ii and 4-ii). The decompo-

sition was based on 10 variables (Table S3) plus a resid-

ual, for the variation not captured by these variables.

Higher variance fractions imply that a variable has a

greater ability to explain the total variance. The initial
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condition delta has been calculated based on the 2010

baseline area, and therefore, 100% of the fraction of

variance is associated with it at that point. The faction

of variance associated with the initial condition, in gen-

eral, decreases over time. For global pasture and forest

areas, the initial condition remains the most important

factor over all time periods.

There is a discontinuity in the results between 2050

and 2060 (Figs 3 and 4) because a number of model

results end at 2050. A similar but less substantial effect

also occurs between 2080 and 2090 for European data.

These effects were removed by rerunning the analysis

using only scenarios that extend to 2100 (Figs S1 and

S2), but at the expense of removing approximately half

(39 of 75) of the available scenarios. The model results,

and therefore the analysis, do not change for the period

2060–2100 for global areas and from 2080 in the Euro-

pean data, as no model scenario ends during these peri-

ods. In the period prior to 2050, European and global

cropland has more variance associated with socio-eco-

nomic scenario variables when only using results that

extend to 2100, while pasture and forest variances are

largely unchanged.

Sources of variability

The variables characterizing the scenarios (Table S3)

have a relatively low fraction of variance for all land

cover types, and particularly for the global pasture and

forest projections (Figs 3-ii and 4-ii). The fraction of

variance for the model characteristics was similar to, or

higher than, that for the variables used to characterize
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STAT, 2015).
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the scenarios in most cases for global areas. The rela-

tively high fraction of variance suggests that given only

knowledge of the scenario, based on the scenario

typologies used, one would only be able to predict a

small percentage of the total variation in the results.

European data overall have a greater proportion of

variance associated with scenario variables, but still

show a substantial fraction associated with variables

used to characterize the models, indicating that models

of a similar type have a level of commonality in beha-

viour. The coefficient of variation in Europe is higher

than the global coefficient of variation, for all time

points and for all land cover types. Moreover, the frac-

tion of variance explained by the initial conditions

within Europe diminishes more quickly in comparison

with the global data.

The high fraction of variance for model types arises

because of the substantial association found between

model type and land cover area. For example, the

model type coefficients in the linear regressions for

cropland at 2050 and 2100 (Tables S4–S7) suggest CGE

models have a lower projected cropland in 2050 and

2100 than PE models. The similarity in model beha-

viour may arise because similar model types are more

likely to have similar implicit or explicit assumptions,

or other commonalities such as the data used to derive

model parameter values. Some, albeit lower, associa-

tion occurred with model resolution, represented as the

number of grid cells, which again may be due to model

similarities. One of the research questions was to deter-

mine whether model extent played a substantial role in

the projected land uses. The results do not find substan-

tial associations between land cover projections and

model extent, that is support for systemic differences

between regional and global model results for Euro-

pean areas were not found. The spatial hotspots of

uncertainty are examined in Prestele et al. (2016).

The residual component quantifies the variation that

is not associated with any of the regression variables

(Table S3), or interactions between them (e.g. between

the initial condition and model type variables). Thus, if

key explanatory variables are not included in the sce-

nario or model typologies then the residual will tend to

increase. To check that important variables were not

overlooked, a mixed model analysis was conducted

(for an overview see Bates et al. (2015)), a statistical

technique which combines random effects and a set of

explanatory variables. The mixed model used the

regression variables selected by minimized AIC score

as fixed effects, and random effects for the model, and
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Fig. 3 Coefficient of variation (i) and relative importance of different variance components (ii) for global land cover areas between 2010

and 2100. The shaded area between 2050 and 2060 indicates that between these points the set of model results substantially change after

2050. In (ii) variance due to model characteristics is shown in different shades of green and due to scenario characteristics in different

shades of red. Figures S1 and S2 show the results from an alternative analysis using only model result that extend to 2100.
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socio-economic and climate scenario (Figs S7 and S8).

The mixed model showed that the random-effect vari-

ances associated with the model and scenarios parame-

ters were of a similar or lower magnitude compared to

the residual for global land covers. Similarly, the ran-

dom-effect variances for the European data were also

mostly lower than the residuals, but with some excep-

tions (e.g. the climate scenario variance for cropland

from 2060 to 2080), suggesting that some unknown

variables may be missing from the scenario typologies,

which if included could improve the fit and reduce the

residual, and potentially alter the relative importance

of the existing variables. However, overall the random-

effects result suggests that the scenario characterization

was sufficient for the purpose of the analysis. Although

alternative sets of variables could be equally valid in

describing the scenarios and models, due to correla-

tions in the model inputs and the variables selected, the

mixed model results provide support for the chosen

scenario and model typologies.

Discussion

Limitations and robustness

The inclusion of 18 models (from the 23 known suit-

able models), covering a wide range of modelling

approaches and research institutions, provides a good

representation of the diversity of the LULC modelling

community. The inclusion of further models or scenar-

ios could alter the outcome of the analysis if the sam-

ple used here is not representative of all models.

Higher numbers of scenarios or models would also

tend to increase the significance of the results and pro-

vide greater confidence in the conclusions. The scenar-

ios included are dominated by SRES (IPCC, 2000)- and

SSP (O’Neill et al., 2015)-based scenarios, as much of

the existing land use modelling effort is based on these

scenario frameworks, with the result that more extreme

changes may fall outside the range of the land cover

projections used here. Consequently, the true range of

outcomes due to scenario uncertainty could be greater

than represented here.

Models and scenarios may be represented by differ-

ent numbers of results, meaning the dataset is defined

as unbalanced. For example, the number of scenarios

per model ranges from 1 to 8 (with a median of 4). As

each model scenario is given equal weight, models with

a larger number of scenarios have a greater impact on

the outcome of the analysis. To assess the possible

impact of the inequality of weighting between models,

a variation of the analysis was undertaken with each

model having an equal weight overall, that is by

weighting each scenario by the reciprocal of the
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Fig. 4 Total coefficient of variation (a) and relative importance of different variance components (b) for European (EU27), format as

per Fig. 3.
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number of scenarios for that model. The results were

only slightly different from those for which each sce-

nario had an equal weight (Figs S3 and S4). The

weighted scenario approach creates a bias towards the

scenarios from models that have fewer scenarios over-

all, whereas the unweight approach is biased towards

models with a greater number of scenarios. That both

approaches result in similar outcomes suggest that the

biases are small in both cases. The equal weighting

approach was preferred by the authors due both to its

relative simplicity, and that each scenario should be

viewed as equally likely, rather than being dependent

on the number of scenarios from a particular model. A

variant of the analysis was also conducted with the out-

lying (>1.96 standard deviation from the mean in the

last year of the model run) results removed. The out-

come showed a greater fraction of variance associated

with scenario variables for forest, at the European and

global extent, and also for European pasture (Figs S5

and S6). Although some level of variation in the out-

comes was noted in all of the variants (Figs S1–S6), the
outcomes were sufficiently consistent for the inferences

drawn to remain valid and to provide a level of confi-

dence in their robustness.

Variations in the initial areas have the potential to

lead to diverging future land cover results, even from a

single model. Therefore, to allow the statistical analysis

to account for some commonality in projected land

cover areas based on the differences in initial condi-

tions, a variable for the difference between observed

areas and model results at 2010 was included

(Table S3). An alternative approach to the differences in

initial condition would be to compare land cover model

projections with harmonized inputs. However, the ini-

tial condition variations result, in part, from differences

in the land cover definitions (Ramankutty et al., 2008;

Verburg et al., 2011) and would therefore be challeng-

ing to standardization across a diverse range of models.

The approach used here of unaligned scenarios and

ANOVA provides the ability to use existing model projec-

tions and to account for the variation in initial condi-

tion, but provides a less direct comparison and requires

more complex analysis, compared to using standardiz-

ing inputs.

The fraction of variance associated with the initial

condition variable was found to reduce over time

(Figs 3 and 4), and to become relatively small by 2100

for global cropland and European pasture and crop-

land, but to remain the dominant variable for global

pasture. To further test the impact of variations in ini-

tial conditions, the analyses were run with scenarios

restricted to those within 4% and 8%, respectively, of

the median model value at 2010 (Figs S9 and 10). The

approach of constraining the scenarios by initial

condition reduces the number of scenarios that can be

included, and in some cases, insufficient scenarios met

the restriction to allow the statistical methods to oper-

ate (i.e. for European pasture and forest, Fig. S10). The

results show that reducing the diversity in initial condi-

tions (by constraining the scenarios included) lowers

the fraction of variance associated with it, and increase

the fraction found to be associated with scenario vari-

ables (Figs S9 and 10). Nonetheless, substantial variance

was also associated with model variables, at least as

greater as that related to the scenario variables. There-

fore, as in Figs 3 and 4, uncertainty arising from model

characteristics was found to be an important factor in

the variability of land cover projection.

Has cropland received a disproportionate research focus?

The results show that cropland areas initially have a

relatively low level of variability with a ‘cone of uncer-

tainty’ increasing with time, while the same pattern is

not seen in pasture and forest areas (Figs 1 and 2).

These patterns of uncertainty may in part be explained

by the issues around the definition of pasture and forest

(Ramankutty et al., 2008; Verburg et al., 2011). How-

ever, it is hard to explain why uncertainty would not

increase over time for all land covers. One potential

explanation is that a larger proportion of future uncer-

tainty associated with cropland has been modelled and

quantified. That is to say, more of the potential for

future variability in pasture and forest areas remain as

epistemic uncertainty (Walker et al., 2003). The fraction

of variance (Figs 3-ii and 4-ii) is also supportive of the

view that the uncertainty of cropland areas is more

fully represented, as European and global cropland and

European forest areas show a higher fraction of vari-

ance for the scenario variables, indicating that under

alike scenarios the models behave, to some extent, in a

similar manner.

A potential interpretation consistent with the results

is that cropland and European land covers have

received greater research focus, leading to lower vari-

ance in initial areas, greater consistency between mod-

els and a higher degree of uncertainty represented in

the projections. For example, many LULC models

derive forest area change from changes in agricultural

area and do not consider factors such as demand for

forest products or nonmarket ecosystem services (Sch-

mitz et al., 2014). Other reasons may also potentially

explain these features of the results, for example related

to fewer definitional or measurement issues for crop-

land and within Europe (Ramankutty et al., 2008).

However, if relative research focus between land cover

types plays a part, such an asymmetry would be hard

to justify as forests cover 31% of the global land surface,
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and pasture 26%, but cropland only 11% (FAOSTAT,

2015). The focus on cropland may be due to the impor-

tance of food production, as crops provide 90% of the

global calories consumed by human (Kastner et al.,

2012). But, in the context of climate, the biophysical and

biogeochemical effects for all land covers are of impor-

tance (Levis, 2010), and cropland accounts for a minor-

ity of land cover change over the past 50 years, with

pasture accounting for 60% of the expansion in agricul-

tural land, in part due to dietary shifts (Alexander et al.,

2015). Furthermore, if other land covers have received

less attention in the models, then cropland areas may

inadequately account for the interactions between

demands for other uses such as timber production or

other ecosystem services.

Implications from land cover projections uncertainty

The results suggest that there are systematic differences

in future land cover areas based on the modelling

approach (as described above), as well as uncertainty

that was not associated with the model or scenario

characteristics used here (i.e. the residuals in Figs 3 and

4). Although the results suggest that model typology

has an influence on land cover projections, they cannot

identify the specific assumption or parameterization

that gives rise to this behaviour (discussed further

below as an area for further research). CGE cropland

projections are lower than from PE models (Tables S4–
S7) potentially due to the interactions between the agri-

cultural sector and the rest of the economy. This has

been shown to give rise to smaller price increases in

CGE compared to PE results (von Lampe et al., 2014),

which could create a lower agricultural supply

response and lower cropland areas, as seen here.

Reducing uncertainties in land covers projections is

desirable, to provide greater clarity of response to sce-

narios characteristics. However, to determine which

model or model type is ‘better’ for a specific purpose,

or to obtain a set of modelling assumptions that could

be considered definitively accurate is problematic. Such

a determination would require choosing between alter-

native model assumptions and the resultant model

behaviour, based on some criteria. Although evaluation

using historic time series of land cover might appear to

offer a potential for such criteria, practical and theoreti-

cal issues arise. Firstly, there are limited historic time

series of land cover data that can be used as references,

and they are themselves an output of other models and

therefore subject to a range of uncertainties (Goldewijk,

2001; Pontius et al., 2008; Hurtt et al., 2011). Secondly,

even the ability to reproduce historic land use change

does not ensure that future conditions will be ade-

quately represented. Finally, given limited series of

historic data, these data may have been implicitly or

explicitly used to calibrate and tune the model, there-

fore greatly diminishing any inference that can be

drawn from their reproduction. The situation contrasts

with the modelling of some other systems (e.g. weather

forecasting) where models can be repeatedly con-

fronted with previously unseen data, to allow a mea-

sure of model efficacy to be determined.

Standardization of initialization data and definitions

could also be used to reduce the spread of future LULC

projections. However, there is uncertainty inherent in

the initial conditions data, and similarly there is no

unique and objectively accurate definition of land cover

types. The goal of the land use modelling community

should be to capture the range of uncertainty, including

that in initial conditions, as opposed to attempting to

standardize on a single set. Up to now, there have been

efforts to ‘harmonize’ land use, for example (Hurtt

et al., 2011), rather than expose the differences and

assess this uncertainty. Standardization may achieve

the aim of greater consistency of results, but in doing so

provide false certainty in land cover projections. This

does not mean that inaccurate data should be used, but

that appropriate consideration and representation of

uncertainty in the initial state should be included.

Further research is needed to assess the plausibility

of model assumptions, and attempt to identify the

modelling approaches that are more appropriate for

certain conditions. Such an approach could potentially

identify model improvements, as well as convergence

on LULC definitions and initial condition data, to over

time support a reduction in model uncertainty. The

assessment of the validity of assumptions is however

challenging and must be based on regional level empir-

ical data and expert knowledge, without a global data-

set against which to validate. Also, the importance of

individual assumptions for the model behaviour is

often unclear due to the complexity of these models

(Pindyck, 2015). Sensitivity analysis to testing model

behaviour needs to be conducted in order to under-

stand the role of assumptions and parameters, both

individually and in combination. A full exploration of

the parameter space requires systematic methods, such

as a Monte Carlo method, rather than a one-at-a-time

sensitivity analysis (Saltelli & Hombres, 2010; Butler

et al., 2014), as well as experiments to understanding

the role of modelling assumptions. Despite these diffi-

culties, such work is needed to better understand the

key assumptions driving land use model results and to

compare them between models, in an attempt to reduce

model uncertainty and to improve the projections of

land cover. In the meantime, using a wide range of land

use models to account for model uncertainty is impor-

tant to account for the revealed uncertainties within
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assessments. Accounting for uncertainties in the cou-

pled LULC and earth system needs to be considered,

due to the feedback effects that may dampen or amplify

responses. Therefore, LULC and earth system models

also need to be studied in a way that allows the uncer-

tainty of the coupled system to be assessed.

Land cover uncertainty in earth system models

Although further research will help to identify, under-

stand and where appropriate update models to address

the sources of these model differences, uncertainty in

future LULC is likely to remain, and possibly even

increase, as more processes are represented and sce-

nario and parameter uncertainty is more fully captured.

For example, 6 of the 18 models did not submit any sce-

narios that included the impact of climate change, sup-

porting the view that work remains to fully evaluate

future LULC uncertainty. Nonetheless, this study

clearly demonstrates that the current levels of uncer-

tainty in projected LULC are substantial, which has

implications not only for the assessment of future cli-

mate change, but also for the success of land-based mit-

igation and adaptation options. The level of uncertainty

in future LULC demonstrated here may not be fully

explored within the current representations of many

earth system model projections (Rounsevell et al.,

2014). In an analogous situation, regarding model

uncertainty in climate projections within the IPCC pro-

cess results from multiple earth system models devel-

oped at different modelling centres are used to capture

model uncertainty (Solomon et al., 2007). Given the pre-

sent status of LULC models, if restricted model types

are used to explore uncertainty, perhaps due to the

specific purpose or research question under considera-

tion, then a lower uncertainty in outcomes may result,

which should be taken into account. However, where

possible, it would be preferable to include a diverse set

of models and approaches to more fully quantify model

uncertainty and to ensure that outcomes from particu-

lar models or approaches do not dominate.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1 Default values for socio-economic scenario variables.
Table S2 Model scenario characterisation data.
Table S3 Multiple regression variables used for variance analysis.
Table S4 Multiple linear regression output for global cropland at 2050, based on AIC selection criteria.
Table S5 Multiple linear regression output for global cropland at 2100, based on AIC selection criteria.
Table S6 Multiple linear regression output for European cropland at 2050, based on AIC selection criteria.
Table S7 Multiple linear regression output for European cropland at 2100, based on AIC selection criteria.
Figure S1 Total coefficient of variation (i) and relative importance of different variance components (ii) restricted to results that
extend to 2100, for global land cover areas.
Figure S2 Total coefficient of variation (i) and relative importance of different variance components (ii) restricted to results that
extend to 2100, for European (EU27) land cover areas.
Figure S3 Total coefficient of variation (i) and relative importance of different variance components (ii) weighted by the reciprocal
of the number of scenarios for each model, global land cover areas.
Figure S4 Total coefficient of variation (i) and relative importance of different variance components (ii) weighted by the reciprocal
of the number of scenarios for each model, European (EU27) land cover areas.
Figure S5 Total coefficient of variation (i) and relative importance of different variance components (ii) removing extreme scenario
results (i.e. those that exceed 1.96 standard deviations from the model mean in the last year of the model run), for global land cover
areas. 2, 3 or 4 scenarios were identified and removed from AIM, FALAFEL, CLUMondo, GCAM or LandShift, depending on land
cover.
Figure S6 Total coefficient of variation (i) and relative importance of different variance components (ii) removing extreme scenario
results (i.e. those that exceed 1.96 standard deviations from the model mean in the last year of the model run), for European (EU27)
land cover areas. 3 or 4 scenarios were identified and removed from AIM, CLIMSAVE-IAP, CRAFTY or PLUM, depending on land
cover.
Figure S7 Random effect standard deviations for global data from a mixed model, with the fixed effects as per Table S3 and random
effects for the model, and socio-economic and climate scenario.
Figure S8 Random effect standard deviations for European (EU27) data using a mixed model, as Fig. S7.
Figure S9 Relative importance of different variance components restricted to scenarios that are with (i) 4%, and (ii) 8% of the med-
ian area at 2010, for global land cover areas.
Figure S10 Relative importance of different variance components restricted to scenarios that are with (i) 4%, and (ii) 8% of the med-
ian area at 2010, for European (EU27) land cover areas.
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