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ARTICLE INFO ABSTRACT

Keywords: Climate extremes have remarkable impacts on ecosystems and are expected to increase with future global
Climate change warming. However, only few studies have focused on the ecological extreme events and their drivers in China. In
Exr_reme'events ) this study, we carried out an analysis of negative extreme events in gross primary productivity (GPP) in China
Gross primary production and the sub-regions during 1982-2015, using monthly GPP simulated by 12 process-based models (TRENDYv6)

Power law distribution

China and an observation-based model (Yao-GPP). Extremes were defined as the negative 5th percentile of GPP

anomalies, which were further merged into individual extreme events using a three-dimensional contiguous
algorithm. Spatio-temporal patterns of negative GPP anomalies were analyzed by taking the 1000 largest ex-
treme events into consideration. Results showed that the effects of extreme events decreased annual GPP by
2.8% (i.e. 208 TgC year ') in TRENDY models and 2.3% (i.e. 151 TgC year ") in Yao-GPP. Hotspots of extreme
GPP deficits were mainly observed in North China (—53 gC m ™ 2year ') in TRENDY models and Northeast
China (—42 gCm ™ ?year ') in Yao-GPP. For China as a whole, attribution analyses suggested that extreme low
precipitation was associated with 40%-50% of extreme negative GPP events. Most events in northern and
western China could be explained by meteorological droughts (i.e. low precipitation) while GPP extreme events
in southern China were more associated with temperature extremes, in particular with cold spells. GPP was
revealed to be much more sensitive to heat/drought than to cold/wet extreme events. Combined with projected
changes in climate extremes in China, GPP negative anomalies caused by drought events in northern China and
by temperature extremes in southern China might be more prominent in the future.
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1. Introduction

Gross primary productivity (GPP) is the largest carbon flux, changes
of which affect the whole terrestrial carbon cycle. The CO, fertilization
and growing season extension are expected to enhance vegetation
growth and increase terrestrial net primary productivity (Los, 2013;
Piao et al., 2013; Zhu et al., 2016). However, at the same time, it has
been suggested that climate extremes may alter the composition,
structure and function of ecosystems and therefore have potential ne-
gative impacts on terrestrial carbon uptake (Du et al., 2018; von Buttlar
et al., 2018). For instance, the 2003 extreme heat wave and drought in
Europe caused up to 30% reduction in GPP and resulted in a strong
anomalous net source of CO, (Ciais et al., 2005). Based on the com-
monly used definition of climate extremes, IPCC (2012) pointed out
that changing climate has led to changes in the frequency, intensity,
spatial extent, duration, and timing of weather and climate extremes,
and can result in unprecedented impacts on terrestrial carbon cycle.
Furthermore, climate change is projected to further increase the fre-
quency, persistence and intensity of climate extremes in the mid- to late
21 st century because of the on-going global warming (IPCC, 2013; Niu
et al., 2017; Sui et al., 2018), which makes the impacts of future climate
change on terrestrial ecosystem more uncertain (Samaniego et al.,
2018; Yao et al.,, 2019). Therefore, characterizing climatic extreme
events and their consequences on ecosystems is an important step for
the development of adaptation strategies and risk reduction in the
context of future climate change.

Extreme events are generally defined as statistically unusual epi-
sodes or occurrences, which are beyond the bounds of typical or normal
variability (Reichstein et al., 2013). In scientific literature, extreme
events have been defined in several ways—both from climatic and
impact perspectives (Felton and Smith, 2017). Lloyd-Hughes (2012)
firstly proposed a novel 3-dimensional (longitude, latitude, time)
structure-based approach to describe drought events. Zscheischler et al.
(2013) further improved the method and performed the first global
analysis of spatio-temporally contiguous carbon-cycle extremes. This
method has advantages in analyzing the size, shape, temporal evolution
and other interesting quantities of extreme events. By using this tech-
nique, Zscheischler et al. (2014a) demonstrated that the largest 1000
negative GPP extremes accounted for a decrease in global photo-
synthetic carbon uptake of approximately 3.5 PgC year ', with most
events being attributable to water scarcity. Huang et al. (2016) quan-
tified sensitivities of GPP to spatio-temporally contiguous hydrological
extreme events and implied that vegetation in Earth System Models
(ESMs) was on average more sensitive to droughts than observed.
Model output of the Coupled Model Intercomparison Project Phase 5
(CMIP5) future projections suggested that negative extremes in GPP
would be driven by concurrent dry and hot conditions during the 21 st
century (Zscheischler et al., 2014d). Zscheischler et al. (2018) pointed
out that traditional assessment methods which considered only one
driver at a time underestimated risk from extreme events, highlighting
a better understanding of compound events.

The negative impacts of climate extremes on natural ecosystems and
agriculture have been widely reported in China. Yuan et al. (2016)
found that the 100-year return heat wave and drought in the summer of
2013 in southern China significantly reduced regional GPP, and pro-
duced the largest negative crop yield anomaly since 1960. The anom-
alous 2008 ice storm episode resulted in increased vegetation mortality,
which exceeded recruitment for evergreen and deciduous broad-leaved
species in central China (Ge et al., 2015). The most severe spring
drought over the last five decades in 2010 in southwestern China re-
duced regional annual GPP by 4%, producing the lowest annual GPP
over the period 2000-2010 (Zhang et al., 2012). Dynamic Land Eco-
system Model-based analysis showed that drought stress led to a large
reduction of crop yield in China (Ren et al., 2012), with the maximum
reduction in crop yield (—17.5%) occurred in 2000, a year with ex-
treme drought and relatively high O3 concentrations (Tian et al., 2016).
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The temperature and precipitation anomalies were the principal drivers
of Normalized Difference Vegetation Index (NDVI) variation in the
Yangtze River Basin (YRB) in recent years (Cui et al., 2018). These
regional studies or case studies improved our understanding of the
vulnerability and response of terrestrial ecosystems to individual ex-
treme climate events. Nevertheless, most previous studies in China
mainly focus on either the impacts of climate extremes (Chen et al.,
2018; Yao et al., 2018a; Yuan et al., 2016) or only a few cases of eco-
logical extreme events (Yuan et al., 2016; Zhang et al., 2012) but did
not analyze a large number of extreme events in GPP in a systematic
approach.

The sensitivity and vulnerability of ecosystem productivity to cli-
mate variability are expected to vary widely in different ecosystems and
different climate zones, affected also by biodiversity or management
practices (Isbell et al., 2015; Wang et al., 2017; Yao et al., 2018b; Zhou
et al., 2015). China has different climate zones that range from tropic in
the south to subarctic zone in the north, comprising wide ranges of
precipitation and temperature gradients. However, there are a limited
number of studies on the effects of multiple climate drivers on GPP in
China. Thus, we intend to provide a statistical analysis of extreme
events in GPP and their drivers at the national scale and the nine sub-
regions (Fig. 1a). This study aims to (1) diagnose the spatial and tem-
poral patterns of extreme events in GPP in China; (2) evaluate the re-
sponse of GPP to extreme climatic drivers; (3) explore size distribution
of GPP extreme events for different climate drivers and different re-
gions. We expect to provide a better understanding of the character-
istics of GPP extreme events and their responses to different drivers.

2. Materials and methods
2.1. GPP data sources

Results from an observation-based model of GPP (Yao-GPP, here-
after and Table 1), with 0.1° spatial resolution and monthly temporal
frequency over China, were obtained from Yao et al. (2018b). The GPP
data were developed using a machine learning technique, model tree
ensembles (MTE) (Jung et al., 2011) with eddy flux measurements from
40 sites in China and the surrounding countries. The high-resolution
GPP data can successfully capture the spatio-temporal variations of the
GPP observed at the flux sites, including validation flux sites that were
not part of the MTE training set (Yao et al., 2018b).

Besides the above observation-based model, we also used monthly
GPP from process-based ecosystem models that took part in the his-
torical climate carbon cycle model intercomparison project
(TRENDYV6, Table A.1). The model simulations all followed the same
experimental protocol (Le Quéré et al., 2018; Sitch et al., 2015) and
were driven with the same climate data from the Climatic Research Unit
and National Center for Environmental Prediction (CRU-NCEP) climate
forcing reconstruction. The GPP outputs were from the S3 TRENDY
simulations which used observed CO, concentrations, changing cli-
mate, and land cover changes as forcing over the period 1860-2016.
Many different process-based models were used in TRENDY simula-
tions. As coarse spatial resolution makes it not possible to diagnose
enough GPP extreme events, model simulations with coarser resolution
than 1° were excluded. Consequently, 12 models were finally selected:
CABLE (Haverd et al., 2018), CLM4.5 (Oleson et al., 2013), DLEM (Tian
et al., 2015), ISAM (Jain et al., 2013), LPJ-GUESS (Smith et al., 2014),
LPJ-wsl (Sitch et al., 2003), LPX-Bern (Keller et al., 2017), ORCHIDEE
(Krinner et al., 2005), ORCHIDEE-MICT (Guimberteau et al., 2018),
SDGVM (Woodward et al., 1995), VEGAS (Zeng et al., 2005) and VISIT
(Kato et al., 2013), and see references and further model details con-
tained in Le Quéré et al. (2018).

2.2. Climatic data

To attribute negative extreme events in GPP to drivers, we used air
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Fig. 1. Spatial distributions of (a) the magnitude of the 1000 largest negative extreme events in GPP (GPP1gqo) during 1982-2015 from the median of the 12 process-
based TRENDY models and (b) the observation-based GPP model Yao-GPP, (c) standard deviation over TRENDY models and (d) the TRENDY median minus Yao-GPP
(i.e. panel (a) minus panel (b)). The left insets in panel (a) and (b) denote the median (i.e. bar graph), 25th and 75th percentile (i.e. error bar) of GPP anomalies for
each sub-region. The right inset in panel (a) presents the definition of the nine sub-regions in China. R1 (red): Northeast China; R2 (orange): Inner Mongolia; R3
(purple): Northwest China; R4 (green): North China; R5 (sky blue): Central China; R6 (dark red): Qinghai-Tibetan Plateau (QTP); R7 (dark blue): Southeast China; R8

(pink): South China, and R9 (grey): Southwest China.

temperature (T), precipitation (P), soil moisture (SM), self-calibrating
Palmer Drought Severity Index (scPDSI) (van der Schrier et al., 2013),
burned area (BA) and CO, emissions from fires (FE) (Table 1). Gridded
T and P data (0.5° spatial resolution) was taken from the monthly da-
taset compiled by the CRU of the University of East Anglia, UK. This
CRU datasets span the period 1901-2015 and can be obtained at http://
www.cru.uea.ac.uk/data. As Yao-GPP was driven by another forcing
dataset, which was developed by Data Assimilation and Modeling
Center for Tibetan Multi-spheres, Institute of Tibetan Plateau Research,
Chinese Academy of Sciences (ITPCAS, http://westde.westgis.ac.cn),
the corresponding monthly T and P (Fig. A.1) were used to identify the
driving factors for Yao-GPP. We used the respective SM data from
TRENDY models to diagnose the contribution of SM to their GPP ex-
tremes. As for Yao-GPP, averaged TRENDY SM was used in attribution
analysis. The scPDSI data, which represents an index for comparing the
relative spatio-temporal variability of soil moisture changes over wide

Table 1

regions, was also collected from CRU. The Global Fire Emissions Da-
tabase, Version 4 (GFEDv4) provides global estimates of monthly
burned area and carbon emissions from fire (https://daac.ornl.gov/
VEGETATION/guides/fire_emissions v4.html). The data have a 0.25°
spatial resolution and is available from July 1997 through 2015.

2.3. Preprocessing method

All of the gridded datasets were first resampled to 0.1° x 0.1°
spatial resolution using the nearest neighbor interpolation. The original
GPP and climate variables contain long-term trends and strong seasonal
cycles. For these variables (i.e. T, P, scPDSI, SM and all the GPP data),
the temporal linear trend and mean seasonal cycle were removed in
each grid cell to get the anomalies of the time series data. For the
variables describing episodic events (BA and FE), we divided them by
the total sum of the respective time series in each grid cell. The

Summary of monthly GPP estimates, climate and fire data used in this study. Some of the datasets extend beyond 1982-2015, but the analysis in this paper is confined

to those years.

Data source Variable Resolution  Period Citation

Yao-GPP GPP 0.1° 1982-2015 Yao et al. (2018b)

Historical climate carbon cycle model intercomparison project GPP and soil moisture 0.5%-1° 1982-2015 Le Quéré et al. (2018)
(TRENDYV6)

Institute of Tibetan Plateau Research, Chinese Academy of Sciences Air temperature and precipitation 0.1° 1982-2015 Chen et al. (2011)
(ITPCAS)

Climatic Research Unit (CRU) Air temperature and precipitation 0.5° 1982-2015 Harris et al. (2014)

Climatic Research Unit (CRU) self-calibrating Palmer Drought Severity 0.5° 1982-2015 van der Schrier et al. (2013)

Index
Global Fire Emissions Database, Version 4 (GFEDv4) Burned area and fire emissions 0.25° 1997-2015 Randerson et al. (2017)
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preprocessing produced anomalies in de-trended GPP and climate,
which represents deviations from the mean behavior (Zscheischler
et al., 2013).

2.4. Negative extreme events detection

In scientific literature, extremes are usually defined based on either
the probability of occurrence of given quantities or threshold ex-
ceedances (IPCC, 2012). In order to quantify the GPP extreme events,
we defined extremes as the negative 5th percentile of all the GPP
anomalies (derived from the above-mentioned preprocessing). Con-
tiguous extreme negative GPP anomalies (i.e. voxels) are further
merged into individual extreme events following Zscheischler et al.
(2014a). By “contiguous”, we mean any of the 26 neighbors in three-
dimensional (latitude X longitude X time) space also experiencing an
extreme GPP anomaly. The size of an extreme event is the summation of
GPP anomalies over the spatio-temporal domain of the event cluster.
With this algorithm, each GPP dataset produced 100075000 extreme
events for the whole China during the study period. As we are more
interested in large events and hope to compare between models, we
investigated the 1000 largest negative extreme events in GPP (GPP;qq0)
for the whole China and the 100 largest extreme events for each of the
nine sub-regions.

2.5. Power laws identification

Power laws in frequency or size distributions were previously de-
tected in a variety of natural phenomena (Clauset et al., 2009), such as
global fire size distributions (Hantson et al., 2015) as well as intensities
of earthquakes. In this study, we analyzed the size distribution of GPP
extreme events for different climate drivers and different regions in
China. According to Zscheischler et al. (2013), the size distribution of
extreme events (s.) can also be well approximated by a power law re-
lationship as follows:

e))

where a is a constant parameter of the distribution known as the ex-
ponent or scaling parameter. The exponent a of the size distribution
was diagnosed using the fitting technique of maximum likelihood pre-
sented by Clauset et al. (2009) (see http://tuvalu.santafe.edu/
~ aaronc/powerlaws/). This algorithm has been widely applied in di-
agnosing power law distributions in empirical data (Scannell et al.,
2016). The a-value from the power-law function provides information
on asymmetry in the size distribution of extreme events, indicating the
relative number of extreme events of different sizes. An increase in a
suggests an increasing proportion of small extreme events relative to
large ones. It can also be used as an index to investigate the different
patterns in extreme events for different drivers and regions. Clauset’s
method provides a goodness-of-fit parameter p-value, where p-value =
0.1 indicates a good fit.

p(sr) ~ S;a

2.6. Auribution of negative extreme events

In order to identify possible drivers of individual negative extreme
events in GPP, we adopted the attribution method from Zscheischler
et al. (2013). For each event, we calculate the median of driver variable
anomalies over the spatio-temporal domain of the event, which directly
represents the anomaly intensity of the corresponding driver during the
event. Then, we let the event shift in each time step and obtain a series
of medians (M;) as a function of time. As there are possibly lagged re-
sponses of ecosystems to all these drivers (Reichstein et al., 2013), we
consider time lags of a maximum of three months. Then, if any of the
medians within three months preceding the events is less (higher) than
the 10th (90th) percentile of M, the driver (e.g. a cold spell or heat
wave) is selected as influential for that event. An GPP extreme event is
attributed to fire if either BA or CO, emissions from fires during the
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event is higher than 90th percentile. A single event is possible to be
explained by multiple drivers. The attribution rate is defined as the
proportion of studied events, which are attributed to any of the nine
drivers (i.e. for all drivers) or a typical driver (e.g. for cold spell).

2.7. GPP sensitivity during the extreme events

We explored GPP sensitivity of different models to precipitation or
temperature anomalies (i.e. heat wave, cold spell, drought and wet).
For each model, the single driver-induced GPP extreme events were
selected in order to extract the impact of this driver from potential
additive effects. Then, we divided the mean GPP anomalies by mean
precipitation or temperature anomalies over the voxels during the se-
lected extreme events. For example, the GPP sensitivity to drought is
expressed as:

IGPE,, _p|

Sens_p, = —
1Fan.—pl

(2)

where GPE, _p is averaged GPP anomalies over all voxels from ex-
clusively drought (i.e. low P) induced extreme events among the stu-
died 1000 events; B, _p is averaged precipitation anomalies over the
same voxels. Thus, Sens_pis the sensitivity of modelled GPP to the
driver, that is GPP deficit for each precipitation anomaly during ex-
treme events.

3. Results
3.1. Spatio-temporal patterns of extreme events

Most (95%) of the GPP1gp had a duration of 1-7 months (Fig. A.2).
To map spatial distribution of GPP anomalies, the GPP, o0 over China
were aggregated in time. In details, for a specific location, all anomalies
in GPP classed as extreme events were summed and then divided by 34
years. TRENDY multi-model median showed hotspots of extreme events
in North China where the GPP extreme anomalies could reach up to -70
gCm 2year ! (Fig. 1a). In addition, regional medians of North China,
Inner Mongolia and Central China had prominent GPP extreme
anomalies of -53, -31 and -30 gC m ~“year !, respectively. In contrast,
both Northwest China and Qinghai-Tibetan Plateau (QTP) were less
impacted by extreme events with regional median GPP anomalies of
approximately -10 gC m ™~ *year '

According to the Yao-GPP data-driven model, the anomalies became
larger in magnitude from southeast to northwest (Fig. 1b). The smallest
GPP negative anomalies of less than -10 gC m 2 year ! were diagnosed
in Southwest China and Sichuan Basin where there are relatively lower
altitudes. The largest negative GPP extreme events were found in Inner
Mongolia (-46 gC m ™~ 2?year '), Northeast China (-42 gC m ™~ %year ')
and North China (-28 gC m~ *year ') in Yao-GPP. The prominent ex-
treme events were generally diagnosed in mountainous regions such as
Qinling Mountains in North China around Sichuan Basin, and Greater
Khingan Mountains and Changbai Mountains in Northeast China. Al-
though these regions had less GPP than South China, much more sig-
nificant GPP deficits were detected. Hot spots of extreme events were
detected in Northeast China for Yao-GPP but in North China for the
process-based ecosystem models. Compared with Yao-GPP, the process-
based ecosystem models overestimate the magnitude of extreme events
in Northeast China and underestimate in North China (Fig. 1d). Dis-
agreement among the process-based ecosystem models was mainly
found in North China and South China (Fig. 1c).

The GPPigoo were aggregated in space to produce the monthly
evolution of GPP anomalies in China, which was further aggregated to
show seasonal differences (Fig. 2). The median over the TRENDY
models indicated that extreme events in summer produced the most
GPP negative anomalies by -30.4 TgC month !, which accounted for
45% anomalies of the year, followed by spring, autumn and winter.
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Boxplot exhibited that LPX-Bern was an outlier in summer and autumn
while VISIT was an outlier in winter over the 12 process-based models
because of their overestimates of GPP deficits. The GPP deficits in Yao-
GPP were smaller than the TRENDY median in spring, autumn and
winter but slightly larger in summer, which consequently made the
summer accounting for 68% of the mean annual anomalies in Yao-GPP.
Among the 12 TRENDY models, LPX-Bern produced the largest extreme
events by -475.2 TgC year ' while DLEM produced the smallest ex-
treme events by -98.4 TgC year ! for the GPPygqgo in China (Fig. A.3).
The TRENDY median and Yao-GPP estimated values of -207.6 TgC
year ! and -151.2 TgC year ' for the sum of the GPPoqo, accounting
for 2.8% and 2.3% of mean annual GPP, respectively.

3.2. Attribution of negative GPP extremes in China and the nine sub-regions

The eight climate indices and fire variables were regarded as po-
tential drivers of the GPPyqqp in China. As for single climate drivers, we
investigated both positive and negative anomalies in T, P, SM and
scPDSI (Fig. 3a). According to the TRENDY multi-model median, both
cold spell and heat wave were influential for “26% of the extreme
events. Meteorological droughts (i.e. low P) were associated with "58%
of the extreme events, making it the major driver among the nine in-
dices. In addition, extreme events were more related to droughts than
floods as low P, low scPDSI and low SM accounted for much more
events than the corresponding positive values of those indices (i.e. high
P, high scPDSI and high SM). But in the arguably more realistic Yao-
GPP dataset, cold spell explained 36% of the extreme events, which was
much larger than heat wave (18%). Drought indices were associated
with less extreme negative events than wet indices, which was different
from the TRENDY model results. The 10% significance threshold de-
notes that GPPqqo in Yao-GPP were nearly independent of SM, scPDSI
and fire indices. As GPP extreme events are mainly driven by T and P
anomalies in China at national scale, we explored the possible com-
pound T and P effects (Fig. 3b). The GPP, o from 11 out of the 13 GPP
datasets were mostly associated with compound hot and drought con-
ditions (Fig. A.4). Compound cold and wet events were also significant
in both types of GPP datasets.

China has different climate zones so that the response of GPP ex-
treme events to driver indices are expected to be different across those
zones. As shown in Fig. 4, the TRENDY median indicated that extreme
events in most sub-regions were mostly associated with low P, espe-
cially for North China (66%) and Inner Mongolia (62%), but not in
South China (37%). In contrast, temperature extremes (i.e. cold spell or
heat wave) explained more extreme events in southern China
(60%-70%) than in northern China (30%-50%). For comparison with
the different response to low P, the impacts of soil drought (i.e. low SM
and low scPDSI) were rather stable and explained 35%-40% and
25%-30% among all sub-regions in China. In particular, low SM was
associated with 42% of extreme events, followed by low P (38%) and
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significance threshold, below which the driver and GPP variation are expected
to be independent. Notice that the threshold in panel (b) is determined by the
expected attribution rate assuming the variables are independent. The nT and
nP in panel (b) represent normal T (i.e. not extreme T condition) and normal P,
respectively. The attribution of the GPPy g in China for each model is shown in
Fig. A.4.

cold spell (34%) in Southeast China. This suggested a decoupling be-
tween P and SM in controlling GPP extremes, with P anomalies com-
bined with T anomalies enhancing evapotranspiration and decreasing
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Fig. 4. Attributions rate (%) of GPP extreme events to climate drivers and fire in the nine sub-regions of China. The largest 100 negative extreme events (GPPy40)
were used for each sub-region. Boxplots result from the TRENDY models and red diamonds are for Yao-GPP. The horizontal dashed lines denote the significance
threshold (10%), below which the driver and GPP variation are expected to be independent.

SM in southern China to cause GPP extremes being more influenced by
SM than by just P. The Yao-GPP also presented the different vulner-
ability of extreme events in GPP to temperature extremes between
northern and southern China. Compared with Yao-GPP, the TRENDY
models largely underestimated attribution rate for high P in most sub-
regions but overestimated attribution rate for low P in northern China.
For the period of 1997-2015, both Yao-GPP and TRENDY median in-
dicated that fire was linked to 20% of large events in South China and
Southeast China. In terms of compound T and P effects (Fig. A.5), we
found the GPP;oo from TRENDY were mostly associated with con-
current heat and drought events in most sub-regions of China, except in
QTP. But in Yao-GPP, the result is diverse. For example, compound heat
and drought events are the most important drivers in Inner Mongolia
while Southwest China is more affected by concurrent cold and wet
events.

3.3. Size distribution of GPP extreme events

In order to understand the characteristic of extreme events, it is
crucial to know the size distribution of extreme events. The sizes of the
GPP1qqo from the 13 GPP datasets were well fitted by power law dis-
tributions (Fig. 5). The power law exponent (a-value) agreed well
among the 13 datasets, ranging from 1.57 to 1.76, with the highest
value in Yao-GPP and the lowest value in ORCHIDEE-MICT. The
median a-value (a,,-value) over the TRENDY models was 1.68, which is
slightly smaller than a-value in Yao-GPP (ay-value = 1.76).

It was found that different climate regions and vegetation types
resulted in different a-value of fire size distribution (Hantson et al.,
2015). Therefore, we supposed that size distribution of extreme events
could have variations for different drivers and in sub-regions. As for the
TRENDY models, the a,, had substantial fluctuation between 1.52-2.18
for different drivers (Fig. 6). The smallest a,,-value was observed for
low SM (1.53, the range of 1.47-1.76 in TRENDY models) and low
scPDSI (1.52, the range of 1.40-1.68 in TRENDY models) related
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extreme events and the largest a,,-value (2.18, the range of 2.06-3.05 in
TRENDY models) was diagnosed for fire related extreme events (Table
A.2). It means that low SM tended to result in large GPP negative
anomalies respective to small events while fire was more associated
with small sized extreme events in China. Furthermore, all a,,-values for
drought induced extreme events, including meteorological drought (i.e.
low P) and soil drought (i.e. low SM and low scPDSI), were significantly
smaller than wet related events. Similarly, the Yao-GPP also showed
that low SM (2.09) and low scPDSI (2.18) were correspondingly smaller
than high SM (2.18) and high scPDSI (2.22) related events, suggesting
more vulnerability of GPP to drought events than extreme wet events.
Compared with ay-values, a,,-values were overall underestimated. Si-
milarly, the a-values for the GPP;, for each sub-region in China were
also diagnosed (Fig. A.6). Clear spatial decreasing gradients in a,,-va-
lues were found from the northwest to the southeast, indicating rela-
tively more large-events were diagnosed in Southeast China (1.65) and
North China (1.65).

3.4. GPP sensitivity to temperature and precipitation anomalies

The size of the extreme events is also determined by models’ sen-
sitivity. Thus, we explored the GPP sensitivities of the models to eval-
uate the model performance during extreme events (Fig. 7). The GPP
sensitivities of Yao-GPP to heat, cold, wet and drought were 118 gC
m Zmonth™°C",29¢gCm ?month?°C*,1.8gCm *mm™ and 4.1 gC
m~ 2mm™, respectively. Compared with Yao-GPP, the TRENDY median
underestimated the sensitivities to heat (-18%) and drought (-42%) but
overestimated the sensitivities to cold (37%) and wet (16%). Never-
theless, both TRENDY median and Yao-GPP demonstrated significantly
higher GPP sensitivities to heat and drought than to cold and wet (i.e.
heat/cold > 1, drought/wet > 1), highlighting the negative impacts of
heat and drought events.

The GPP sensitivity to temperature or precipitation anomalies (i.e.
heat, cold, wet and drought) varies significantly across the 13 models.
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For example, ORCHIDEE-MICT showed the same GPP sensitivities to
heat, cold as well as heat/cold ratio as Yao-GPP, but presented less
response to precipitation extremes. In fact, all the process-based models
except DLEM showed less sensitive to drought than Yao-GPP. TRENDY
models had remarkable disagreement in heat/cold sensitivity ratio but
showed better agreement in drought/wet sensitivity ratio. Nevertheless,
12 out of the 13 models were more sensitive to heat than to cold events
and 10 out of the 13 models were more sensitive to drought than to wet
events.

4, Discussion

The characterization of extreme events in vegetation productivity is
critical for understanding its role in regulating regional carbon cycles
and its climatic drivers. Our study presents the first attempt to analyze
spatio-temporally contiguous GPP extreme events at the national scale
and sub-regions in China. Spatial distribution of negative extreme

0.1 indicates a good fit.

events from Yao-GPP exhibited hotspots in Northeast China and Qinling
Mountains where high interannual variability was also diagnosed in
Yao et al. (2018b). Xu et al. (2012) also found that the area experien-
cing negative vegetation growth anomalies increased in northern China
but decreased in southern China during 2000s, although the whole
China experienced an increasing trend in heat waves and drought
events. A strong negative NPP trend was diagnosed in Northeast China
(Sitch et al., 2015), further emphasizing more concerns should be given
to northern China. Based on four global GPP datasets, Zscheischler et al.
(2014a) demonstrated that a few extreme events dominated global in-
terannual variability in GPP. It could explain the similar spatial dis-
tribution between GPP negative extremes and interannual variability of
GPP in most regions in China. This result highlights the importance of
extreme events in regulating regional carbon cycles. In general, the
effects of extreme events decreased annual GPP by 2.8% and 2.3% in
TRENDY model and Yao-GPP, respectively. TRENDY median and Yao-
GPP showed that extreme events in summer contributed to 45% and

Fig. 6. Probability distributions of sizes of extreme events

100 =
: cold spell

107

102

caused by the nine drivers, respectively. The color legend to
distinguish GPP datasets is the same as in Fig. 2. Letters ay and
a,, represent exponent for Yao-GPP and the median of the
fitted exponents over the TRENDY models, respectively. The
sample size, power law fitting and goodness-of-fit parameters
are presented in Table A.2.
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68% of GPP negative anomalies, respectively, followed by spring, au-
tumn and winter. This may be because summer usually corresponds to
the highest GPP, and thus the highest absolute GPP anomalies are likely
to occur when extreme events happen in summertime. For instance, in
the summer of 2013, the strongest drought and heat wave on record for
the past 113 years resulted in a 39-53% reduction of the annual net
carbon sink of China’s terrestrial ecosystems (Yuan et al., 2016).

The attribution analyses implied that low P explained 58% and 38%
of the GPP; g0 in TRENDY models and Yao-GPP, respectively. In global
drought-affected areas, the reduced carbon uptake could explain larger
than 70% of the interannual variation in GPP (Du et al., 2018), also
emphasizing the overall significantly negative impacts of meteor-
ological droughts on vegetation productivity. Nevertheless, the vul-
nerability of GPP to these nine drivers showed marked difference be-
tween northern and southern China. A few mechanisms may explain the
phenomenon that droughts were associated with much more extreme
events in northern China ("60%) than in southern China ("40%) in
TRENDY models. Firstly, the different climate is partly responsible for
this different response that northern China experiences annual pre-
cipitation with less than 800 mm year ' while southern China is
moister (Fig. A.1). In addition, consecutive dry days averaged over
1961-2015 for northern China is larger than 50 days year ', which is
much higher than southern China (Shi et al., 2018). Secondly, southern
China has much higher tree density (Crowther et al., 2015), while most
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regions of northern China (e.g. Inner Mongolia and Northwest China)
are mainly dominated by grasslands (Yao et al., 2018b). Grasslands are
more susceptible to droughts in contrast to forests (Reichstein et al.,
2013), probably because of shallower root system in grasslands
(Teuling et al., 2010). However, compared with Yao-GPP, TRENDY
models seem to overestimate the number of drought associated events
(i.e. attribution rate; Fig. 3) but underestimate the GPP sensitivity to
drought (Fig. 7). The over-response of GPP and leaf area index in Earth
system models to droughts has previously been suggested by Huang
et al. (2016). Both types of GPP datasets demonstrated that vegetation
in South China is mostly vulnerable to temperature extremes, in par-
ticular cold spells. This result is consistent with results from Xu et al.
(2016) and Yao et al. (2018b) that the sensitivity to temperature
variability is higher in southern China, especially for forests. Compared
with Yao-GPP, TRENDY models systematically underestimated cold
spell-induced events and overestimated heat wave-induced events in
southern China. A better representation of photosynthetic temperature
acclimation in process-based models is critical to reduce the uncertainty
in modeling the carbon cycle-climate feedback (Lombardozzi et al.,
2015). Zscheischler et al. (2014d) highlighted the strong compound hot
and dry events during 21 st century based on CMIP5 future projections.
We also found the significant impacts of concurrent hot and dry events
in most sub-regions of China but the GPP,q00 were mostly associated
with P anomalies during normal T for China as a whole.
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The power law exponent of size distributions of extreme events in
China is 1.68 in TRENDY median and 1.76 in Yao-GPP, which are
consistent with that in Asia (1.61) and different continental range
(1.55-1.75) as extracted by Zscheischler et al. (2014c). However, the
exponent varied significantly for different drivers with the range of
1.52-2.18 for TRENDY models and 1.71-2.23 in Yao-GPP (Fig. 6). In
addition, the power law exponent for drought-induced extreme events
were significantly smaller than for wet-related events. It means drought
events are more likely to result in relatively large events while wet
events provoke less GPP response. It was also supported by the plot
between number of studied largest extreme events and attribution rate
for P, SM and scPDSI indices (Fig. 8). When we increased the number of
studied events (i.e. when looking into the smaller events), the attribu-
tion rate shows significant decreases for all drought indices but increase
for all wet indices. A case study in Inner Mongolia grassland ecosystems
demonstrated that both aboveground net primary productivity and CO»
fluxes in the semiarid steppe were very stable in the face of extreme
large precipitation events, regardless of the timing of the events (Hao
et al.,, 2017). In contrast, multiyear precipitation reduction over
northern China significantly decreased water availability, indicated by
the Palmer Drought Severity Index and soil moisture measurements,
and further resulted in strong decreases in carbon uptake (Yuan et al.,
2014). Therefore, the lower sensitivity of vegetation to wet events than
to droughts in our results (Fig. 7) could explain the more decisive role
of droughts for negative GPP events. Based on multiple terrestrial
models, Zscheischler et al. (2014b) also suggested higher drought im-
pacts on GPP anomalies, partially during compound hot and dry con-
ditions. The a,,-value for fire-induced extreme events is much lower
than for climate drivers, implying that GPP in China is less vulnerable
to fire than to climate extremes.

The on-going global warming increased extreme climate events are
an increasing threat to vegetation productivity in the future (Frank
et al., 2015). It has been suggested that warm extremes are more
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frequent and more persistent in a +2 °C global warming scenario based
on 29 climate models, especially in southern China (Sui et al., 2018).
Accordingly, we could predict that southern China has to face more
heat wave-induced GPP negative anomalies as it is highly vulnerable to
warm extremes. The effect of cold spells in southern China is more
noticeable but received less attentions than droughts. Liu et al. (2018)
found that the extension of the growing season in the Northern Hemi-
sphere may actually make plants in fact more vulnerable to frost days,
which further highlights the important role of cold spell. In addition,
increases in the total amount and frequency of wet extremes are pro-
jected over most regions of China, particularly in QTP (Niu et al., 2017;
Sui et al., 2018), which we expect have fewer negative impacts on
vegetation productivity of grasslands there. An experimental study
showed that grassland plant diversity increases the resistance of eco-
system productivity to climate extremes (Isbell et al., 2015), which
provides a potential strategy to face future climate extremes for a large
area of grasslands in northern China. Both TRENDY models and Yao-
GPP showed that less GPP deficits were observed in Sichuan basin
(Fig. 1), where croplands are the dominant vegetation type, possibly
implying the importance of management for mitigating damage from
climate extremes. Nevertheless, we still could not rule out the damage
of climate extremes on croplands as evidence also showed that droughts
and heat wave episodes significantly reduced global and national crop
production with a reduction in both harvested area and yields (Lesk
et al., 2016; Piao et al., 2010). For instance, Lobell et al. (2012) argued
that warming presented an even greater challenge to wheat than im-
plied by previous modeling studies.

However, there are still some limitations in this study. Firstly, we
have only considered time lags of a maximum of three months. There is
evidence that extreme events can affect the carbon cycle concurrently
and produce lagged impacts at longer time scales (e.g. through vege-
tation mortality) (Arnone et al., 2008; Schwalm et al., 2017). This
prolonged response of vegetation GPP could be discovered in case
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studies but is rather difficult to be detected by our approach. Secondly,
there are "10% of the GPP; g that did not correspond to any of the nine
studied factors. It is possible that extreme events may result from
compound events of less extreme conditions (e.g. T and P anomalies
within 10th-90th percentile). These confounding factors may have an
impact on the attribution analysis, especially for small events. That may
be one of the reasons why there is a slight decrease in overall attribu-
tion rate from 95% for 100 events to 92% for 1000 events in TRENDY
and from 93% to 87% in Yao-GPP (Fig. 8). To perform this 3-D algo-
rithm and to compare among models, the gridded data were inter-
polated to 0.1° x 0.1° spatial resolution. This processing may introduce
some uncertainties at pixel scale. Finally, many factors also play im-
portant roles in regulating the vulnerability of vegetation GPP to ex-
treme events, for instance different ecosystems (von Buttlar et al., 2018;
Xu et al., 2016), management practices (He et al., 2015), and soil
conditions (Nepstad et al., 2007). Thus, future studies considering more
drivers and regional conditions are necessary to better understand the
vulnerability and sensitivity of regional vegetation GPP to extreme
events. From this, detailed management practice is possible to be car-
ried out to mitigate the damage from future extreme events.

5. Conclusion

In this study, we investigated GPP extreme events in China and sub-
regions based on a spatio-temporally contiguous approach using the 5th
percentile definition with GPP data from 12 process-based ecosystem
models and one observation-based model. Both types of models ex-
hibited that vegetation in Northeast China and North China were most
vulnerable to extreme events, especially in mountainous regions. Over
the past three decades, 45% and 68% of GPP deficits in China occurred
in summer in TRENDY models and Yao-GPP, respectively. Low pre-
cipitation was associated with most extreme events among the nine
studied climatic drivers in China in TRENDY models. Vegetation in
southern China is more vulnerable to temperature extremes (i.e. cold
spell and heat wave) than in northern China. Although cold spells have
received less attention than drought in previous studies, our results
emphasize their potential negative impact on GPP. Both power law
distribution analyses and sensitivity analysis highlight the impacts of
drought on large GPP negative anomalies. Our results implied that
policymakers could pay more attention to GPP deficits in northern
China under drought events and in southern China under temperature
extremes in order to mitigate the potential impacts of future climate
extremes.
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