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Abstract

We used a land surface model constrained using data from flux tower sites, to analyze the biases in ecosystem energy

and water fluxes arising due to the use of meteorological reanalysis datasets. Following site-level model calibration

encompassing major vegetation types from the tropics to the northern high-latitudes, we repeated the site and global

simulations using two reanalysis datasets: the NCEP/NCAR and the CRUNCEP. In comparison with the model simu-

lations using observed meteorology from sites, the reanalysis-driven simulations produced several systematic biases

in net radiation (Rn), latent heat (LE), and sensible heat (H) fluxes. These include: (i) persistently positive tropical/sub-

tropical biases in Rn using the NCEP/NCAR, and gradually transitioning to negative Rn biases in the higher latitudes;

(ii) large positive H biases in the tropics/subtropics using the NCEP/NCAR; (iii) negative LE biases using the NCEP/

NCAR above 40°N; (iv) high tropical LE using the CRUNCEP in comparison with observationally derived global esti-

mates; and (v) flux-partitioning biases from canopy and ground components. Across vegetation types, we investi-

gated the role of the meteorological drivers (shortwave and longwave radiation, atmospheric humidity, temperature,

precipitation) and their seasonal biases in controlling these reanalysis-driven uncertainties. At the global scale, our

site-level analysis explains several model-data differences in the LE and H fluxes when compared with observation-

ally derived global estimates of these fluxes. Using our results, we discuss the implications of site-level model calibra-

tion on subsequent regional/global applications to study energy and hydrological processes. The flux-partitioning

biases presented in this study have potential implications on the couplings among terrestrial carbon, energy, and

water fluxes, and for the calibration of land–atmosphere parameterizations that are dependent on LE/H partitioning.
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Introduction

Uncertainties in energy and water fluxes in land surface

models (LSMs) arise from the choice of schemes used to

represent land surface and boundary layer processes

(Sellers et al., 1997; Overgaard et al., 2006; Dickinson,

2011), and from the meteorological inputs (Santanello

et al., 2009). Quantification of such modeling uncertain-

ties is becoming increasingly important to successfully

study the implications of climate change on the terres-

trial energy and hydrological cycles (Trenberth et al.,

2007, 2009). With the availability of multi-year eddy

covariance data from FLUXNET (Baldocchi et al., 2001),

the parameterizations in LSMs can be constrained lead-

ing to improved estimates of terrestrial latent heat (LE)

and sensible heat (H) fluxes at the site-level (e.g., St€ockli

et al., 2008; Blyth et al., 2010, 2011). However, uncertain-

ties in these fluxes continue to remain high even in the

recent model-data intercomparison assessments

(Jim�enez et al., 2011; Mueller et al., 2011), calling for con-

tinued model evaluation and improvement. It remains

important to systematically investigate the causes of

these uncertainties, because discrepancies in simulated

terrestrial LE and H fluxes can strongly influence the

simulated climate in climate models through the

land–atmosphere interactions (Ban-Weiss et al., 2011).

While the impacts of specific model schemes/parame-

terizations on energy and water fluxes have been docu-

mented in many studies, fewer studies have focused on

the meteorology-driven uncertainties. For example, to

the best of our knowledge, only one study (Mu et al.,

2012) has recently documented the impacts of meteoro-

logical uncertainties on evapotranspiration biases (in

remote sensing applications). Similar uncertainties can

arise in the regional/global applications of LSMs, associ-

ated with biases in the meteorological reanalyses with
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respect to weather station data. Significant biases in

atmospheric reanalysis datasets have been acknowl-

edged and documented in existing literature, with vary-

ing degrees of accuracy across meteorological variables

(Janowiak et al., 1998; Fekete et al., 2004; Zhao et al.,

2006; Simmons et al., 2007). In this context, previous

studies reported large sensitivity of modeled carbon

fluxes at regional/global scales due to various reanalysis

datasets (Zhao et al., 2006; Jung et al., 2007; Barman

et al., 2013). However, the associated impacts on energy

and water fluxes have not yet been documented.

Because the calibration of energy/water fluxes in a LSM

usually takes place utilizing ancillary meteorological

data from the sites, subsequent applications of a ‘cali-

brated’ LSM using reanalysis datasets are likely to pro-

duce errors in the computed fluxes. The extent of such

flux biases resulting directly due to site-level model cali-

bration has also not been presented in literature.

Assessing the meteorology-driven (interchangeably

referred to as ‘climate-driven’ in this study) LE and H

biases is difficult at the global scale, because it is not

feasible to obtain concurrent observations of meteoro-

logical and flux variables at a global scale (e.g., Hender-

son-Sellers et al., 2003). A simple alternative may be to

study the biases directly at the flux tower sites, by com-

paring the modeled LE and H fluxes obtained using

observed meteorology vs. that using reanalysis data-

sets. Using this approach, we previously explored the

impacts of climate-driven uncertainties on gross pri-

mary production (GPP) using one particular LSM, the

Integrated Science Assessment Model (ISAM) (Barman

et al., 2013). There, we first optimized ISAM using

meteorology and eddy covariance data from 25 FLUX-

NET sites, and subsequently applied the model to

quantify the GPP biases using two reanalysis datasets:

CRUNCEP and NCEP/NCAR. In the present study, we

extend the aforementioned analysis for the LE and H

fluxes.

Specifically, here we address the following questions:

(i) what are the key biotic controls influencing LE and

H fluxes in the calibrated model for various ecosystems;

(ii) what are the flux biases using two different reanaly-

sis datasets (CRUNCEP and NCEP/NCAR) directly at

the flux tower sites; and (iii) what are the impacts on

the global estimates of the corresponding fluxes. We

also present the corresponding implications on the

partitioning of LE and H fluxes – which can strongly

influence the dynamics and thermodynamics of atmo-

spheric circulation and biosphere–climate feedbacks

(Lawrence et al., 2007). Additionally, we analyzed the

biases in partitioning of LE into canopy evapotranspira-

tion and soil evaporation – which affects GPP and

hydro-climatology (Lawrence & Chase, 2009). Along

with our previous study (Barman et al., 2013), this work

presents a consistently integrated analysis of climate-

driven biases in carbon, energy, and water fluxes using

the same modeling framework.

Materials and methods

Energy/water cycle components in ISAM

Integrated Science Assessment Model computes terrestrial

energy, water, and momentum fluxes at half-hourly to hourly

time steps, integrated with prognostic carbon and nitrogen

cycles (Jain et al., 2009; Yang et al., 2009; Barman et al., 2013).

The boundary layer turbulent processes are described based

on the Monin–Obukhov Similarity Theory (MOST) approach

(see Wang & Dickinson (2012) for method review). Latent heat

transfer to atmosphere is resolved using canopy transpiration,

ground evaporation, and canopy dew evaporation; sensible

heat is partitioned into ground and canopy components (e.g.,

Sellers et al., 1996; Oleson et al., 2008). For the computation of

soil evaporation, the model includes resistance to moisture

transfer from soil, root, and litter components (Sakaguchi &
Zeng, 2009). Surface albedo is resolved into ground albedo

(function of soil color and wetness), exposed vegetation

albedo (function of leaf orientation, leaf/stem reflectivity and

transmissivity, and ground albedo), and snow albedo

(schemes from Dai et al. 2004).

Simulated hydrology processes in ISAM include canopy

interception and throughfall of precipitation, infiltration,

redistribution of soil water within the soil column, surface,

and subsurface runoffs – all adapted based on Oleson et al.

(2008). The vertical soil column (ca. 50 m) is represented by 15

layers (adapted from Lawrence et al. 2008), consisting of 11

hydrologically active top layers up to total depth of ca. 6 m,

and four hydrology inactive bedrock layers below. Originally,

ISAM contained 10 hydrologically active layers up to a total

depth of 3.5 (similar to Lawrence et al. 2008); however, for this

study, we increased the hydrological zone to ca. 6 m to incor-

porate deep tropical roots implemented in ISAM (Barman

et al., 2013). Snow is discretized into a maximum of five layers,

and dynamics include: snow accumulation, various modes of

compaction (from snow weight, aging, melting, and winds,

Schaefer et al., 2009), depth hoar formation (Schaefer et al.,

2009), and water transfer across the snow layers.

The soil thermal and hydrological properties in ISAM vary

with depth, depending on soil liquid and ice water contents,

soil texture, and organic carbon profiles (Lawrence & Slater,

2008). In ISAM, the soil organic carbon dataset is taken from

Harmonized World Soil Database (HWSD) (FAO/IIASA/

ISRIC/ISSCAS/JRC, 2012; Todd-Brown et al., 2013).

Data

FLUXNET Data. Table 1 lists the 25-flux tower sites

used in this study, grouped into various plant func-

tional types (PFTs). These represent major vegetation

types in the global land surface: tropical broadleaf ever-

green tree (Trop.BET) and broadleaf deciduous tree
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(Trop.BDT), temperate broadleaf deciduous tree

(Temp.BDT), needleleaf evergreen tree (NET), savanna,

grass, shrub, tundra, and pasture. For this study, we

used the half-hourly/hourly u*-corrected LE, H, and

net radiation (Rn) data from the FLUXNET database to

calibrate/evaluate the model estimated energy fluxes

Table 1 FLUXNET sites used in this study*; the annual budgets of LE and H were compiled from FLUXNET data, or from pub-

lished studies based on the FLUXNET data

Site Code Site Name Years EBR†

LE (W m�2) H (W m�2)

FLUXNET ISAM** FLUXNET ISAM**

Mean � Uncertainty Mean � Uncertainty

Tropical Broadleaf Evergreen Tree (Trop.BET)

LBA-Km34� Manaus KM34 2002–3004 0.82 106 � 16 100 36 � 13 31

LBA-Km67� Santarem KM83 2003–2004 0.84 104 � 15 78 23 � 12 19

LBA-Km83� Santarem KM67 2001–2003 1.04 103 � 15 105 24 � 12 21

LBA-Rja§ Reserva Jaru 2000–2001 0.77 106 � 16 102 35 � 13 41

Tropical Deciduous Evergreen Tree (Trop.BDT)

LBA-Ban Bananal Island 2004–2004 1.01 106 � 16 106 29 � 13 31

Temperate Broadleaf Deciduous Tree (Temp.BDT)

CA-Oas South OldAspen 1997–2004 0.84 30 � 10 31 28 � 14 29

US-Syv Sylvania Wilderness 2002–2004 NA¶ NAk 35 NAk 42

US-WCr Willow Creek 1999–2004 NA¶ NAk 27 NAk 38

Needleleaf Evergreen Tree (NET)

CA-Gro Groundhog River 2004–2004 0.96 40 � 12 31 35 � 13 42

CA-Obs South OldBlackSpruce 2000–2004 0.85 26 � 10 28 46 � 14 41

CA-Ojp South OldJackPine 2000–2003 0.87 20 � 9 29 45 � 14 41

CA-Qfo East OldSpruce 2004–2004 0.85 32 � 10 30 42 � 13 34

US-Me3 Metolius 2nd YoungPine 2004–2004 0.63 NAk 27 NAk 55

US-NR1 Niwot Ridge 1999–2004 0.97 48 � 13 48 49 � 19 59

Savanna

US-Ton Tonzi Ranch 2002–2004 0.94 NAk 29 NAk 75

LBA-Pdg� Reserva Pe-de-Gigante 2001–2003 0.75 95 � 7 75 38 � 10 40

Grass

CA-Let Lethbridge 1999–2004 0.67 31 � 6 22 39 � 10 44

US-Shd Shidler Tallgrass Prairie 1998–1999 NA¶ NAk 70 NAk 36

US-Var Vaira Ranch 2001–2004 0.90 NAk 32 NAk 83

Shrub

CA-Mer Mer Bleue 1999–2004 0.80 NAk 33 NAk 48

US-Los Lost Creek 2001–2004 0.81 NAk 22 NAk 45

US-SO2 Sky Oaks Old 1999–2004 1.03 NAk 40 NAk 62

Tundra

US-Atq Atqasuk 2004–2004 0.67 NAk 11 NAk 25

US-Brw Barrow 2001–2001 0.82 NAk 8 NAk 17

Pasture

LBA-Fns§ Fazenda Nossa Senhora 2000–2001 0.77 73 � 6 81 47 � 10 49

*Additional detail of these sites pertaining to site description, and references/methods are available in Barman et al. (2013).

†EBR, Energy Balance Ratio (see Wilson et al., 2002), here calculated using 3-hourly FLUXNET data for LE, H and Rn according to

formula:
EBR¼

P
LEþHP

Rn
, where Σ is summation over the timescale for flux correction (see Data S2).

‡Annual LE, H, and EBR were calculated based on data from Da Rocha et al. (2009) (see Table S2 for calculation details).

§Annual LE and H were calculated based on data from Randow et al. (2004), and EBR from Hasler & Avissar (2007).

¶NA (not available) as net-radiation data was not available for the calculation of EBR.

kNA (not available) as percentage of missing data exceeded ca. 40% for the years used in this study; hence we did not list the FLUX-

NET Mean � Uncertainty (Table S1).

**Model simulated GPP using a model version ISAM-FLUXNET.

The annual budgets from the published studies shown here may not correspond to the site-years used in this study. The ISAM

estimated fluxes are from the ISAM-FLUXNET simulations.
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(see Data S1 for details). Pronounced gaps in data were

present in most site measurements (e.g., Table S1 – for

the North American sites), consistent with those

reported in previous published studies (Falge et al.,

2001). For the present analysis, we calculated the

annual estimates of LE and H at a site if the cumulative

missing data at the site was <40% of the entire study

years (see Table S1). This is a more relaxed threshold

value than used in some other previously published

studies. For example, Law et al. (2002) used 25% yr�1

threshold value to correct the LE and H fluxes. We con-

verted the half-hourly/hourly data to daily, and subse-

quently filled the daily data gaps using linear

interpolation, before aggregating to monthly/annual

estimates. For sites not satisfying the missing threshold,

we used the flux-corrected annual estimates of LE and

H from published literature, whenever available

(Table 1). This was usually a case for the South Ameri-

can (LBA) sites, and hence we used flux-corrected LE

and H at all LBA sites based on published literature

(Table S2). At all sites, we performed flux correction to

enforce energy balance closure (Twine et al., 2000; Jung

et al., 2011) on a monthly basis (details are provided in

Data S2). The resulting mean annual estimates of LE

and H, as used for in this analysis, are listed in Table 1.

We also calculated the random flux errors stochasti-

cally at half-hourly/hourly timescales based on Hollin-

ger & Richardson (2005), and subsequently aggregated

them to annual timescales (�Uncertainty in Table 1) for

the purposes of our model-data comparison. However,

we note that the annual random uncertainties are most

likely to be lower than these estimates, primarily due to

compensation from positive and negative uncertainties

(Richardson et al., 2006); hence, our �Uncertainty esti-

mates in Table 1 should only be representative of the

maximum theoretical bounds in random measurement

uncertainties.

Forcing data and model experimental setup. We performed

three off-line simulations at every flux tower site: (i)

ISAM-FLUXNET – using the observed site-level meteo-

rology; (ii) ISAM-NCEP – using the NCEP/NCAR

reanalysis (Qian et al., 2006); and (iii) ISAM-CRUNCEP

– using the recently available CRUNCEP reanalysis

(Viovy & Ciais, 2009; Wei et al., 2013). For details on

boundary data, model spin-up procedure, the readers

are referred to our companion study (Barman et al.,

2013) where we used identical experimental setups.

We first calibrated and evaluated the model using

the ISAM-FLUXNET simulations. Subsequently, we

computed the site-level biases (D) in LE, H and Rn

(=LE + H) fluxes in the reanalysis-driven simulations

(ISAM-NCEP and ISAM-CRUNCEP) with respect to the

ISAM-FLUXNET simulations. Similarly, for site-level

biases in any input/output variable, we consistently

computed the biases with respect to the corresponding

ISAM-FLUXNET variables. In all subsequent discus-

sions, the use of the ‘D’ notation in the prefix of variable

names indicates site-level biases.

ISAM calibration, and evaluation of LE and H

Utilizing the observed site-level meteorology and eddy

covariance data, we used the ‘trial and error’ approach

to tune several PFT-specific parameters in ISAM, to

concurrently optimize the modeled GPP, LE, and H. An

analogous model calibration approach has also been

used in other studies using the ISAM framework

(El-Masri et al., 2013; Song et al., 2013). During model

calibration of each PFT, our goal was to optimize the

overall model performance across sites within the PFT.

For the overall calibration approach, including key

parameters influencing GPP (e.g., V
opt
cmax25fðNÞ, plant

rooting depths, etc.; Barman et al. 2013. Here, we sum-

marize the choice of other model parameters related to

LE and H (such as stomatal conductance parameters,

leaf/stem optical properties), and the evaluation of

modeled LE and H fluxes.

The stomatal conductance in the model (gs,

lmol m�2 s�1) is parameterized using two tunable

parameters, the stomatal conductance slope (m, dimen-

sionless) and the stomatal conductance intercept (b,

lmol m�2 s�1), based on the following equation (Col-

latz et al., 1991; Sellers et al., 1996; Dai et al., 2004):

gs ¼ m
An

Cs=Patm
� es

ei
þ bbt

where An is net photosynthesis (lmol m�2 s�1), Cs the

CO2 partial pressure at the leaf surface (Pa), Patm the

atmospheric pressure (Pa), es the vapor pressure at

leaf surface (Pa), ei the saturation vapor pressure

inside the leaf (Pa), and bt a soil water availability fac-

tor between 0 and 1 (dimensionless, 1 implies no soil

moisture stress on photosynthesis, while 0 implies no

available water to plant roots). Generally, it was suffi-

cient to use the values of m and the b directly from

existing literature (m = 9 for C3 and 4 for C4;

b = 0.01 mol-CO2 m�2 s�1 for C3, and 0.04 mol-

CO2 m�2 s�1) (Dai et al., 2004; Bonan et al., 2011).

However, for certain PFTs (Trop.BET/BDT, C3 grass),

these values produced lower than observed LE in the

model. For these PFTs, we slightly increased their val-

ues to m ca. 10 and b ca. 0.02–0.03 mol-CO2 m�2 s�1,

resulting in increased LE in the model to better

match with the LE data (and also improving LE/H

partitioning).

For PFT optical properties, the model requires the

values of reflectance and transmittance for leaves and

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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stems of each PFT – separately for the visible and near

infrared bands. While these are not tunable parameters,

they need to be constrained in the model based on data.

The original ISAM used the reflectance/transmittance

values from the published CoLM model (Dai et al.,

2004; Chen et al., 2011). There, the optical properties of

grass/crop type PFTs were obtained from Dorman &

Sellers (1989), and other modeling studies reported

errors in simulated grass/crop albedos using these esti-

mates (e.g., Lawrence et al., 2011). Hence, following

Lawrence et al. (2011), we replaced these values for the

grass type PFTs (e.g., grass, tundra, pasture) in the cali-

brated model based on improved field data from Asner

et al. (1998).

In the calibrated model, the annual H estimates were

within the random uncertainty range at all the sites

with available flux data (15 out of the 25 sites; see

Table 1), and the LE was generally within the uncer-

tainty range as well (except at LBA-Km67, LBA-Pdg,

CA-Let, and LBA-Fns). Below, we briefly describe the

potential causes for LE disagreements at the aforemen-

tioned sites where the model was outside the uncer-

tainty range.

At the LBA-Km67 Trop.BET site, there was a large

underestimation in modeled annual LE (ISAM:

78 W m�2, FLUXNET: 104 � 15 W m�2). Based on

other site-level observational studies that have shown

energy-limited LE response for the Trop.BET/BDT

(Hasler & Avissar, 2007; Ju�arez et al., 2007), this under-

estimation could be largely attributed to the lower total

radiation inputs at this site in comparison with the

adjacent Trop.BET/BDT sites. For example, in compari-

son with LBA-Km83 that is in the same model 0.5 9 0.5

grid, the mean annual shortwave radiation (Srad) at this

site was lower by 30 W m�2, while the downwelling

longwave radiation (LWdown) was same at both sites

(Table S3). Hence, the total Srad + LWdown at this site

was lower by ca. 30 W m�2, strongly contributing to

the lower modeled LE. Noting that there may be prob-

lems in the radiation data at this site, the ratio of LE/

(LE + H) may be a better statistic for model evaluation

at this site, which compared favorably between the

model and the data (ISAM: 0.80, FLUXNET mean:

0.82).

The tropical savanna site (LBA-Pdg) also underesti-

mated the annual averaged LE (ISAM: 75 W m�2,

FLUXNET: 95 � 7 W m�2). This was partly due to the

underestimation of simulated net radiation in the

model (Rn; ISAM: 115 W m�2, FLUXNET: 133 W m�2).

Because Rn depends on the full suite of energy pro-

cesses (including the incoming and outgoing energy

balance, soil temperature, vegetation/ground albedos,

etc.), it is generally difficult to sufficiently diagnose/

constrain Rn in the model. We tested with different

estimates of savanna reflectance/transmittance from

Asner (1998), and different root depth/profile values

for savanna (from Schenk & Jackson 2002); however,

these did not provide the required sensitivity to correct

the existing bias at this site. In addition, the use of static

rooting profiles in ISAM was also most likely to limit

the model’s ability to correctly simulate the soil water

stress (especially important for herbaceous PFTs; Arora

& Boer, 2003). Due to the availability of only the LBA-

Pdg for model calibration/evaluation of tropical

savanna, we could not further evaluate these modeling

shortcomings. Furthermore, this site also had a rela-

tively poor energy balance ratio (EBR) in the flux tower

measurements (see Table 1), reducing the confidence in

model-data comparison.

At the midlatitude CA-Let grass site, the underestima-

tion of LE (ISAM: 22 W m�2, FLUXNET: 31 � 6 W m�2)

could be explained by the upper bound of annual pre-

cipitation (Precip) in the meteorology data

(Precip = 0.28 m m�2 yr�1, see Table S3), resulting in

ET/Precip = 0.987 (where ET = evapotranspiration).

Finally, at the single available pasture site (LBA-Fns),

the LE was slightly overestimated – though the differ-

ences were not substantial (ISAM: 81 W m�2, FLUX-

NET: 73 �
6 W m�2). Overall, due to the limited number of non-

tree/herbaceous sites for model calibration (e.g., grass,

savanna, pasture), more sites will be beneficial to reduce

the existing uncertainties in themodel.

Results

Site-level reanalysis-driven uncertainties in Rn, LE, and
H

Uncertainties in annual estimates of Rn. To explain the

reanalysis-driven modeled annual DLE and DH, we first

analyzed the net-radiation biases (DRn = DLE + DH) at

each site, along with biases in several input meteorol-

ogy variables (Fig. 1). With respect to the input meteo-

rological drivers, two primary variables controlling the

Rn are the Srad and LWdown. In the tropics (i.e. LBA

sites), the DRn using the NCEP/NCAR dataset was very

high – primarily driven by the consistently +DLWdown

and +DSrad (Fig. 1a, d–e). Indeed, the NCEP/NCAR

driven +DLWdown at the LBA sites were the largest

among all the analyzed sites (ca. 20–50 W m�2, Fig. 1e).

In contrast to the tropical Trop.BET/BDT, the NCEP/

NCAR driven DRn were progressively negative at the

mid- and high-latitude sites. For the Temp.BDT and

NET, mean annual DSrad in the NCEP/NCAR were

usually small, and consequently the �DRn was driven

by the �DLWdown (typically around ca. �15 W m�2, see

Fig. 1e). Such negative DLWdown were also present in

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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the CRUNCEP; however, the annual total energy input

were compensated by the +DSrad in the CRUNCEP

(Fig. 1d). As a result, at most of the mid/high-latitude

sites, the mean annual DRn using the CRUNCEP was in

better agreement with the respective ISAM-FLUXNET

simulations.

For the nontree sites (savanna, grass, shrub, tundra,

pasture), all except the NCEP/NCAR driven LBA

(a) (b) (c)

(d) (e) (f) (g) (h)

Fig. 1 Site-level mean annual biases (D) in (a) net radiation (DRn = DLE + DH), (b) latent heat (DLE), and (c) sensible heat (DH) in the

ISAM-CRUNCEP, ISAM-NCEP simulations. (d–h) Mean annual biases in input meteorology variables: (d) DSrad, (e) DLWdown, (f) DQ,

(g) DTavg, and (h) DPrecip. All the biases were calculated with respect to the ISAM-FLUXNET counterpart.

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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simulations produced a negative mean annual DRn

(Fig. 1a). For these cases with negative Rn, the

reanalyses DLWdown were also negative. In many

instances, the mean annual DRn at the mid/high-lati-

tude nontree sites were more negative than those simu-

lated at the Temp.BDT and NET sites; for such cases,

the corresponding input DLWdown were also among the

most negative (e.g., US-Ton and US-Var, using the

CRUNCEP data). At the high-latitude tundra sites in

Alaska, the mean annual DRn were significantly nega-

tive in both the datasets, driven by the corresponding

–DLWdown which offset the +DSrad. Overall, the pat-

terns of DRn as seen in the site-level analysis were also

present in the global ISAM simulations using the two

reanalysis datasets (further discussed in the section

‘Global uncertainties in modeled Rn, LE and H).

Uncertainties in annual estimates of LE and H. Among the

Trop.BET/BDT sites, even though the mean annual

DRn were positive in most instances (especially large

using the NCEP/NCAR), the DLE were either negative

or moderately positive (Fig. 1a–b). In this context, here

we should also mention that the corresponding mean

annual DGPP were positive at all the Trop.BET/BDT

sites (average of ca. 0.45 kgC m�2 yr�1) (Barman et al.,

2013). Hence, given the positive input energy anomaly

(i.e. DRn > 0) together with DGPP > 0, the negative DLE
suggest that the +DQ played a dominant role in sup-

pressing the LE (by notably decreasing the atmospheric

dryness). Consequently, this also means increased eco-

system water use efficiency in the corresponding

reanalysis simulations. A notable characteristic of the

NCEP/NCAR data is the high +DQ at the LBA sites

(Fig. 1f). Further analysis showed that this was also

true for most of the vegetated land surface, as shown

by the consistently larger Q in the NCEP/NCAR than

in the CRUNCEP dataset (Fig. S1e). For example, at

two of the LBA Trop.BET sites (LBA-Km34 and

LBA-Km83), the mean annual +DQ in the NCEP/

NCAR data were among the highest of all the analyzed

sites; there, the resulting DLE were also largely nega-

tive. Of all the LBA sites, only at LBA-Ban the DQ was

relatively larger in the CRUNCEP, and the correspond-

ing DLE using the CRUNCEP was more negative. These

results highlight the importance of DQ in the reanalysis

data for determining the direction of DLE in the tropics.

Nonetheless, because the annual LE response at the tro-

pics is known to be strongly dependent on annual Rn

(e.g., Hasler & Avissar, 2007; Ju�arez et al., 2007; Costa

et al., 2010), the resulting DLE can be positive given a

sufficiently large +DRn in the reanalysis data. This was

the case for the LBA-Km67 site, where the impact of

+DQ was more than offset by the increased radiation

inputs in the NCEP/NCAR and the CRUNCEP data-

sets (DRn ca. 75 and 30 W m�2, respectively; +DSrad ca.

60 W m�2 in both the datasets), resulting in predomi-

nantly positive mean annual DLE of ca. 10 and

25 W m�2, respectively.

Driven by the large +DRn and �DLE (from +DQ) in

the NCEP/NCAR, the corresponding +DH was signifi-

cantly high at all the Trop.BET/BDT sites. On average,

the NCEP/NCAR driven DH for the Trop.BET (4 sites)

was 52 W m�2, an error of 186% of the corresponding

ISAM-FLUXNET H (Table 2). At the single Trop.BDT

site (LBA-Ban), the corresponding DH and% errors

were 28 W m�2 and 89%, respectively. In comparison,

the overall DH using the CRUNCEP was much smaller

for these PFTs (Table 2).

Due to the �DRn and +DQ using the NCEP/NCAR,

the associated DLE were systematically negative at the

NET sites (�20 W m�2 to �10 W m�2) (Fig. 1b). An

exception to this was the US-Me3 site, where the large

Table 2 Site-averaged annual latent heat (LE) and sensible heat (H) estimates, grouped by PFTs. DCRUNCEP = ISAM-CRUNCEP

– ISAM-FLUXNET, DNCEP = ISAM-NCEP – ISAM-FLUXNET. Values in parenthesis are percentage differences with respect to

ISAM-FLUXNET simulations

PFT

Number

of sites

LE (W m�2) H (W m�2)

ISAM DCRUNCEP DNCEP ISAM DCRUNCEP DNCEP

Trop.BET 4 96 5 (6) �6 (�6) 28 �4 (�15) 52 (186)

Trop.BDT 1 106 �19 (�18) �13 (�12) 31 �2 (�7) 28 (89)

Temp.BDT 3 31 8 (24) �4 (�13) 37 �6 (�16) �11 (�31)

NET 6 32 �2 (�6) �11 (�35) 45 7 (15) 1 (3)

Savanna 2 57 1 (2) �0 (�0) 57 �24 (�42) �10 (�17)

Grass 3 41 1 (3) 1 (2) 54 �26 (�48) �22 (�41)

Shrub 3 32 1 (4) �12 (�38) 52 �6 (�11) �3 (�6)

Tundra 2 9 �4 (�46) �8 (�90) 21 �16 (�74) �22 (�103)

Pasture 1 81 �18 (�22) �10 (�12) 49 3 (7) 17 (35)

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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+DPrecip in both the reanalysis datasets produced

+DLE. This shows that besides the energy inputs, the

incoming water from precipitation can also be a limit-

ing factor to the ET (or LE) in these ecosystems. Overall,

averaged over the six NET sites, the DLE of �11 W m�2

using the NCEP/NCAR amounted to an error of �35%

in comparison to the LE from ISAM-FLUXNET

(Table 2). Across the individual Temp.BDT sites, the

DLE using the NCEP/NCAR was negative to moder-

ately positive (�10 ca. 2.5 W m�2), while the mean

annual DLE using the CRUNCEP were approximately

0–15 W m�2. Based on Fig. 1a, a consistent feature at

the Temp.BDT and NET sites was that the mean annual

LE using the CRUNCEP were systematically greater

than those using the NCEP/NCAR, i.e. LECRUN-

CEP > LENCEP/NCAR. These in turn, could be explained

by the energy biases in the reanalysis simulations, i.e.

Rn CRUNCEP > Rn NCEP/NCAR (Fig. 1a).

For the nontree sites/PFTs, the reanalysis-driven

DLE exhibited lesser consistent patterns than the tree/

forest PFTs (Fig. 1b). This can partly be explained by

the stronger dependence of LE on Precip in these eco-

systems, which tend to be very spatially heteroge-

neous (Fig. 1e). In Barman et al. (2013), we showed

that the annual DGPP for these ecosystems was

strongly controlled by factors affecting ecosystem

water stress, e.g., Tavg, Q, and Precip. Correspond-

ingly, these factors generally controlled the modeled

DLE as well – attributable to the stomatal coupling

between GPP and transpiration. In addition, the influ-

ence of input energy over the modeled LE (or equiva-

lently the ET) was also apparent at several of the

nontree sites (similar to the tree PFTs). For example,

while the ET increased with Rn, for monthly Rn > ca.

150 W m�2 some PFTs such as grass and savanna

showed radiation-induced heat stress in the model –
thereby progressively decreasing the ET with further

increases in Rn (Fig. S2). Because these ecosystems are

generally prevalent in drier environments, the

instances of very large +DRn can therefore potentially

produce a –DLE using the reanalysis data (as opposed

to the tree/forest PFTs).

Following the negative annual �DRn at most of the

mid/high-latitude nontree sites, the corresponding

mean annual DH were also largely negative (Fig. 1a, c;

Table 2). In this context, the only exception was the

US-SO2 shrub site, where the LE (and the GPP) was

strongly reduced in the reanalysis datasets due to very

low Precip. To maintain the energy balance

(DRn = DLE + DH), this resulted in the +DH using the

reanalysis datasets. At the two high-latitude tundra

sites (US-Atq, US-Brw), the mean annual DRn were sig-

nificantly negative in both the datasets, and the DLE
and DH were both negative.

Uncertainties in partitioning of annual LE into canopy and

ground components. Across all sites/PFTs, we analyzed

the relative role of DSrad and DLWdown on DLE by sepa-

rately plotting the ground and canopy components of

LE (i.e. LEground – ground evaporation, and LEveg – can-

opy evapotranspiration). In the ISAM-FLUXNET simu-

lations, based on the LAI, the LEground/LE increased

nonlinearly from 0.1 for Trop.BET to 0.6 for NET, and

reaching a maximum of ca. 0.8 for the extremely high-

latitude tundra sites (Fig. 2a). In ISAM, LEveg consists

of two components – the canopy transpiration that is

coupled with GPP (through stomatal conductance), and

the leaf evaporation of dew. While energy input from

Srad directly influences the total LE, LWdown only

impacts the evaporation components (ground evapora-

tion, leaf evaporation) due to the lack of any photosyn-

thetically active radiation contained in it (hence LWdown

does not influence either GPP or transpiration). Hence,

these results indicate the increasing importance of

DLWdown toward DLE for PFTs with lower LAI where

the ground is increasingly exposed (i.e. midlatitude for-

ests with strong LAI seasonality, nontree PFTs). Conse-

quently, at most of the mid- to high-latitude sites, the

reanalysis datasets produced negative annual DLEground

(Fig. 2b), by virtue of the –DLWdown. Note that, because

the nontree PFTs usually have lower LAI than tree

PFTs, the role of DSrad toward DLEground (and

DHground) also becomes relatively more important,

because the exposed ground can absorb a larger frac-

tion of the Srad, thereby increasing the ground heat

intake (data not shown). Also, as especially evident

from the results, the LEground/LE at the mid- and high-

latitude sites may be much lower in the ISAM-NCEP

simulations than in the ISAM-FLUXNET counterparts;

these are driven by the lower atmospheric energy input

at these sites using the NCEP. Therefore, the regression

fits for LEground/LE vs. LAI (Fig. 2a) may be different

for the three sets of simulations performed in this

study, though there is always a decrease in LEground/LE

with increasing LAI.

Uncertainties in seasonality of LE and H. We investigated

the daily patterns of DLE and DH because of their impli-

cations on the seasonality of the fluxes themselves.

Here, we illustrate the results for the forest/tree PFTs

(Fig. 3; for reference, daily patterns of DLE and DH for

the nontree sites are also shown in Figs S3 and S4). The

results show several points, as follows. (i) For the Trop.-

BET/BDT, daily instances of high +DQ produced –DLE,
and daily instances of high +DLWdown produced high

+DH (supplementing our analysis at annual timescales).

(ii) The daily climatological biases in DLE and DH in

the mid/high-latitude Temp.BDT and NET exhibited

strong seasonality ranging from negative to positive

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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(a) (b)

Fig. 2 (a) Ratio of annual ground evaporation to total evapotranspiration (LEground/LE) plotted vs. mean annual LAI, at individual

sites. Also shown is a line of best fit (using a quadratic polynomial) across all sites for the ISAM-FLUXNET simulation. (b) Mean annual

biases in latent heat components from the canopy (DLEveg, top panel) and from ground (DLEground, bottom panel). All the biases (D)
were calculated with respect to the ISAM-FLUXNET counterpart.

Fig. 3 Analysis for tree PFTs (Trop.BET, Trop.BDT, Temp.BDT, NET): daily climatology of reanalysis-driven DLE and DH, along

with DSrad, DLWdown and DQ. All variables were averaged over the available number of sites (n) for each PFT. All the biases (D)
were calculated with respect to the ISAM-FLUXNET counterpart. Each row corresponds to a PFT group (name on left corner).

Each column shows a variable (name on top). For each subplot, the x-axis is the ‘Day of year’ and the y-axis is the respective

variable.

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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biases (e.g., seasonal amplitude of ca. �20 to

20 W m�2). As a result, the � seasonal flux biases may

partly be mitigated in the annual timescale. Because of

this, an important caveat is that a low annual energy

flux bias may or may not imply correctness of the

reanalysis data. (iii) For the Temp.BDT and NET, the

systematically negative annual DLE using the NCEP/

NCAR data was caused mostly by the negative winter-

time LE biases, coincident with wintertime �DLWdown

in the data. Because there is no GPP in these PFTs dur-

ing the winter (and hence negligible LEveg), the entire

wintertime �DLE could be attributed to the corre-

sponding �DLEground. Finally, (iv) the mean annual

�DH in the Temp.BDT and NET could also be mostly

attributed to negative wintertime DH (driven by the

input energy deficit during the winter).

Global uncertainties in modeled Rn, LE and H

Accurately quantifying the global extent of reanalysis,

climate-driven biases in LE and H fluxes (as performed

at the site-level) are not possible in a LSM framework,

due to the lack of observed subdaily meteorological

data at each model grid cell (e.g., Henderson-Sellers

et al., 2003). However, it may still be possible to

investigate the modeling uncertainties in comparison

with other observationally derived global estimates.

For this purpose, we used data from two globally grid-

ded sources: (i) FLUXNET-MTE (Jung et al., 2011) –
providing LE and H and (ii) MODIS (Mu et al., 2011) –
providing LE. Using these datasets and the two model

simulations (ISAM-NCEP, ISAM-CRUNCEP) (see Figs 4

and 5 for spatial comparison), we constructed the corre-

sponding zonally averaged mean annual Rn (=LE + H),

LE, and H estimates (Fig. 6a–c) for the vegetated land

surface (Fig. S5). Based on this plot, several features

consistent with our site-level analysis are evident,

which we describe below.

In comparison with FLUXNET-MTE, the mean

annual Rn anomaly using the NCEP/NCAR meteorol-

ogy was highly positive in the tropics and subtropics,

but gradually transitioned to negative for the mid- and

northern high-latitudes. In both the Northern and

Southern Hemispheres, this transition happened at

approximately 40°N and 40�S, respectively (Fig. 6a). In

terms of the driving meteorological variables of Srad

and LWdown, the relative differences between the

CRUNCEP and the NCEP/NCAR were also very con-

sistent with our site-level analysis. For example, in

comparison with the CRUNCEP data, the annual

(a) (b)

(c) (d)

Fig. 4 Maps of mean annual estimates of LE, for two reanalysis-driven model simulations [ISAM-CRUNCEP (a), ISAM-NCEP (b)] and

two observationally derived datasets [FLUXNET-MTE (c), MODIS (d)]. All the results are based on averaged output for 2000–2004, and

are only for vegetated land surfaces (Fig. S5).

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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LWdown in the NCEP/NCAR showed very high

positive differences in the tropics/subtropics; this

difference gradually diminished for the midlatitudes,

and eventually becoming negative at the upper high-

latitudes (Fig. S1d). Next, the annual Srad in the NCEP/

NCAR was also consistently lower in the mid/high-lat-

itude vegetated surface (Fig. S1c). As discussed previ-

ously, the Srad + LWdown in the CRUNCEP dataset was

generally in closer agreement with the site observed

meteorology; correspondingly, the zonal mean Rn from

ISAM-CRUNCEP was also generally in good agreement

with FLUXNET-MTE across various latitudes (Fig. 6a).

Nonetheless, between 20°S and 40°S, the Rn from

ISAM-CRUNCEP was high in comparison with both

FLUXNET-MTE and ISAM-NCEP. A limitation in our

current model calibration is that the southernmost site

used in our analysis was located at ca. 21.75°S (LBA-

Pdg) and all other sites were above ca. 11°S; hence more

Southern Hemispheric flux tower sites need to be inte-

grated into ISAM, to better quantify the modeled

energy/water flux biases in this region.

As in the site-level analysis, the annual LE estimates

in the deep tropics from ISAM-CRUNCEP were higher

than that of ISAM-NCEP, with a maximum relative dif-

ference of ca. 10 W m�2 at the equator (Fig. 6b), similar

to the relative differences at the Trop.BET sites. In com-

parison with the observationally derived datasets, the

zonally averaged LE from ISAM-CRUNCEP was also

notably higher between 10°S and 10°N with a maxi-

mum positive anomaly of 10–15 W m�2 at the equator,

while the corresponding tropical LE from ISAM-NCEP

was in good agreement. Consistent with our site-level

analysis, these relative LE biases between ISAM-NCEP

and ISAM-CRUNCEP could be primarily attributed to

the persistently higher Q in the NCEP/NCAR (Fig. S1e),

which suppressed the ET to lower the LE. Also, we

could rule out Precip differences between the two rea-

nalyses as a cause of the larger modeled LE using the

CRUNCEP, because the total annual Precip in the tro-

pics was actually slightly higher in the NCEP/NCAR

(data not shown).

Above approximately 40°N, the model simulation

using the NCEP/NCAR data showed consistently low

LE in comparison with both FLUXNET-MTE and

MODIS (anomaly of �10 to �15 W m�2 in 52–70°N lati-

tude) (Fig. 6b). Such zonal-scale negative LE anomalies

were very similar to those previously simulated using

the NCEP/NCAR data at most of the upper midlati-

tude and high-latitude sites (e.g., NET, Temp.BDT, tun-

dra). As in the site simulations, the low zonal LE using

(a) (b)

(c)

Fig. 5 Maps of mean annual estimates of H, for two reanalysis-driven model simulations [ISAM-CRUNCEP (a), ISAM-NCEP (b)] and

an observationally derived dataset [FLUXNET-MTE (c)]. All the results are based on averaged output for 2000–2004, and are only for

vegetated land surfaces (Fig. S5).

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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the NCEP/NCAR could primarily be attributed to the

corresponding low Rn in ISAM-NCAP at above 40°N
(Fig. 6a). These biases were much smaller in the CRUN-

CEP simulations (due to a better heat budget), showing

that the accuracy of meteorological forcings is very

important to determine the LE (especially in the north-

ern high-latitudes).

Based on the strongly positive tropical Rn anomaly in

ISAM-NCEP (relative to FLUXNET-MTE, Fig. 6a), the

corresponding H biases were also particularly strong in

the model using the NCEP/NCAR (Fig. 6c). Notably,

the ISAM-NCEP consistently overestimated the mean

annual H with respect to FLUXNET-MTE, with a maxi-

mum difference of 40 W m�2 the equator. Such biases

were absent using the CRUNCEP data at most lati-

tudes, except between 20°S and 40°S where the Rn

anomaly in ISAM-CRUNCEP was largely positive (as

discussed above). Additionally, due to a better northern

high-latitude energy budget using the CRUNCEP, the

H from ISAM-CRUNCEP also appeared to be in better

agreement with FLUXNET-MTE than the ISAM-NCEP

counterpart.

Finally, we also investigated the impact of the LE and

H biases on the partitioning of the energy fluxes, using

the metric of evaporative fraction: LE/Rn (Fig. 7). In

our model simulation using the NCEP/NCAR, the LE/

Rn between 15°S and 10°N was largely underestimated

in comparison with FLUXNET-MTE (up to 20% lower

at the equator, due to the anomalously low tropical H).

The NCEP/NCAR simulation also strongly underesti-

mated the LE/Rn in the northern high-latitudes over ca.

50°N (up to 22% lower at 60°N). At these latitudes, the

underestimation in LE/Rn was due to the negative LE

anomaly in ISAM-NCEP.

Discussion

Here, we used a LSM framework to show that poten-

tially large uncertainties in terrestrial energy/water

fluxes can arise from direct biases in reanalysis climate.

To consistently quantify the modeled flux biases, we

first analyzed the site-level biases in input meteorology

(a)

(b)

(c)

Fig. 6 Zonally averaged mean annual estimates for (a) Rn

(=LE + H), (b) LE, and (c) H. Estimates are shown for two

reanalysis-driven model simulations (ISAM-NCEP and ISAM-

CRUNCEP) and observationally derived data (FLUXNET-MTE,

and/or MODIS-DAO). Numbers in colors are respective global

estimates. All the results are based on averaged output for

2000–2004, and are only for vegetated land surfaces (Fig. S5).

The fractional land area (vegetated) at each latitude is shown as

a gray scale, where darker shades represent more vegetated

areas.

Fig. 7 Zonally averaged mean annual evaporative fraction: LE/

Rn, computed using data from Fig. 5. The fractional land area

(vegetated) at each latitude is shown as a gray scale, where dar-

ker shades represent more vegetated areas. For numerical stabil-

ity, only 50°S to 70°N is shown.

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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from two reanalysis datasets: the NCEP/NCAR and

the CRUNCEP. Using these datasets, several consistent

patterns in the mean annual DRn, DLE and DH were evi-

dent at the site-level as well as in the global simula-

tions. Besides the mean annual biases in meteorology

and fluxes, we also highlight the importance of investi-

gating the seasonality of the biases, which have impor-

tant consequences for the seasonal coupling among

terrestrial carbon, energy and water fluxes.

With respect to the observed site meteorology, nota-

ble biases in the reanalysis variables were as follows: (i)

high +DSrad in the tropics (both in NCEP/NCAR and

CRUNCEP); (ii) high +DLWdown in the tropics but nega-

tive DLWdown in the mid/high-latitudes in NCEP/

NCAR; and (iii) high +DQ in the NCEP/NCAR (Fig. 1).

There were also varying degrees of biases in Tavg and

Precip. Mostly, the mean annual DLWdown and DQ were

smaller in the CRUNCEP. Specifically, based on the

site-level modeling results of this study, the CRUNCEP

driven LE and H fluxes were generally in better agree-

ment (than the NCEP/NCAR counterparts) with the

respective FLUXNET estimates. Similar patterns in LE

and H response/biases were also evident in the zonal

mean fluxes from global simulations (Figs 6 and 7).

We also analyzed the driving factors and mecha-

nisms of the modeled biases in the Rn, LE and H fluxes.

In the model, these flux biases could be primarily

attributed to: (i) biases in total energy inputs to the sur-

face (Srad, LWdown); (ii) biases in Q and Tavg, which

modulate the atmospheric dryness and hence influence

LE/H partitioning; (iii) Precip, which may be especially

important for nontree/herbaceous ecosystems. Our

model response is typically consistent with several

existing observational analysis from literature that sug-

gest: (i) Rn controls the seasonal variation of LE over

the rain forest in Amazonia (Hasler & Avissar, 2007;

Hutyra et al., 2007; Fisher et al., 2009; Costa et al., 2010),

and they may not be primarily water stressed (Ju�arez

et al., 2007; Barman et al., 2013); (ii) available energy is

the most important parameter in determining LE in the

high-latitude boreal forests (Admiral et al., 2006), which

are not predominantly water stressed because of their

slow transpiration rates (Baldocchi et al., 2000; Admiral

et al., 2006); and (iii) in arid and semiarid ecosystems

(e.g., nontree PFTs), Precip and factors controlling atmo-

spheric dryness (Tavg, Q) are the dominant factors in

determining LE (e.g., Chang et al., 2006; Ferguson &

Veizer, 2007; Hasler & Avissar, 2007). However, our

results show that the environmental control(s) deter-

mining DLE can be different from those controlling the

response in absolute LE. For example, even though Rn

may be the dominant factor determining the LE

response for the tropical forests, the DLE was often con-

trolled by DQ (unless the positive anomaly in Rn was

very high). Here we also note that, as opposed to the

usually positive mean annual DGPP using the NCEP/

NCAR and CRUNCEP datasets (Barman et al., 2013),

the corresponding DRn, DLE, and DH were not uni-

formly positive or negative. This suggests that the

DGPP may not be correlated with DLE even though the

GPP and LE are largely coupled through the stomata.

Additionally, because biotic factors such as canopy

physiology/morphology, and environmental factors

such as soil thermal and hydrological processes also

determine the LE and H response (and biases) in the

model, any single factor individually should not be

expected to fully explain the energy/water flux biases

and the variations in model response.

Land surface models are ultimately designed to

study complex land–atmosphere interaction processes,

and for application into future climate/environmental

change scenarios, at regional to global scales. Hence,

given the magnitudes of biases in the LE and H fluxes

using reanalysis data, we feel that further study is war-

ranted to quantify the associated impacts on various

land–atmosphere exchange parameterizations depen-

dent on partitioning of energy fluxes. Also, several

important questions do arise on the philosophy of LSM

calibration using site-scale FLUXNET data. For exam-

ple, what are the net impacts of site-level calibration on

global estimates of various fluxes and reservoirs from

LSMs, and should we calibrate to optimize at the sites

or should we rather optimize the model based on glo-

bal datasets to counteract such biases in the first place?

In this context, a comparable study by Zhao et al. (2006)

investigating the reanalysis-driven biases in MODIS

estimated GPP suggested two approaches to reduce the

GPP biases: (i) by adjusting the reanalysis variables at

each grid cell based on weather station data and/or (ii)

by modifying the model parameters to optimize the

output fluxes using the biased meteorology as the forc-

ing data. In their study, the authors partly adopted the

latter option for model calibration (though they

acknowledged the associated caveats). But using a LSM

framework such as in this study, this is most likely to

result in propagating errors in various model parame-

terizations, due to the interactions among the full suite

of carbon, energy, water, and momentum fluxes. This is

also most likely to result in tunable parameter values

that are inconsistent with the respective theoretical

optimums, hence compromising the physical basis of

model formulations. Subsequently, the model may also

become susceptible to producing unreliable trends in

fluxes, for future climate change simulations. Hence, in

the long run, the only reliable alternative may be to

improve the global reanalysis products to consistently

force the model simulations. As for the current reanaly-

sis products, it may be useful to develop potential

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12473
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strategies to indirectly account for the LSM output

biases postmodel simulations – such as the scaling of

fluxes to account for the established model biases. For

such purposes, estimation of site-level flux biases as

demonstrated in our study (and in Barman et al. 2013)

is a useful first step to formulate the respective scaling

factors.

While continued model evaluation is necessary to

improve the representation of carbon, energy and water

cycles in the ISAM, here (along with Barman et al. 2013)

we demonstrate the need to systematically investigate

the flux uncertainties from forcing datasets itself, such

as from meteorology. Better quantification of uncertain-

ties should lead to better attribution of uncertainty

sources, which can ultimately help to reduce the errors

in future modeling efforts. Because LSMs usually use

many similar schemes across models (due to shared

model development or through infusion of sophisti-

cated schemes from other models when available), the

magnitude and range of flux uncertainties presented in

this study is expected to be of interest to other LSM

modelers, and to the ESM community in general.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Data S1. Latent heat (LE), Sensible heat (H), and net radiation (Rn) data from FLUXNET.
Data S2. Flux correction of LE and H.
Table S1. Percentage (%) of available 3-hourly FLUXNET data at NACP sites.
Table S2. Calculation of LE and H for the LBA sites used in this study, based on flux tower data from published studies.
Table S3. Annual mean climate variables from site/station data for each site used in this study.
Figure S1. Relative differences in mean annual meteorology variables between two global reanalyses datasets used in this study.
Computations are based on annually averaged data during 2000–2004.
Figure S2. Monthly ET vs. monthly Rn: best-fit quadratic polynomials for individual PFTs, using model output from the ISAM-
FLUXNET simulations. Only PFTs with more than one site-year of data were shown.
Figure S3. Analysis for individual nontree C3 and C4 sites: Daily climatology of DLE in reanalyses-driven simulations for the (a)
nontree C3 and (b) C4 sites. For each subplot, the x-axis is the ‘day of year’ and the y-axis is DLE. All the biases (D) were calculated
with respect to the ISAM-FLUXNET counterpart.
Figure S4. Analysis for individual nontree C3 and C4 sites: Daily climatology of DH in reanalyses-driven simulations for the (a)
nontree C3 and (b) C4 sites. For each subplot, the x-axis is the ‘day of year’ and the y-axis is DH. All the biases (D) were calculated
with respect to the ISAM-FLUXNET counterpart.
Figure S5. Map of vegetated land area mask used for comparison of Rn, LE, and H estimates.
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