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Abstract
Runoff in the United States is changing, and this study finds that the measured change is dependent
on the geographic region and varies seasonally. Specifically, observed annual total runoff had an
insignificant increasing trend in the US between 1950 and 2010, but this insignificance was due to
regional heterogeneity with both significant and insignificant increases in the eastern, northern, and
southern US, and a greater significant decrease in the western US. Trends for seasonal mean runoff
also differed across regions. By region, the season with the largest observed trend was autumn for the
east (positive), spring for the north (positive), winter for the south (positive), winter for the west
(negative), and autumn for the US as a whole (positive). Based on the detection and attribution
analysis using gridded WaterWatch runoff observations along with semi-factorial land surface model
simulations from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project
(MsTMIP), we found that while the roles of CO2 concentration, nitrogen deposition, and land use and
land cover were inconsistent regionally and seasonally, the effect of climatic variations was detected
for all regions and seasons, and the change in runoff could be attributed to climate change in summer
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and autumn in the south and in autumn in the west. We also found that the climate-only and
historical transient simulations consistently underestimated the runoff trends, possibly due to
precipitation bias in the MsTMIP driver or within the models themselves.

1. Introduction

Water is one of the most essential resources for the
terrestrial biosphere as well as for human society;
thus, it is important to detect and understand the
potential drivers of changes in the hydrological cycle
(Lettenmaier et al 1993, Barnett et al 2008, Gedney
et al 2014, Koster et al 2017). Other than supplying
drinking water, many facets of society and various
ecosystems rely on freshwater resources and there-
fore are impacted by hydrological changes. Among
these are irrigation, building and infrastructure plan-
ning, power generation, recreation, and plant/animal
life cycles. Changes in the hydrological cycle can affect
soil moisture that is crucial for agricultural activi-
ties. For regions experiencing drying, farmers need
to switch to more drought-resistant crops or increase
groundwater usage that may eventually lead to imbal-
ance between groundwater withdrawal and recharge
(Scanlon et al 2012). For regions getting wetter, more
extreme events combined with land use and land cover
change (LULCC) may lead to elevated flood likelihood
and expanded flood plains (Collins 2008, Singh et al
2014). For example, without adaptive actions being
taken, Metropolitan Boston is estimated to incur $26
billion in total losses due to climate change driven river
flooding by 2100 (Romero-Lankao et al 2014, Kirshen
et al 2008, Nicholls et al 2008, Richardson 2010, Weiss
et al 2011). Using the Special Report on Emissions
Scenarios (SRES) A2 emissions scenarios, Westerling
et al (2011) estimated that by 2085 there will be sig-
nificant increases in wildfire occurrence and burned
area in California, due to effects on evapotranspiration
through increased temperatures and reduced precip-
itation. According to Barnett et al (2005), by 2050
with projected climate change, the Columbia River sys-
tem will not be able to sustain both water releases for
summer and autumn hydroelectric power and spring
and summer releases for salmon runs unless there is a
10%–20% reduction of hydropower generation. Com-
pared to 2010, a drought in 2011 led to a 30% decrease
in monitored reservoir storage for power plant cool-
ing in Texas (Scanlon et al 2013). At the most basic
level, changes in a region’s hydrological cycle affect its
natural ecosystems. This includes species of freshwa-
ter fish which need specific river flow conditions for
breeding (Wenger et al 2010).

A decrease in water availability can also lead to
plant mortality (Romero-Lankao et al 2014, Anderegg
et al 2012). Inversely, plants affect runoff through
canopy interception, evaporation, and transpiration
(Gerten et al 2004, Betts et al 2007, Piao et al 2007,

Mao et al 2015), and rooting strategy (Nepstad et al
1994, Fan et al 2017). Through physiological effects,
increasing CO2 may lead to reduced stomatal conduc-
tance or increased photosynthesis with either positive
or negative impacts on plant transpiration (Betts
et al 2007, Shi et al 2013, Mao et al 2015). Increasing
nitrogen deposition can lead to more nitrogen fertiliza-
tion causing increased vegetation growth and altered
hydrologic dynamics in regions where nitrogen is lim-
iting (Thornton et al 2007). LULCC directly affect the
potential for evapotranspiration (Shi et al 2011). For
example, deforestation leads to decreased evapotran-
spiration which then leads to increased runoff, whereas
decreased runoff is possible after reforestation (Gerten
et al 2004, Bosch and Hewlett 1982, Piao et al 2007).

Previous studies have found that key hydro-
logical variables (e.g. precipitation, streamflow, and
snowpack) are changing in the US. Over the entire
contiguous US (CONUS) for the period 1950–2000,
Groisman et al (2004) found increases in precipitation,
temperature, and streamflow. Taking a more regional
focus, they found an increase in precipitation and
streamflow in the eastern US with an increase in dry-
ness in the west. Petersen et al (2012) determined that
the spatial variability in runoff seasonality in the east-
ern US depends on covariation between moisture and
energy cycles, whereas the west shows a negative corre-
lation leading to dependence on basin aridity and the
seasonality of precipitation. Focusing on the western
US, detection and attribution (D&A) studies attribute
declining snowpack and streamflow timing changes
to human effects, especially the human-induced ele-
vation of CO2 concentration (Barnett et al 2008,
Pierce et al 2008, Hidalgo et al 2009). The limitation
of Groisman et al (2004), Petersen et al (2012), and
Alkama et al (2013), however, was that causality of
changes in runoff could not be addressed due to solely
using observational data or focusing on the detection
issue. The work presented in this paper takes a step
forward by addressing the causality using a gridded
observational dataset and an ensemble of offline land
surface models (LSMs) driven by the same observed
environmental conditions in order to perform more
robust D&A analysis.

We focus on the change of runoff in the US since it
provides a ‘spatial and temporal integrator of changes
in the water cycle’ (Gedney et al 2014). We examine if
runoff is changing (detection), and also seek to under-
stand how and why changes might occur (attribution).
River runoff canbe thought of as the difference between
long-term precipitation and evapotranspiration with-
out the effects of storage changes (Gedney et al 2014).
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Thus, anymechanisms that affect precipitationor evap-
otranspiration affect river runoff. Model simulations
are used to estimate the responses to individual exter-
nal forcings (Gedney et al 2014). For D&A analysis,
the corresponding response patterns are then used
to estimate the amplitude of the change induced by
each forcing in the observations. The environmen-
tal forcings considered here are climate change, CO2
concentration, nitrogen deposition, and LULCC. A
goal of this study is to determine if climate alone is
driving changes in US runoff or if other major anthro-
pogenic factors also have a significant impact for certain
regions or seasons.

2. Data and methodology

2.1. Data and data processing
We used observed 1950–2010 monthly runoff from
the US Geological Survey (USGS) WaterWatch runoff
dataset (Brakebill et al 2011) to investigate the his-
torical trends of US runoff. The period of study
ends in 2010 due to the temporal coverage of the
Multi-scale Synthesis and Terrestrial Model Intercom-
parisonProject (MsTMIP) model simulations. Derived
from the comprehensive USGS National Water Infor-
mationSystemgaugeobservations,WaterWatchrunoff
is the assimilated time series of flow per unit of area
calculated for each 8 digit hydrologic unit (HUC8)
in the CONUS. For each HUC8, multiple National
Water Information System (NWIS) gauge stations
located within the HUC8 or downstream were used
to estimate the runoff generated locally at each HUC8,
with gauge weighting factors determined by joint con-
tributing drainage areas (both gauge-to-HUC8 and
HUC8-to-gauge). This approach effectively assimilates
streamflow observations from multiple gauge stations
as a consistent areal HUC8 runoff measurement with
a unit similar to that for precipitation (depth/time).
WaterWatch runoff has been used and discussed in
several recent hydroclimate studies, including Beigi
and Tsai (2014), Oubeidillah et al (2014), Schwalm
(2015), and Naz et al (2016). Note that since Water-
Watch does not explicitly exclude gauges that were
under flow regulation, the runoff estimates in HUC8s
with significant historical human impairments could
be biased. To verify WaterWatch’s applicability for
this study, we compared its values with another com-
monly used data set (Dai et al 2009). When aggregating
WaterWatch runoff to the same watersheds used by
Dai et al (2009), a good agreement between both data
sets was found (figure S1).

Simulated runoff from all-factor and single-factor
simulations from the North American Carbon Pro-
gram MsTMIP (Huntzinger et al 2013) was compared
to WaterWatch runoff. For the all-factor simulation, all
environmental drivers were allowed to vary through-
out the fully transient simulation (named ALL).
In the climate-only simulation, the climatic factors

(e.g. temperature, precipitation, and shortwave radi-
ation) are transient while CO2 concentration, nitrogen
deposition, and land use and land cover are held con-
stant at their preindustrial values (named CLMT). The
third simulation uses transient climate and land use
and land cover, while the fourth simulation allows
transient climate, land use and land cover change and
CO2 concentration. We use the difference between
the third simulation and CLMT to isolate the effect
of land use and land cover change (named LULCC),
and use the difference between the forth and the third
simulations to achieve the effect of atmospheric CO2
concentration (named CO2). To isolate the effect of
nitrogen deposition, we use the difference of ALL and
the fourth simulation (named NDEP). In this paper,
the term ‘environmental forcings’ is used because the
radiative and physiological effects of CO2 concentra-
tion on climate change cannot be separated by using
offline LSM simulations and are included in the tran-
sient climate drivers (Gedney et al 2014, Mao et al
2016, Zhu et al 2016). CO2, NDEP, and LULCC thus
represent the direct effects of CO2 physiology, nitro-
gen deposition, and land use and land cover change,
respectively. More details of the experimental design
used within the MsTMIP modeling framework can be
found in Huntzinger et al (2013) and Mao et al (2015).
All MsTMIP models use the same spatial resolution
(0.5◦ × 0.5◦), are forced with CRU-NCEP reanalysis
meteorology, and use the same anthropogenic forc-
ings (Wei et al 2014). The specific meteorological
variables used by each model are listed in supple-
mentary table S1 available at stacks.iop.org/ERL/13/
054023/mmedia. Land use information was provided,
but each modeling group customized the processing of
this information to fit its unique definition of plant
functional types. Ensemble sizes and specific MsT-
MIP models employed are listed in table 1. Analysis
was completed using the multi-model ensemble means
(MME), but some of the results for individual models
are included in the supplementary material.

The HUC8-based WaterWatch runoff was
remapped to the 0.5◦ MsTMIP grid for direct com-
parison. For each grid cell, the overlapping HUC8s
and their overlapped areas were first identified using
geographic information system (GIS). The overlapped
areas were then used as weighting factors to aver-
age monthly runoff time series. The metrics used for
the detection and attribution are annual and sea-
sonal runoff (winter–December to February, DJF;
spring–March toMay,MAM; summer–June toAugust,
JJA; autumn–September to November, SON). These
metrics were examined at three different spatial res-
olutions: (1) individual grid cells, (2) US CONUS,
and (3) 4 US regions (north, east, south, and west)
used by Naz et al (2016) based on grouped 2 digit
USGS hydrologic units (HUC2). The variability within
the regional values forWaterWatch and ALLwere com-
pared in order to test the usability of the MsTMIP
model ensemble. The model ensemble mean for ALL
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Table 1. Ensembles of MsTMIP simulations used.

Experiment Forcing Ensemble size MsTMIP models used

ALL Historical Transient 6 CLM4, CLM4VIC, ISAM, LPJ-wsl, VISIT, TEM6
CLMT Climate Change 6 CLM4, CLM4VIC, ISAM, LPJ-wsl, VISIT, TEM6
CO2 CO2 Concentration 6 CLM4, CLM4VIC, ISAM, LPJ-wsl, VISIT, TEM6
NDEP Nitrogen Deposition Rate 3 CLM4, CLM4VIC, TEM6
LULCC Land Use and Land Cover Change 5 CLM4, CLM4VIC, ISAM, LPJ-wsl, TEM6

for each region and season was able to reproduce the
variability within the observations relatively well with
the minimum and maximum R-squared value being
0.739 and 0.921, respectively. All of the R-squared
values are reported in table S2.

2.2. Trend and D&A technique
Spatial patterns of the trend were estimated using the
Theil-Sen estimator, and significance at the 𝛼 = 0.05
level was determined using Mann-Kendall’s nonpara-
metric test for a monotonic trend (Kendall 1975, Mann
1945, Sen 1968, Theil 1950). For the spatial trends, the
dominant forcing for each grid cell was found. In this
case, dominant forcing refers to the forcing trend that
has the same sign as the trend from the ALL forcing
and largest magnitude.

To investigate the contribution of various forc-
ings to the observed trends we adapted the standard
D&A methodology to the study of land surface only
(instead of the entire climate system, classically).
Within this framework, atmospheric boundary con-
ditions are treated as one single forcing called ‘climate’.
This forcingcontainsbothnatural internal climate vari-
ability and climate change. The regression equation
used here is of the form

𝑦 = 𝛽CLMT𝑥CLMT + 𝛽CO2𝑥CO2+
𝛽NDEP𝑥NDEP + 𝛽LULCC𝑥LULCC + 𝜀,

(1)

where y are the WaterWatch observations,𝛽𝑖 is the scal-
ing factor for forcing i, x𝑖 are the model ensemble mean
response to forcing i, and 𝜀 are the residuals. Data were
centered by their means before performing the regres-
sion analysis. In D&A analysis, a forcing with a positive
scaling factor and corresponding confidence interval
which does not encompass zero is detected, meaning
that the response to the considered forcing is signifi-
cantly found in the observations. If a forcing is detected,
it canbe attributed if the scaling factor confidence inter-
val includes one, meaning that the response found in
the observations is consistent with the simulated one
(Bindoff et al 2013).

In addition to adapting D&A to solely investigate
the land surface, another difference comes from the
treatment of internal variability in observations (y).
The MsTMIP models, and uncoupled LSMs in gen-
eral, do not offer preindustrial control simulations
which D&A methodology relies heavily upon for esti-
mating natural internal variability. This work uses the
same method as in Gedney et al (2014). They used
ordinary least squares (OLS) regression for estimating
the scaling factors and then checked that the residuals

were independent (not autocorrelated). The residuals
𝜀 therefore represent a model error rather than any
kind of internal variability (at least in current LSMs,
there is no internal variability in the land surface given
atmospheric forcings). Residuals were defined to be
significantly autocorrelated if the lag-one sample auto-
correlation was outside the bounds of white noise or if
multiple lags were outside the bounds.

3. Results

3.1. Trends
The simulated sign of runoff trends from ALL rep-
resents the WaterWatch spatial pattern of the trends
relatively well, although the magnitudes are not as
strong (figures 1(a)−(b)). Other than small differences
in magnitude, the trends from ALL and CLMT forcings
have a similar spatial pattern including the magnitude.
It thus can be hypothesized that the CLMT forcing may
be the leadingdriverof theobservational runoff pattern.
However, it is difficult to make any hypotheses about
the CO2, NDEP, and LULCC forcings from the spatial
trend plots (figures 1(d)−(f)). Most of the trends for
CO2 and NDEP are significant, but this is due to the low
variability found in CO2 and NDEP times series, where
the variability related to the CLMT forcing is removed.
It should be noted that these trends have smaller mag-
nitudes (e.g. in comparison to the observations, ALL,
and CLMT), but the variability is even smaller, which
makes the signal-to-noise ratio relatively large (leading
to statistical significance). The majority of the trend val-
ues for CO2 and NDEP remain significant even when
using 5 year means which were pre-whitened using
the method from Zhang et al (2000) (figure S2). The
dominant forcing plot also shows the CLMT forcing
agrees with the ALL forcing over a large area within
the US (figure 1(g)). When the CLMT forcing is not
considered, CO2 shows a prominence in the eastern
region of the US, where the densely vegetated area
dominates. Given the large amount of vegetation, this
increased runoff could possibly be due to CO2 induced
stomatal closure. There is also a large region in figure
1(h) where LULCC determines the increasing trends of
runoff. This region is mostly isomorphic to the region
with increased historical cropland area shown in the
Synergetic Land Cover Product (SYNMAP) vegetation
type figure (figure S3(b)) (Jung et al 2006). The supple-
mentary material includes figures for the season which
dominates the trend of the annual total values (figure
S4) and the spatial patterns of trends and dominant
forcings for each season (figures S5–8).
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Figure 1. Spatial pattern of trends for annual total runoff from WaterWatch and MsTMIP multi-model ensemble mean (MME)
forcings and dominant forcings. (a) WaterWatch and (b)−(f) MsTMIP MME annual total runoff trends for 1950–2010, mm yr−2 with
dots representing grid cells with significant trends (𝛼 = 0.05, Mann-Kendall). (g) Dominant forcing when the trend values of CLMT,
CO2, NDEP, and LULCC are compared to ALL. Lighter (darker) colors represent negative (positive) trends whereas white grid cells
show spaces where the sign of the trends for the forcings disagreed with the ALL forcing. (h) Same as (g), but CLMT is not included.

The division of the CONUS HUC2 basins (R01–
R18) into 4 regions (north, east, south, and west) is
shown in the background of figure 2(a). For obser-
vational annual total runoff for the CONUS over
1950–2010, there is an estimated positive trend of
approximately 0.2 mm yr−2 (insignificant for𝛼 = 0.05).
The estimated trend for the eastern region is twice
that at approximately 0.4 mm yr−2 (insignificant for
𝛼 = 0.05). For thewestern region, however, theobserva-
tional trend is −0.9 mm yr−2 (significant for 𝛼 = 0.05).
Just as in the spatial trend plots, the ALL and CLMT
forcings have the same sign and relatively close mag-
nitude in every region. In each region, there is at least
one forcing which has a sign opposite of the observa-
tions (figure 3). If we exclude the CLMT forcing for
the eastern region in figure 2(a), CO2 is the only other
positive forcing. This explains why there is a large area
dominated by CO2 in figure 1(h). Overall, the seasonal
trends in figures 2(b)−(e) have the same sign as the

annual total trends. However, the observed negative
MAM trend in the eastern region is not reproduced by
the models. Combined with the large negative trend
in the western region, this causes the observational
trend for the US to be negative for MAM. The rel-
ative discrepancies between the annual total trend in
the observations and the MsTMIP ALL MME forc-
ing mostly come from the MAM and JJA seasons.
The areas of the western region covering R17 and R18
include areas of large disagreement for all seasons. This
is not surprising due to the regions sensitivity to pre-
cipitation and considerable amount of human water
regulation (i.e. dams and irrigation). The largest dif-
ference for the eastern and southern regions is during
MAM whereas it is JJA for the northern region. This can
be seen in the normalized root mean squared difference
(RMSD) values shown in figures S9(a)−(e). Possi-
ble causes for the discrepancy between the estimated
trends are in the Discussion. Annual total regional
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Figure 2. Regional trends for annual totals (a) and seasonal means (b)−(e). Trend values and corresponding 95% confidence intervals
were estimated using Theil-Sen (Burkey 2006). Significant trends are denoted by asterisks. Significance is also denoted by error bars
representing the 95% confidence interval for the Theil-Sen trend estimate (Burkey 2006). (b)−(e) Seasonal trends, (mm/month)/year,
are grouped by region: eastern, northern, southern, western, and the US.

trend values for individual models are shown in the
supplementary material (figure S10).

3.2. D&A results
D&A analysis was completed for each individual grid
cell and each region for each season and the annual
totals. Results from individual grid cells can be used to
form hypotheses about the regional results. In figure
1(g), there are large regions in the east and west where
CLMT is the dominant forcing. These same regions can
be seen in figure 3(a). While CO2, NDEP, and LULCC
do not show any areas of detectable and attributable
cells large enough to make hypotheses about, LULCC
does show multiple groupings of localized detection
and attribution. It should also be noted that in some of
the areas where CLMT is not detectable, CO2, NDEP,
and/or LULCC can be detected and/or attributed, but
this does not occur at a rate greater than that expected
by chance (i.e. 5% of cases). The seasonal results from
the D&A analysis using individual grid cells is in the
supplementary material (figures S11(a)−(d)).

Scaling factor values are shown in figures 4(a)−(e)
for all seasons/regions, but due to residuals failing the
autocorrelation test (independence), results for north-
ern annual totals, JJA, and SON; southern MAM;
and US JJA are inconclusive. The autocorrelation
plots are shown in the supplementary material (fig-
ures S12(a)−(e)). CLMT can be detected for all cases.
The scaling factors consistently being greater than one
implies that the multi-model mean underestimated the
response to the CLMT forcing. This underestimation
will be discussed more in section 4. Only in a few cases
(southern JJA and SON and western SON) scaling fac-
tors are consistent with unity and we can attribute
part of the observed changes to CLMT. Results for
the other forcings are not quite as cohesive. This is due
to the signal-to-noise ratio being low for CO2, NDEP,
and LULCC. In a limited number of cases, forcings
other than CLMT are detected, but then the estimated
scaling factors take very large values (e.g. some confi-
dence intervals are entirely outside the range of values
considered), raising questions about physical realism.
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Figure 3. Spatial distributions of D&A scaling factors. The D&A methodology was applied to each grid cell. Not detected (purple)
denotes a scaling factor whose corresponding 95% confidence interval was less than zero or included zero. If the 95% confidence
interval was greater than zero but did not include one, the forcing was detected (yellow). A positive confidence interval was labeled as
attributed (pink) if it included one.

Results using only the three models with simulations
for all of the forcings (CLM4, CLM4VIC, and TEM6)
are shown in figure S13. Using only these three models
leads to the same overall conclusions.

4. Discussion

Our results for the annual US runoff observations in
figure 2(a) show the same spatio-temporal pattern as
Groisman et al (2004), positive in the east, north, south,
of the US, whereas it is negative in the west. The west
is already suffering from dry conditions which have led
to numerous forest fires and water shortages (Denni-
son et al 2014, Diffenbaugh et al 2015). Continued
drying will have more ecological effects along with
effects to the western hydropower system. Groisman
et al (2004) also found an increase in heavy and very
heavy precipitation in the east. A general increase in
wetting combined with an increase in heavy and very
heavy precipitation will likely lead to more frequent
flooding in the east.

After comparing observations with LSM simulated
streamflow, Dai et al (2009) determined yearly stream-
flow for the world’s largest rivers was more heavily
impacted by climatic conditions than other environ-
mental influences. While precipitation was not studied
independently in this study, a detectable change in
runoff due to climate has also been found. Contrary
to our results, using a single LSM, Gedney et al (2006)
found a direct CO2 effect on continental (i.e. Africa,
Asia, Europe, North America, South America) river
runoff, but Dai et al (2009) determined that the results
were model and data dependent. In 2014, Gedney
and coauthors published another study focusing on

the Northern Hemisphere where they addressed the
concerns from the previous study. In the updated
study, they again found significant effects from stom-
atal closure due to elevated CO2 concentration. They
were also able to detect solar dimming effects caused
by aerosols. However, just as the results within this
paper, for the basins they studied within the US (i.e.
Mississippi, Hudson, and Neches basins), they were
not able to detect CO2 physiological effects and the
scaling factor estimates had wide confidence intervals.
Instead, climate was detected but overestimated. Fur-
ther, land use effects were detected for the Neches basin
in Gedney et al (2014). We also detected the effects
of climate, but rather than being overestimated, our
results consistently showed the MsTMIP climate sim-
ulations underestimated the trend and amplitude of
runoff. In comparison to the Neches basin, we were also
able to detect LULCC for annual totals in the southern
region. Krakauer and Fung (2008) found that the effects
of increasing temperature and CO2 induced stomatal
closure oppose each other in the CONUS and therefore
cancel each other out. This provides a plausible expla-
nation for the overall weak signal found in the CO2
forcing.

Improving from previous studies which only used
observational data, one LSM, or focused on detection
(Groisman et al 2004, Petersen et al 2012, and Alkama
et al 2013, Gedney et al 2014), we used single-factor
LSM simulations to conduct detailed D&A analysis
in order to address the causality of changes in US
runoff. We quantified the changes in runoff due to
CLMT, CO2, NDEP, and LULCC using simulations
from multiple LSMs by applying an adapted version of
the classical regression-based methodology for D&A.
In comparison to previous studies which must first
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Figure 4. Scaling factor estimates (black asterisks) and corresponding 95% confidence intervals for annual totals (a) and seasonal
means (b)−(e). Dashed lines denote the values 0 and 1. Thick gray lines separate the results into different regions. A red asterisk in the
bottom left corner for a region denotes where the residuals were autocorrelated.

route the gridded model simulated flow in order to
be comparable with station-based observations, we
used the gridded WaterWatch observational dataset.
This provided a more direct comparison to the grid-
ded LSM simulations. The gridded observations also
gave us the capability to study a broader extent of
the US spatially in comparison to station-based studies
which are linked to a subset of individual watersheds.
The combination of these three attributes (i.e. gridded
WaterWatch, LSM simulations, and D&A) provided
us with the ability to conduct a more comprehen-
sive study of runoff changes and their drivers for the
CONUS.

Results from this study are mostly limited by
two factors: the precipitation driver data used by
the MsTMIP LSMs and human regulation within the
WaterWatch observations. For the US spatial distribu-
tion, the largest RMSD values between WaterWatch
and the MsTMIP MME ALL forcing annual totals
in figure S9(a) are the areas in which Fekete et al

(2004) found runoff simulations from water bal-
ance models to be the most sensitive to uncertainties
in precipitation driver data. If the observations are
regressed against the ALL ensemble mean, the average
scaling factor (and min/max 95% confidence inter-
val) for each region over all of the temporal metrics
is 𝛽east = 1.53 (1.26, 1.77), 𝛽north = 1.72 (1.33, 2.22),
𝛽south = 1.39 (1.04, 1.86), 𝛽west = 2.21 (1.22, 4.89),
and 𝛽US = 1.58 (1.36, 1.98). This underestimation,
indicated by the fact that 𝛽s are greater than 1 for all
regions, is partially derived from the CRU-NCEP pre-
cipitation driver data being seemingly too dry. While
the pattern of observational runoff is attributed to cli-
mate in more regions for more temporal metrics when
usingfiveyearmeans (figures S14(a)−(e)), the response
to this forcing overall is still underestimated. Part of
this dryness is also shown by comparing the annual
total time series and trends for 1950–2010 precipi-
tation between CRU-NCEP and Parameter-elevation
Regressions on Independent Slopes Model (PRISM) in
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figure S15 (Daly et al 2008). PRISM was chosen due
to its wide use in a variety of hydrologic studies as
a baseline precipitation product for model evalua-
tion and verification (e.g. Ashfaq et al 2016, Prat
and Nelson 2015, Oubeidillah et al 2014, Widmann
and Bretherton 2000). It is a gridded precipitation
product which combines surface observations with a
digital elevation model to account for the orographic
enhancement of precipitation. Since PRISM does not
incorporate assimilated information from numerical
weather forecasting model or meteorologic reanaly-
sis, it can usually result in better hydrologic modeling
performance during calibration and validation (e.g.
Radcliffe and Mukundan 2017). The inclusion of water
management within WaterWatch is a limitation of this
study given that it is not included in the MsTMIP mod-
els. However, Tavakoly et al (2016) found that even
without the influence of water management, modeled
river discharge at the continental scale was reasonably
well reproduced. Individual region and season values
are still vulnerable tobiasesdue to the inclusionofwater
management within WaterWatch though. Tavakoly
et al (2016) also showed that for the Mississippi
River Basin, modeled flow was overestimated when
not considering dams, lakes, and reservoirs. Mod-
eled flow can also be overestimated in areas with
significant amounts of human-managed land (e.g.
cropland) by underestimating evapotranspiration due
to overestimating sensible heat flux and underestimat-
ing latent heat flux and net ecosystem exchange when
crop-specific parameterization is limited (Lokupitiya
et al 2016). This implies that biases due to MsT-
MIP not including human management should lead
to overestimation in ALL. Given that we found ALL
to be underestimated, it would be more underesti-
mated if human management was included. Thus,
giving more support that the CRU-NCEP precipi-
tation being too dry is driving the underestimation
found in the MsTMIP ALL ensemble mean.

5. Conclusions

Annual runoff observations for the period 1950–2010
had heterogenous patterns of change regionally in
the US. The eastern two-thirds of the US (USGS
HUC2 R01–R13) has seen significant and insignificant
increases in annual runoff while the western one-
third (USGS HUC2 R14–R18) had a greater significant
decrease. This heterogeneity lead to an insignificant
increase for the US as a whole. Seasonally, autumn
runoff significantly increased for the northern and
southern regions and the US as a whole. Northern
and southern runoff also significantly increased for
the winter season. For the west, there was a signifi-
cant decrease in summer runoff. The LSM simulations
showed that the CLMT trend and time series were
approximately equal to that of the ALL forcing. This

consistency hypothesized a strong relationship between
runoff and climate change, especially the precipita-
tion variation. More formally, using D&A analysis,
changes inobservational runoffwere detected inCLMT
for all of the seasons and regions studied. ALL and
CLMT were also both consistently underestimated,
possibly due to uncertainties in the CRU-NCEP precip-
itation driver used by MsTMIP, leading to the changes
in the observations only being detected in CLMT
rather than detected in and attributed to CLMT in
most cases. While the changes in observational runoff
could be detected in and attributed to CO2, NDEP,
and LULCC for certain cases, results were not con-
sistent enough regionally and seasonally to draw any
major conclusions.

The western US is at the greatest risk for water
scarcity. Water availability in the region has already
decreased, and shows signs of continued decreasing.
Given that the northwestern US is a semi-arid region,
it is very sensitive to uncertainties in precipitation. It
is also the region that showed the largest disagreement
between WaterWatch and the MsTMIP ALL forcing.
For future work we plan to perform a comparison
using a river basin which has a naturalized stream-
flow dataset. New higher resolution simulations using
multiple pairings of environmental driver datasets will
be used to test sensitivity to the precipitation driver.
The most appropriate simulations will then be used to
complete a D&A study for that river basin.
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