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A B S T R A C T   

Representations of the seasonal peak uptake of CO2 and climate extremes effects have important implications for accurately estimating annual magnitude and inter- 
annual variations of terrestrial carbon fluxes, however the consistency of such representations among different satellite models and process-based (PB) models remain 
poorly known. Here we investigated these issues over North America based on a large ensemble of state-of-the-art gross primary production (GPP) models, including 
two solar-induced chlorophyll fluorescence (SIF)-based models (WECANN and GOPT), three remote sensing driven light-use efficiency (LUE) models, and 10 PB 
models. We found that the two SIF-based GPP estimates were bilaterally consistent in spatial patterns of peak growing season GPP (GPPPGS; with the largest uptake at 
the Corn-Belt area in the United States) and climate extremes-driven responses. The simulations from three LUE models showed relatively consistent spatial patterns 
of GPPPGS and climate extremes-driven responses, which agreed well with SIF-based estimates and satellite based metrics. Obviously differed from SIF and LUE based 
estimates, the simulations from PB models exhibited noticeable divergences and mostly failed to reasonably replicate the spatial pattern of GPPPGS. In addition, 
satellite models and PB models were comparably able to capture the effects of climate extremes on GPP, but showing obvious divergences in the magnitude of impacts 
among different models, and the former outperformed the latter in locating GPP changes caused by climate extremes. We discussed the possible origins of such 
discrepancies in state-of-the-art models with focus on PB models. Improving the parameterizations of critical variables (e.g. leaf area index) and better characterizing 
environmental stresses could lead to more robust estimates of large-scale terrestrial GPP with PB models, thus serving for accurately assessing global carbon budget 
and better understanding the impacts of climate change on the terrestrial carbon cycle. Our study offers a baseline for improving large-scale estimation of terrestrial 
GPP.   

1. Introduction 

Gross primary production (GPP) is the largest flux in the global 
terrestrial carbon cycle. To date, there are still large uncertainties in the 
annual magnitude and interannual variations (IAV) of estimated GPP at 

the global scale (Chang et al., 2017; Huntzinger et al., 2012; Ito et al., 
2016; Ito et al., 2017), and the uncertainties are even larger when 
looking into different regions and ecosystem types (Hilton et al., 2017; 
Hilton et al., 2015). The reliability of annual total GPP and its IAV 
estimated by carbon cycle models depends largely on their ability to 
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capture GPP in the peak growing season (PGS, a peak period of growing 
season, usually from June to August in the Northern Hemisphere) and 
responses to climate extremes. GPP in PGS (GPPPGS) is much higher than 
in other seasons and predominantly determinates the annual total. Ob
servations suggested that seasonal peak GPP strongly influences IAV of 
GPP and net carbon balance (Reichstein et al., 2014; Xia et al., 2017). 
Climate extremes significantly affect carbon sequestration through 
photosynthesis processes and control IAV of GPP (Zscheischler et al., 
2014). Therefore, it is a prerequisite to capture GPP in PGS and its re
sponses to climate extremes for accurately characterizing the spatio
temporal variations of terrestrial carbon fluxes. 

Due to the important role of GPPPGS in annual carbon uptake, rele
vant issues have received intensive attentions (Huang et al., 2018; Wang 
et al., 2020a; Xia et al., 2017; Zhou et al., 2016). A recent study (Hilton 
et al., 2017) reported that the largest GPPPGS for North America locates 
in the Corn-Belt area of Midwest US based on the best estimation of GPP, 
which was determined using aircraft atmospheric carbonyl sulfide (OCS) 
measurements. This agrees with the spatial pattern revealed by satellite 
solar-induced chlorophyll fluorescence (SIF) observations (Guanter 
et al., 2014). However, numerous biosphere models fail to capture this 
strong GPP spatial gradient (Guanter et al., 2014; Hilton et al., 2017), 
indicating that more efforts are required for investigating differences in 
spatial patterns of GPPPGS estimated by different models. 

In past decades, most model studies pay much attention to the mean 
states of terrestrial carbon fluxes at continental and regional scales 
(Chang et al., 2017; Huntzinger et al., 2012; Ito et al., 2016; Ito et al., 
2017). However, few studies focus on effects of climate extremes on 
carbon fluxes (Schewe et al., 2019; Wu et al., 2018). How well models 
represent the response of terrestrial carbon fluxes to climate extremes is 
an important issue for model development. It urgently needs to shift our 
research efforts away from mean conditions towards extremes (Schewe 
et al., 2019), especially under the context of global climate change. 

Process-based (PB) terrestrial biosphere models are commonly used 
for estimating historical GPP and projecting future status at regional and 
global scales. Such models, including diagnostic models (e.g. the Boreal 
Ecosystem Productivity Simulator (BEPS; Ju et al., 2006; Liu et al., 
1997) and prognostic models (e.g. the Joint UK Land Environment 
Simulator (JULES; Clark et al., 2011; Slevin et al., 2017), are useful tools 
for understanding the mechanisms of terrestrial carbon cycling and its 
interactions with climate change. Although most PB models are 
designed for future projections, they are also popularly used to quantify 
historical carbon fluxes, e.g. for supporting the global carbon budget 
assessment (Global Carbon Project; Friedlingstein et al., 2019) and 
assessing climate extreme impacts (He et al., 2018; Li et al., 2019). 
However, PB models suffer from various uncertainties (Friedlingstein 
et al., 2006; Huntzinger et al., 2012), including model structure, 
parameterization, and inaccuracies in meteorological drivers and other 
input data (Huntzinger et al., 2017; Li et al., 2017; Rogers et al., 2017; 
Wu et al., 2017), which would bias flux estimates and hampered our 
understanding on the terrestrial carbon cycle. Thus, it is of great 
importance to benchmark model uncertainties with various sources of 
data and approaches. 

Complemented to PB models, satellite-based models provide 
observation-constrained estimates of terrestrial carbon fluxes. Light-use 
efficiency (LUE) models (e.g. Vegetation Photosynthesis Model (VPM; 
Xiao et al., 2004; Zhang et al., 2017)), as one kind of satellite-based 
models, are usually formulated in a much simpler form and more 
readily driven by satellite data than PB models. In a recent decade, 
known as a useful proxy for photosynthesis (Guanter et al., 2014; Wood 
et al., 2017; Zhang et al., 2016a), SIF retrieved from multiple satellite 
platforms has been employed to constrain global GPP estimates (Ale
mohammad et al., 2017; MacBean et al., 2018; Norton et al., 2019; 
Parazoo et al., 2014) and to validate model-based GPP estimates (Byrne 
et al., 2018; Zan et al., 2018; Zhang et al., 2016b). SIF has been proved to 
be effective in tracking the spatiotemporal dynamic of GPP and 
detecting its environmental stresses (Song et al., 2018; Sun et al., 2015; 

Wang et al., 2020b). These satellite-based models or methods may 
provide an important perspective for understanding the terrestrial car
bon cycle under the context of climate change based on historical sim
ulations and discerning potential uncertainties in PB models. 

North America is an area with intensive carbon cycle observation 
data, e.g. eddy covariance measurements, crop yield inventory, SIF, and 
atmospheric OCS measurements, which makes it an ideal region for 
studying the terrestrial carbon cycle. In addition, the recent climate 
extreme events (e.g. the 2011 and 2012 droughts) in North America 
offer an opportunity to examine and evaluate model capacity for 
simulating impacts of climate extremes on GPP. Although several studies 
have carried out GPP model inter-comparison studies over North 
America (e.g., Huntzinger et al., 2012; Schaefer et al., 2012), most 
focused on the mean annual total, mean annual spatial pattern, and 
mean seasonal and inter-annual variations of fluxes. Here we focus on 
examining the spatial patterns of GPPPGS and extreme climates-driven 
responses of GPP, which are important aspects of model performance. 
With the advent of new satellite-based models for GPP estimates, e.g. 
SIF-based models (WECANN and GOPT), the investigation regarding to 
the consistency between satellite-based models (newly SIF-based and 
traditionally LUE-based) and PB models would be of great importance 
for enlightening model developments, as well as interpreting satellite 
signals. 

In this study, based on a large ensemble of satellite models (SIF-based 
and LUE-based) and PB models, we aim to answer two questions: (1) Can 
satellite (SIF-based and LUE-based) and PB models reasonably repro
duce the typical mean-state spatial pattern of GPPPGS over North 
America (the largest uptake in Corn-Belt area) as uncovered by the 
satellite SIF and atmospheric OCS data? (2) Can satellite and PB models 
be able to accurately capture the impacts of climate extremes on GPP? 

2. Data and methods 

2.1. SIF-based GPP estimates 

2.1.1. WECANN GPP 
The Water, Energy, and Carbon with Artificial Neural Networks 

(WECANN) product (Alemohammad et al., 2017) provides monthly 
latent heat, sensible heat, and GPP estimates from 2007 to 2015 at a 
spatial resolution of 1◦ × 1◦. WECANN retrieves these variables using an 
artificial neural network (ANN) driven by remotely sensed SIF in 
conjunction with other data sources, including precipitation, air tem
perature, soil moisture, snow cover, and net radiation. A target data set 
generated from three independent data sources, MODIS (Moderate-R
esolution Imaging Spectroradiometer) GPP, ECMWF (European Centre 
for Medium-Range Weather Forecasts), and FLUXNET-MTE (Model Tree 
Ensembles), weighted using a triple collocation algorithm, was used for 
training neural network. Validations with FLUXNET flux and other data 
sets proved that WECANN GPP performs well on indicating seasonal 
variations, spatial patterns and extreme heatwave and drought impacts 
(Gentine and Alemohammad, 2018). 

2.1.2. GOPT GPP 
GPP optimal estimation (GOPT) data is produced through the com

bination of the satellite SIF data and prior estimates from the TRENDY 
(Trends in the land carbon cycle) models using a data assimilation 
approach (Parazoo et al., 2014). In this study, we used the GOPT GPP 
derived from the Global Ozone Monitoring Experiment–2 (GOME-2) SIF 
data (Joiner et al., 2011) and the prior from the ensemble mean of 10 
TRENDY (v2) models at the spatial resolution of 1◦ × 1◦ on a monthly 
basis. It has been validated against flux tower measurements from 
FLUXNET and shows favorable global performance. For more details on 
this data set refer to Parazoo et al. (2014). GOPT has been used to 
examine large-scale GPP patterns and regional carbon cycle responses to 
climate extremes (Bowman et al., 2017; Liu et al., 2017a; Parazoo et al., 
2015; Parazoo et al., 2014). 
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2.2. FLUXCOM GPP 

The FLUXCOM GPP product (www.fluxcom.org) is produced by 
upscaling FLUXNET flux measurements. The upscaling process uses 
machine learning (ML) algorithms (Jung et al., 2017; Tramontana et al., 
2016) to scale in-situ flux measurements into time-resolved 0.5◦ × 0.5◦

grids of net ecosystem productivity (NEP), ecosystem respiration (Reco) 
and GPP for the period 1980–2013 using meteorological data and mean 
seasonal cycles of remotely sensed data. Meteorological variables were 
retrieved from the CRUNCEP v6 data set. The pattern of plant functional 
types originates from the majority classes of annually resolved MODIS 
land cover product (collection 5) (Friedl et al., 2010). The daily fluxes 
were aggregated to monthly values. Predictions of GPP and Reco fluxes 
were produced with three different ML algorithms in the version 
FLUXCOM RS+METEO, including ANN, multivariate adaptive regres
sion splines, and random forests, and two methods used for separating 
GPP and Reco from tower-based NEP (Lasslop et al., 2010; Reichstein 
et al., 2005). Thus, there are 6 sets of GPP and Reco, respectively. In this 
study, we used the means and standard deviations of different GPP data 
sets over the period from 2007 to 2013. 

2.3. GPP from light-use efficiency models 

LUE models calculate GPP as the product of incident photosynthet
ically active radiation (PAR), fraction of absorbed PAR (fPAR), 
maximum light use efficiency (ε0), and scalars of environmental vari
ables (Monteith, 1972; Monteith, 1977): 

GPP = PAR × fPAR × ε0 × f(T) × f(W) (1)  

where f(T) and f(w) are the scalars of temperature and moisture, 
respectively. 

Different LUE models share the same basic structure above, but have 
different fPAR and different parametrizations of the LUE factors: ε0, f(T), 
and f(W). This study uses GPP estimated from three different LUE 
models, including the Carnegie-Ames-Stanford Approach (CASA), the 
Vegetation Photosynthesis Model (VPM), and the MOD17 GPP algo
rithm. The major characteristics of these LUE models are summarized in 
Table S1. 

The CASA model was originally developed by Potter et al. (1993) and 
improved since Randerson et al. (1996). The version we used here is 
CASA-GFED3 (Global Fire Emissions Database, Version 3), following 
Van der Werf et al. (2010). In CASA, GPP is assumed to be twice net 
primary production (NPP), which is estimated using equation (1). 
Meteorological forcing data are taken from the Global Modeling and 
Assimilation Office’s (GMAO) Modern-Era Retrospective Analysis for 
Research and Applications (MERRA, http://gmao.gsfc.nasa. 
gov/merra/; Rienecker et al. (2011)). fPAR is estimated from AVHRR 
NDVI and vegetation classification is according to the MODIS MOD12Q1 
product. The LUE parameters in the CASA-GFED3 model have been 
calibrated against Midwestern USA crop yields (Hilton et al., 2015; 
Lobell et al., 2002). The CASA-GFED3 data set was downloaded from 
https://nacp-files.nacarbon.org/nacp-kawa-01/. 

The VPM model was developed by Xiao et al. (2004). The most 
important features of this model include considering the influence of 
both maximum and minimum temperatures on GPP and quantifying the 
impact of soil moisture on GPP using Land Surface Water Index (LSWI), 
which is determined according to remotely sensed reflectance of near 
and short-wave infrared bands. We used monthly GPP data produced by 
Zhang et al. (2017) (https://doi.org/10.6084/m9.figshare.c.3789814) 
over the period from 2000 to 2016. In the production of GPP, the Na
tional Center for Environmental Prediction reanalysis data set (NCE
P-reanalysis II) was used to drive the VPM model. It is worth noting that 
the model differentiates C3/C4 difference for crops, savannas, grass, 
wetland, and cropland/natural vegetation when parameterizing 
ε0 (Zhang et al., 2017) . 

The MOD17 algorithm produces 8-day GPP with satellite-derived 
fPAR from MOD15 and GMAO/NASA (National Aeronautics and Space 
Administration) meteorological data. Biome-specific parameter values 
are derived empirically from BIOME-BGC model simulations (Running 
et al., 2004; White et al., 2000). The values of ε0 vary widely with 
vegetation types. For more details refer to Running and Zhao (2015). In 
this study, we used the latest version of MODIS 8-day GPP product 
(version MOD17A2H) over the period from 2000 to 2016 (https://lads 
web.modaps.eosdis.nasa.gov).The 8-day GPP was aggregated into 
monthly values. 

2.4. GPP from process-based models 

The GPP simulated by 10 process models, covering both prognostic 
and diagnostic models, was used for the analysis. Among them, 8 models 
are global dynamic vegetation models, which participated in the 
TRENDY project (Sitch et al., 2015), including ORCHIDEE (Krinner 
et al., 2005), ORCHIDEE-MICT (Guimberteau et al., 2018); CABLE 
(Wang et al., 2010), DLEM (Tian et al., 2015), ISAM (Jain et al., 2013), 
VEGAS (Zeng et al., 2005), VISIT (Kato et al., 2013) and JULES (Clark 
et al., 2011). Here we used the outputs from TRENDY version 6 under 
the simulation scenario S3, which accounts for the effects of CO2 
fertilization, climate, and land use change on GPP. Models were forced 
using the CRUNCEP v8 data set (https://vesg.ipsl.upmc.fr/thredds/cat 
alog/store/p529viov/cruncep/V8_1901_2016/catalog.html). The simu
lation by JULES provided monthly GPP at a resolution of 1.875◦ × 1.25◦, 
the simulation by ORCHIDEE-MICT provided monthly GPP at a resolu
tion of 1◦ × 1◦, and the other simulations provided GPP at a spatial 
resolution of 0.5◦ × 0.5◦. 

In order to investigate the impact of vegetation phenology repre
sentation on simulated GPP, we also included the GPP simulations from 
two diagnostic process models, SiBCASA model (Schaefer et al., 2008; 
van der Velde et al., 2014) and BEPS model (Ju et al., 2006; Liu et al., 
1997).Different from above prognostic models, these two diagnostic 
models were driven using remotely sensed normalized difference vege
tation index (NDVI) or leaf area index (LAI), which represents the 
vegetation phenology in models. The SiBCASA model was driven by 
NDVI (used to derive fPAR and LAI) and ECMWF meteorological data 
(van der Velde et al., 2014). The BEPS model was driven by two different 
remotely sensed LAI data sets, GLOBMAP v3 (named as BEPS-R1) and 
GLASS AVHRR LAI (named as BEPS-R2), and meteorological data from 
CRUNCEP v7. The reason for using two LAI products is to investigate the 
uncertainty of LAI on simulated GPP in PB models (here BEPS as a 
testing model). These LAI products are described in more details in 
Section 2.6.4. 

2.5. Climate data 

The impacts of water and temperature anomalies on GPP were 
assessed using monthly air temperature and precipitation at a spatial 
resolution of 0.5◦ × 0.5◦ from the CRUNCEP v6 data set produced by the 
Institute Pierre Simon Laplace (IPSL) of France (Wei et al., 2014). The 
CRUNCEP v6 data set is a merged product of Climate Research Unit 
observation-based monthly 0.5◦ × 0.5◦ climate variables (New et al., 
2000) (1901–2014) and the 6-hourly reanalysis of National Centers for 
Environmental Prediction (NCEP). This data set is also the meteoro
logical driver of the FLUXCOM, BEPS and TRENDY models. 

2.6. Satellite land surface variables 

2.6.1. Soil moisture 
The impact of soil moisture stress on GPP was investigated using the 

Global Land-surface Evaporation Amsterdam Methodology (GLEAM) 
root-zone soil moisture (SM). GLEAM root-zone SM is produced from the 
satellite surface soil moisture product ESA-CCI SM (v02.5) through a 
data assimilation scheme (Martens et al., 2017; Miralles et al., 2011). 
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ESA-CCI SM is a satellite surface soil moisture product (within the up
most 5 centimeters of soils) from the European Space Agency Climate 
Change Initiative and an Essential Climate Variable, which is a combi
nation of passive (SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, and 
SMOS) and active (AMI-WS and MetOp A/B ASCAT) microwave prod
ucts with a spatial resolution of 0.25◦ × 0.25◦ (Dorigo et al., 2017). The 
validation against in-situ measurements by many studies proved the 
high quality of ESA-CCI SM (Dorigo et al., 2015; Peng et al., 2015). 

2.6.2. Solar-induced chlorophyll fluorescence 
Remotely sensed SIF has shown great promise for tracking spatio

temporal variations of GPP (Guanter et al., 2014; Zhang et al., 2016a) 
and is also sensitive to water (Alden et al., 2016; Lee et al., 2013; Sun 
et al., 2015) and temperature stresses (Song et al., 2018). The monthly 
SIF at 740 nm with a spatial resolution of 0.5◦ × 0.5◦ (version 27) 
retrieved from GOME-2 (Joiner et al., 2013) was used to indicate the 
response of GPP to water or temperature stresses. 

2.6.3. Enhanced vegetation index 
The enhanced vegetation index (EVI; MOD13C1) from the MODIS 

data was also used to assess the vegetation response to droughts and 
temperature anomalies. This 16-day composite data set at a spatial 
resolution of 0.05◦ × 0.05◦ was calculated using the MODIS/Terra 
reflectance (v6) data (Huete et al., 2002). A Savitzky–Golay filter built in 
the TIMESAT 3.2 software (Jönsson and Eklundh, 2004) was applied to 
fill gaps of low-quality data. 

2.6.4. Leaf area index 
Two satellite LAI products, GLOBMAP LAI (v3) and GLASS LAI, were 

used for investigating the impact of LAI on GPP simulations by PB 
models. 

GLOBMAP LAI (v3) provides a consistent long-term global LAI 
product (1981–2016) at a spatial resolution of 8 km with a geographic 
latitude/longitude projection generated through pixelwise fusion of the 
Advanced Very High Resolution Radiometer (AVHRR) NDVI 
(1981–1999) and LAI inverted from MODIS reflectance data 
(2000–2016) (Liu et al., 2012). 

The Global Land Surface Satellite (GLASS) LAI product was gener
ated using general regression neural networks (GRNNs), in which the 
reprocessed remote sensing reflectance values from an entire year were 
inputted to the GRNNs to estimate the one-year LAI profile. The GLASS 
LAI retrievals are separately derived from MODIS reflectance data 
(named GLASS MODIS) and from the Long-Term Data Record (LTDR) 
AVHRR reflectance data (named as GLASS AVHRR). The GLASS MODIS 
LAI product is provided in a sinusoidal projection at a spatial resolution 
of 1 km and spans from 2000 to 2015, while the latest version of the 
GLASS AVHRR LAI product is provided in a geographic latitude/longi
tude projection at a spatial resolution of 0.05◦ and spans from 1981 to 
2015. In this study, we used the GLASS AVHRR LAI product that 
generated from the version 4 LTDR AVHRR reflectance data. For more 
details we refer the reader to Xiao et al. (2017). 

LAI simulated by the ORCHIDEE and VISIT models was also used to 
investigate the correlation between simulated GPP and LAI in process 
models. 

2.7. Analysis methods 

2.7.1. Anomaly calculation 
The anomalies of GPP, meteorological, hydrological and vegetation 

metrics were calculated as follows: 

Xi
′

= Xi − μ (2)  

where Xi
′ is the anomaly of variable X in the ith month or year, Xi denotes 

the value of variable X in the ith month or year, and μ is the mean of 
variable X in months or years during a baseline period. Following Wolf 

et al. (2016), we took the period 2008–2010 as the baseline period. After 
anomaly calculation, SIF and EVI data were detrended with the scipy 
signal library in Python. 

To better present anomaly differences in space, we also calculated 
the spatial Z-score for flux anomalies induced by climate extremes. The 
Z-score was calculated as: 

Zi =
Xi − μ

σ (3)  

where Xi is the anomaly of variable X in the ith month or year,μ and σ are 
the mean and standard deviation of variable X in months or years during 
a baseline period, respectively. 

2.7.2. Correlation analysis 
We used Pearson’s correlation coefficient implemented in Python 

scipy library to quantify the correlation between simulated GPP and LAI. 

3. Results 

3.1. Seasonal cycle amplitude and contribution of peak growing season 
GPP to annual total 

The two SIF-based GPP estimates (WECANN and GOPT) exhibited 
high agreement in seasonal cycles with peaks in July, and their seasonal 
cycle amplitudes (SCA) were relatively small (Fig. 1). The SCAs of the 
two SIF-based estimates were close to those of MOD17 and FLUXCOM. 
Some LUE models (VPM and CASA) and PB models (e.g. ORCHIDEE) 
estimated relatively large SCAs. 

The mean annual totals of different GPP estimates have distin
guishable differences (Fig. 1c). The two SIF-based models, FLUXCOM 
and MODIS GPP (MOD17) estimated lower mean annual GPP than most 
LUE models and PB models (Table S2). The SIF-based models (15.55 PgC 
yr− 1 and 13.71 PgC yr− 1, respectively) and FLUXCOM (15.64±1.49 PgC 
yr− 1) produced relatively consistent GPP estimates over North America, 
which is comparable to the estimate from the atmospheric inversion 
based on OCS (13.97±3.59 PgC yr− 1) for the year 2010 (He and Yang, 
2013). MODIS GPP was much lower than estimates of the CASA and 
VPM models and closer to the estimates based on the two SIF-based 
approaches and FLUXCOM. GPP simulated by different PB models var
ied largely, ranging from 14.39 PgC yr− 1 (by VEGAS) to 24.93 PgC yr− 1 

(by ORCHIDEE, which estimates much larger GPP than other PB 
models). We further calculated the contribution of GPPPGS to annual 
total across all models (Fig.1d), and found the contributions reached 
57.91% on the average (ranging from 40.74% by CABLE to 68.79 % by 
VEGAS), indicating GPPPGS plays an important role in determining 
annual total GPP. 

Some LUE models (CASA and VPM) and PB models (e.g. ORCHIDEE 
and JULES) estimated high total GPP compared to the estimates of SIF- 
based approaches and FLUXCOM. Stocker et al. (2019) reported that 
LUE models might overestimate GPP by about 15%, owing to their 
exclusion of soil moisture stress on GPP, which is only indirectly 
accounted for through temperature factor. The overestimation or un
derestimation of mean annual GPP due to the deficient representation of 
water and temperature stresses also happen for PB models (Raczka et al., 
2013). It should be kept in mind that the SIF-based estimates might 
suffer biases from satellite SIF data due to the uncorrected geometric 
angular effects (He et al., 2017b) and instrument degradation of 
GOME-2 (Zhang et al., 2018b). 

3.2. Spatial pattern of peak growing season GPP 

Following the finding that GPPPGS in North America is the largest in 
the Corn-Belt area of Midwest US (see Fig. 2) supported by either at
mospheric tracer—OCS (Hilton et al., 2017) or SIF (Guanter et al., 
2014), we examined the ability of different categories of models to 
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reproduce the spatial pattern of GPPPGS (average GPP during 
June-August) (Fig. 3). The spatial patterns of GPP from WECANN and 
GOPT agreed well with each other and with the GOME-2 SIF. For 
interpreting SIF-based estimates, it should be kept in mind that the 
linear relationship between GPP and SIF varies between C3 and C4 
plants and GPP is higher for C4 species with a same magnitude of SIF 
(Gentine and Alemohammad, 2018; Liu et al., 2017b). SIF observed by 
satellite sensors differs from total SIF emitted during the process of 
photosynthesis due to impact of canopy structure (Zhang et al., 2019b). 
Usually, croplands have higher escaping probability (fesc) (ratio of SIF 
observed above the canopy to total SIF emitted), resulting in higher 
observed SIF. In contrast, forests have lower fesc and lower SIF observed 
by satellites. This can explain why the higher SIF locates at the Corn-Belt 
area. Taking the SIF-based GPP estimates as benchmarks, we found that 
LUE models, especially CASA and VPM, are able to capture the spatial 
pattern of GPPPGS quite well, higher in the Corn-Belt area. Only 3 
(SiBCASA, JULES, and VEGAS) out of 10 PB models are able to repro
duce spatial patterns of GPP very close to those of SIF-based GPP. 
ORCHIDEE, ORCHIDEE-MITC, and ISAM models performed secondly to 
above three PB models. Remaining PB models generally failed to reveal 
this pattern. Compared to SIF-based estimates, FLUXCOM estimated a 
larger extent of high GPPPGS and MOD17 underestimated GPP in the 
core of the Corn-Belt area. 

Fig. 4 shows the latitudinal pattern of different GPP estimates. The 
two SIF-based GPP estimates are almost identical. The latitudinal 

patterns of FLUXCOM GPP and MOD17 GPP were close to that of SIF- 
based GPP. GPP of CASA and VPM was much larger than them in lati
tudes from 20◦N to 50◦N and from 40◦N to 60◦N, respectively. The 
latitudinal pattern of GPP from PB models diverged largely, especially in 
the middle latitudinal regions. Overall, GPP estimates from PB models 
peaked at lower latitudes (mostly at 40◦N or lower) in comparison with 
those estimates from SIF-based estimates, FLUXCOM, and LUE models 
(mostly at 45◦N) . 

Fig. 5 shows the comparison of GPPPGS simulated by different models 
in the US Corn-Belt area. The mean of FLUXCOM GPP was comparable to 
the estimates from WECANN and GOPT. For the LUE models, MOD17 
GPP was lower than WECANN GPP, GOPT GPP, and FLUXCOM GPP, 
while CASA GPP and VPM GPP were much higher. GPP from PB models 
varied in a wide range, from 0.36 PgC season− 1 (by VISIT model) to 1.04 
PgC season− 1 (by ORCHIDEE model). Two PB models, VISIT and DLEM, 
estimated clearly lower GPP than the SIF-based and FLUXCOM GPP. On 
average, the PB models estimated GPPPGS of the Corn-Belt area at 
0.76±0.22 PgC season− 1, which is close to the SIF-based estimates (0.76 
PgC season− 1 and 0.72 PgC season− 1, respectively) and the FLUXCOM 
ensemble estimate (0.79±0.10 PgC season− 1) . 

3.3. Response of GPP to climate extremes 

Fig. 6a~b shows the comparison of the monthly anomalies of GPP 
estimated by the SIF-based approaches, LUE models, FLUXCOM, and PB 

Fig. 1. Mean seasonal cycle amplitudes of GPP estimated by (a) satellite based models and FLUXCOM and (b) PB models; (c) means of annual total GPP and (d) 
contribution of GPPPGS to annual total GPP estimatd by different categories of models in North America over 2007–2014. BEPS-R1 and BEPS-R2 indicate GPP 
simulated by two different remotely sensed LAI products, GLOBMAP v3 and GLASS AVHRR LAI respectively. 

Fig. 2. (a) Mean SIF in peak growing season from GOME-2 and (b) the Corn-Belt area roughly indicated by the pattern of dense cropland in 0.5◦ × 0.5◦ grids were 
presented respectively. 
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models during 2007–2014. Overall, SIF, LUE and PB models estimated 
consistent IAV of GPP. FLUXCOM GPP had the smaller IAV in compar
ison with that estimated by SIF, LUE, and PB models. The underesti
mation of IAV in FLUXCOM data has been reported by previous studies 
(He et al., 2018; Jung et al., 2020). 

In the drought year 2011, noticeable discrepancies existed between 
the two different SIF-derived GPP data sets, implying possible un
certainties still exist in these data sets. In comparison with GOPT GPP, 
the monthly anomalies of WECANN GPP in 2011 were closer to those 
estimated by the two LUE models (CASA and VPM) and more consistent 
with the anomalies in EVI and SIF (Fig. 6e). These anomalies can be 
explained by the lower temperature in spring than normal (Fig. 6c) and 
lower water availability in the summer indicated by precipitation and 
soil moisture (Fig. 6d). The negative anomalies of GPP over the latter 
summer or autumn in 2011 showed in WECANN, VPM, MOD17, 
FLUXCOM and the ensemble mean of PB models were not well captured 
by GOPT and CASA. The anomalies of GPP captured by most models 
coincided well with those anomalies in EVI and the different SIF data 
sets in Fig. S1. 

We also examined the physical rational for the GPP anomalies by 

comparing the retrievals and model results with climate and remotely 
sensed land surface variables directly. We identified several climate 
extremes, for example, the 2011 and 2012 drought events, with simul
taneous strong reductions of precipitation, soil moisture, SIF and EVI. 
Discrepancies were noticeable between the anomalies of GPP estimated 
by SIF models and by LUE models or PB models in 2007. Both LUE and 
PB models showed clear negative anomalies of GPP in the latter summer 
or autumn, which coincided with the anomalies of SIF and EVI. SIF 
models showed positive anomalies of GPP. The negative anomalies of 
precipitation, soil moisture and EVI in late 2007 (Fig. 2) were in contrast 
to the positive anomaly in the SIF signal, which is likely caused by un
certainties in the SIF retrieval (see Fig. S1). 

North America experienced extremely warm springs in 2010 and 
2012 and severe summer droughts in 2011 and 2012. The GPP estimated 
by SIF (Fig. 7) and all LUE models (Fig. S2) exhibited similar anomaly 
responses to climate extremes. The estimated GPP increased in springs 
and decreased in summers of 2011 and 2012. GPP from FLUXCOM 
(Fig. 7) and some PB models (Fig. S3) did not respond much to these 
climate extremes, e.g. the 2012 warming and drought. VISIT, DLEM, and 
VEGAS performed relatively poor in locating GPP anomalies caused by 

Fig. 3. Spatial patterns of mean GPP in peak growing season (June-August) simulated by different models over the period 2007–2014.  
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these drought events. 
We further calculated the absolute GPP anomalies induced by 

climate extremes (Fig. 8). Overall, the satellite based models (SIF and 
LUE models) and most PB models clearly indicated the impact of climate 
extremes on North American GPP (Fig. 8), increasing in warmer springs 
and decreasing in the dry summers. DLEM is the exception and esti
mated positive GPP anomaly during the 2012 summer drought while 
others estimated evident negative anomalies. Among the satellite 
models and FLUXCOM, GOPT estimated the smallest anomalies of GPP 
for all four climate extreme events. CABLE estimated clearly lower GPP 
anomaly during the 2010 spring warming. VISIT estimated quite small 
anomalies of GPP for both droughts, which may attributed its distinct 
spatial patterns of PGS (abnormally low at the Corn-Belt area). 
ORCHIDEE estimated relatively large anomalies of GPP for all four 
climate extreme events. On average, PB models estimated larger 
anomalies of GPP than SIF models, FLUXCOM, and LUE models during 
the 2011 and 2012 summer droughts, which agrees with the previous 
finding that PB models generally overestimate water stress impacts on 
GPP (Huang et al., 2016). When looking at the standardized anomalies 
(Z-score; Fig. S4), the discrepancies between different models became 
clearly smaller. 

Fig. 9 shows seasonal variations of monthly GPP anomalies in the 4 
selected regions (as indicated in Fig. 7) in which the climate extreme 

events occurred. The two SIF-based estimates showed large discrep
ancies in the magnitudes of GPP anomaly during the 2010 spring 
warming and the 2011 summer drought. GOPT GPP showed lower 
anomalies than WECANN GPP and GPP estimates from LUE models. But, 
it showed quite close temporal variation patterns of GPP anomalies to 
the ensemble mean of PB models, which may be explained by that the 
GOPT data assimilation relied on prior flux output from TRENDY 
models. At the regional scale, the difference between GOPT GPP and 
WECANN GPP becomes more evident. Overall, the monthly anomalies 
of the ensemble mean GPP of PB models exhibited relatively good 
consistency with those of satellite models over time during the four 
extreme climate events, while still diverged on the anomaly magnitudes. 
Noticeable differences in GPP anomalies among the SIF models, LUE 
models, and PB models were observed during the 2011 summer drought. 
Meanwhile, the PB models showed large divergence in the magnitude of 
estimated GPP anomalies caused by climate extreme events, typically 
during the 2011 drought in R3 and the 2012 drought in R4 (also see 
Fig. S5). 

Fig. 4. Latitudinal patterns of mean GPP in the peak growing season (June-August): (a) SIF-based models, FLUXCOM, and LUE models; (b) PB models. The GPP 
values are summations of individual latitudes. 

Fig. 5. Mean GPP in peak growing season (June-August) for the Corn-Belt area in North America from SIF-based estimates, FLUXCOM (short as “FC”), LUE models 
and PB models. 
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4. Discussion 

4.1. Spatial pattern of peak growing season GPP in North America 

GPP estimated from remotely sensed SIF (Guanter et al., 2014) and 
determined by atmospheric measurements of OCS (Hilton et al., 2017) 
indicated that the largest GPPPGS within North America is located in the 
Corn-Belt area of Midwest U.S. We note that recent studies have iden
tified importance of geometric angular effects on SIF (He et al., 2017a; 
Zhang et al., 2019b). Due to the canopy structure effect, the SIF observed 
by satellite sensors differs from the total SIF emitted during the process 
of photosynthesis. 

Our study indicates that two SIF-based GPP estimates were able to 
replicate spatial pattern of GPPPGS within North America. Differently, 
FLUXCOM estimated a larger extent of high GPP near the Corn-Belt area 
compared to the GPP estimates from SIF and LUE based modBels. It 
should be noted that FLUXCOM GPP relied on the trained relationship 

built upon discrete in-situ GPP data from FLUXNET and MODIS data, 
while WECANN GPP was estimated using ANN trained with gridded GPP 
data from ECMWF ERA HTESSEL, FLUXNET-MTE and MODIS-GPP and 
GOME-2 SIF data. In principle, SIF is superior to vegetation greenness 
index (used in FLUXCOM algorithm) in relating to GPP across different 
biome types, which thus helps to produce more reliable and reasonable 
spatial pattern of GPP. 

Likewise, LUE models (especially CASA and VPM) also reproduced 
the typical spatial pattern of GPPPGS in the Corn-Belt area. The MOD17 
model approximately mapped a reasonable spatial pattern of GPP, but 
MODIS GPP exhibited clear differences compared to estimates by the 
SIF-based and other two LUE models. Potential uncertainties of LUE 
models might come from fPAR (Wang et al., 2017; Zhu et al., 2016), the 
maximum LUE parameter (Almeida et al., 2018), and environmental 
controlling factors of water and temperature, and land cover classifi
cation. In term of fPAR, it is derived from either NDVI or EVI for CASA 
and VPM respectively, while it is estimated from LAI for the MOD17 

Fig. 6. (a~b) Comparisons of monthly GPP anomalies of SIF-based approaches with those of LUE models, FLUXCOM, and PB models during 2007–2014. PBens 
denotes the ensemble of PB models, shown with the mean values in line and the standard deviations in error bars. (c~e) Monthly anomalies of air temperature, 
precipitation and soil moisture, SIF and EVI during 2007–2014. 
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model. Different from complex modeling in deriving LAI, NDVI and EVI 
are straightforwardly calculated from remotely sensed signals, and may 
suffer from less uncertainties. In addition, it is worth noting that the 
values of maximum LUE in CASA have been calibrated against inventory 
data of crop yields in U.S. (Hilton et al., 2015; Lobell et al., 2002), and 
CASA performed well in simulating the spatial pattern of GPPPGS in 
North America. Also, due to the differentiation of the C3/C4 crops in 
LUE parametrization, the VPM model is able to capture the spatial 
pattern of GPPPGS well (Zhang et al., 2017). On this point, SIF is effective 
to distinguish C3/C4 crops due to their different natures in SIF emission, 
which explains why SIF models characterize more reasonable spatial 
pattern for GPPPGS . 

However, except for SiBCASA, VEGAS and JULES, other PB models 
used here failed to capture reasonable spatial pattern of GPPPGS in North 
America. This failure is partly attributed to their poor performances over 
croplands (Figs.3& 5), which coincides with the finding that PB models 
underestimate GPP in croplands by Guanter et al. (2014). The SiBCASA 
model outperformed the other models in mapping the spatial pattern of 
GPPPGS, partially owing to the fact that the vegetation parameters (fPAR 
and LAI) are constrained by remotely sensed NDVI data. PB models 
generally do not represent photosynthesis well for crops (lack accurate 

information on C3 and C4 and misrepresent crop as grass). In the US 
Corn Belt, where corn (a C4 plant) dominates, without accurate repre
sentation of crop photosynthesis in PB models resulted in their poor 
performance in simulating GPPPGS here . As Guanter et al. (2014) sug
gested, cropland GPP is underestimated by PB models, yet it is possible 
to correct this unreasonable discrepancy by assimilating SIF informa
tion. Zhang et al. (2018a) improved cropland GPP estimate in the Corn 
Belt by incorporating SIF-derived spatially varying maximum carbox
ylation rate (Vcmax), which is typically assigned with a single and fixed 
value for each plant functional type (PFT) in PB models (Rogers, 2014; 
Walker et al., 2014). Another possible reason for the discrepancy could 
be related to LAI (also discussed in Section 4.3), as the ability to 
represent LAI by different models varies largely (Anav et al., 2013). We 
noticed the spatial pattern of GPPPGS is highly correlated to prescribed or 
simulated LAI during PGS (Fig. S8). For most prognostic models, the 
simulation of LAI and assignment of Vcmax further depends on pre
scribed PFTs. Thus, the uncertainties in classification of PFTs could be 
another origin of uncertainties in the spatial pattern of GPPPGS simulated 
by PB models. It is worth noting that the impacts of these structural and 
physical parameters on GPPPGS are complex. GPPPGS is usually non
linearly related to the parameterizations of specific leaf area and Vcmax, 

Fig. 7. Spatial pattern of the anomalies (Z-score) of air temperature, SM, SIF, and GPP in extremely spring (March to May) warmings of 2010 and 2012 and in the 
summer (June to August) droughts of 2011 and 2012. Four regions R1~R4 refer to the typical areas where extreme warming or drought events occurred. 
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which could jointly control the magnitude and distribution of GPPPGS 
(Xia et al., 2017). 

The spatial pattern of estimated GPP seems not to be evidently 
affected by meteorological forcing data. LUE models simulated reason
able and similar spatial patterns of GPPPGS although they were forced 
with diverse meteorological datasets. In addition, the SiBCASA model 
reasonably replicated the spatial pattern of GPP although it was driven 
by meteorological dataset different from those used by two SIF-based 
estimate and LUE models. The spatial patterns of. GPPPGS simulated by 
TRENDY models and the BEPS model exhibited large differences even if 
these models all used the same meteorological data. 

4.2. Effects of water and temperature on simulated GPP 

Properly simulating the IAV of carbon fluxes largely depends on the 
model capacity of representing effects of extremes, e.g. water and tem
perature stresses. The response to extremes, thus, becomes a useful 
means to examine model performances. From this study, we found most 
PB models are able to reasonably indicate IAV on the continental scale, 
but only few of them (ORCHIDEE, ORCHIDEE-MICT, and ISAM) are able 
to accurately capture responses of the carbon cycle to the 2011 and 2012 
US droughts at fine scales. Most models performed poorly in indicating 
the spatial extent and severity of the impacts of two large-scale droughts 
on GPP. Recent studies revealed that state-of-the-art PB models (Kolus 
et al., 2019; Schewe et al., 2019) or LUE models (Stocker et al., 2019) 
generally underestimate drought impacts on the terrestrial carbon cycle, 
because current models poorly simulate the impact of water stress on 
GPP (Kennedy et al., 2019). Generally, PB models simulate soil water 
content (SWC) according to the mechanisms of water cycling in terres
trial ecosystems. However, the uncertainties of precipitation and soil 

property data might induce uncertainties in simulated SWC, which have 
large impacts on the response of simulated GPP to droughts. Towards 
solving this issue, several studies attempt to improve carbon fluxes 
simulations under water stress (Chen et al., 2019; He et al., 2017a). A 
recent review offers recommendations for better representing water and 
temperature stresses in PB models (Rogers et al., 2017). In addition, 
climate extremes, for example droughts, may impact ecosystem with 
lagged effects. Proper simulation of lagged and accumulated effects in 
PB models is still challenging (Sippel et al., 2018). Most PB models 
performed better in capturing the response of GPP to temperature 
anomalies in 2010 and 2012, in comparison with their performance in 
simulating the impacts of droughts. 

The two SIF-based estimates and three LUE models consistently 
captured the spatial patterns of GPP anomalies caused by either warm 
temperatures in springs or extreme droughts in summers. SIF is an 
effective indicator that sensitive to environmental stresses (Li et al., 
2018; Song et al., 2018; Wang et al., 2019; Zhang et al., 2019a) and 
therefore SIF-based GPP responded well to climate anomalies in 2010, 
2011, and 2012 over North America. Compared to the PB models, 
remote sensing driven LUE models have the advantage of representing 
the impact of environmental stresses on vegetation through the inclu
sion of remotely sensed variable as inputs. Taking the VPM model for 
example, fPAR is parameterized based on EVI, and water stress is 
quantified using LSWI calculated from near infrared reflectance and 
shortwave infrared reflectance. The latter is very sensitive to vegetation 
water content. EVI and LSWI contain information on the impacts of 
drought and temperature anomalies on terrestrial ecosystems. 

Thus, our study supports further use of remote sensing data such as 
SIF to constrain GPP models for studying the impacts of environmental 
stresses on terrestrial ecosystems. 

Fig. 8. Absolute anomalies of total GPP for 4 selected regions (R1~R4, indicated in Fig. 7) during the warm springs of 2010 and 2012 and the drought summers of 
2011 and 2012. Subplots a,c,e and g are for FLUXCOM and remote sensing based models, and b,d,f,h are for process based models. 
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Fig. 9. Monthly GPP anomalies estimated by remote sensing models (subplots a,c,e and g) and process-based models (subplots b,d,f and h) for 4 selected regions 
(R1~R4, indicated in Fig. 7) during the 2010/2012 spring warmings and the 2011/2012 summer droughts. PBens denotes the ensemble of PB models, shown with 
the mean values in line and the standard deviations in error bars. The periods in shadow were marked as the time typical events happened in these regions. 

Fig. 10. The impact of LAI on seasonal cycle (a) and interannual variations (b) of simulated monthly GPP during 2007–2014. BEPS-R1 and BEPS-R2 indicate the 
simulated GPP driven by two different remotely sensed LAI data sets, GLOBMAP v3 and GLASS AVHRR LAI respectively. 
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4.3. Impact of LAI on simulated GPP by PB models 

LAI is a crucial parameter for GPP simulations by PB models and 
uncertainty in LAI retrievals could introduce large uncertainties in the 
GPP estimation (Alton, 2016; Kala et al., 2014; Liu et al., 2018). From 
the spatial pattern of correlations between simulated GPP and LAI 
during PGS (Fig. S6), we found that the correlation was the strongest for 
the temperate region in southern North America. Based on our corre
lation analysis, we found that anomalies in LAI and GPP were strongly 
correlated over time (Fig. S7). In order to examine the impact of LAI on 
simulated GPP by the PB models, we performed a diagnostic experi
mental simulation using an alternative LAI product, the GLASS AVHRR 
LAI, to force the process-based BEPS model. We found the mean seasonal 
cycle amplitude of simulated GPP was close to the ensemble mean of the 
PB model simulations and the SIF-based estimates (Fig. 10a). We also 
noticed the simulations driven by different LAI showed noticeable dif
ference in spatial pattern of GPPPGS (Fig. S8 and Fig. 3), which confirms 
the impact of LAI discussed in Section 4.1. Interestingly, we found the 
monthly anomalies of GPP over 2007–2014 changed noticeably, e.g. in 
2010 and 2013 (Fig. 10b), revealing that LAI is a critical parameter for 
representing the IAV of GPP in PB models. We further found the spatial 
patterns and the total anomalies of GPP due to climate extremes 
exhibited clear differences between these two simulations driven by 
different LAI data, e.g. during the spring warming and the summer 
drought in 2012 (see Fig. S3 and Fig. 8). To summarize, LAI has clear 
impacts on both GPPPGS patterns and climate extremes-driven responses 
of GPP. 

Moreover, the accuracy of LAI in crops and grasses largely influence 
GPP simulations with PB models. Testing this speculation with the 
CABLE (v1.4b) model, Kala et al. (2014) reported that croplands were 
mostly sensitive to imposed changes in LAI, with differences ranging 
from -90% to 60% in GPP. The plant types with high LAI and low IAV (e. 
g. evergreen broadleaf forests) showed the least response of simulated 
GPP to different LAI prescriptions, while those with lower LAI and 
higher IAV (e.g. croplands) were more sensitive to LAI variations. Un
fortunately, LAI of crops and grasses retrieved from remote sensing data 
still contains considerable uncertainties (Fang et al., 2019), due to the 
signal saturation, background noise, intrinsic uncertainties in the radi
ative transfer modeling of light in canopies and the ill-posed inversion 
problem, and defects of retrieval methods (Fang et al., 2019; He and 
Yang, 2013; Shabanov et al., 2005). 

Currently, despite its importance, the representation of LAI in PB 
models is still poor (Richardson et al., 2012). Murray-Tortarolo et al. 
(2013) and Anav et al. (2013) evaluated land-surface models in repro
ducing satellite derived LAI over the high-latitude Northern Hemi
sphere, and highlighted the importance to improve the ability of PB 
models to simulate LAI. Asaadi et al. (2018) pointed out LAI and its 
seasonal dynamics are key determinants of vegetation GPP and its 
proper simulation is crucial for PB models to capture dynamics and re
sponses to climate change of land surface fluxes. They improved 
parameterization of LAI seasonality in the coupled Canadian Land Sur
face Scheme-Canadian Terrestrial Ecosystem Model (CLASS–CTEM, v3.6 
and v2.1.1 respectively), and resulted in better agreement of simulated 
land surface fluxes with observations. A recent study by Lee et al. (2019) 
reported that the phenology model in the JULES (v4.7) model does not 
adequately represent the LAI for temperate forests and incorrect LAI 
leads to seasonal error rather than simulated yearly GPP while 
satellite-based LAIs are better than phenology model based LAI. The 
large impact of phenology on simulated GPP calls for intense research 
attentions. 

4.4. Implications and ways to improve large-scale GPP simulations 

The two SIF-based GPP estimates showed good consistency on sea
sonal cycle amplitude, annual total magnitude and IAV on the conti
nental scale, as well as GPPPGS spatial patterns and climate extremes- 

driven responses, although they were derived with two distinct ap
proaches (machine learning vs. data assimilation). Also, LUE models 
showed satisfactory performances in spatially representing GPPPGS 
pattern and the response of the terrestrial carbon cycle to water and 
temperature stresses, which might be largely due to the explicit incor
poration of remote sensing information. Satellite data provide unified 
information for all grid cells and effectively represent the sensitivities of 
vegetation to environmental changes. In comparison, PB models might 
suffer from various sources of uncertainties, stemming from defects of 
model structure and uncertainties in parameters and meteorological 
forcing. Uncertainties in prescribed plant functional types, representa
tion of phenology (i.e. LAI), key prescribed parameters (e.g. Vcmax), the 
sensitivity of stomatal conductance to atmospheric and soil water defi
cits and high temperature would be propagated into estimated GPP 
(Richardson et al., 2012; Walker et al., 2017). 

As indicated in our previous study (He et al., 2018), crops and grasses 
are dominant vegetation types in controlling the IAV of GPP in North 
America. A few of previous studies (Balzarolo et al., 2014; Raczka et al., 
2013; Schaefer et al., 2012) also pointed out that GPP simulations from 
land surface models performed the poorest for cropland and grassland 
sites while the best for forest sites when evaluating against in-situ eddy 
covariance flux measurements. The divergence in IAV of GPP (Fig. 6) 
and spatial pattern of GPPPGS (Fig. 3) over North America could be 
largely attributed to uncertainties in estimated GPP of crops and grasses. 
The improvement on simulating GPP of these two types is a prerequisite 
for reliable GPP estimation over this region. 

Satellite observations offer new opportunity to quantify the spatio
temporal variations of key parameters regulating the functioning and 
carbon cycling of terrestrial ecosystems across different scales. The 
proper fusion of informative remotely sensed variables into PB models 
would help constraining uncertainties in historical GPP estimates. For 
example, the assimilation of remotely sensed LAI, a very important 
structural parameter, into PB models, was proved to evidently improve 
the estimated GPP at both in-situ (Ma et al., 2017) and regional (Kumar 
et al., 2019) scales. Recently, another important parameter, Vcmax, was 
successfully retrieved from satellite SIF (He et al., 2019; Zhang et al., 
2014; Zhang et al., 2018a) or leaf chlorophyll content (Chl) (Alton, 
2018; Houborg et al., 2013; Luo et al., 2019) and proved to improve GPP 
or crop yield simulations (Luo et al., 2019; Zhang et al., 2018a). Satellite 
SM has also been assimilated to improve GPP simulations (He et al., 
2017a). Due to the close relationship between GPP and LAI, SIF, Chl or 
SM, assimilating these remote sensing variables into PB models (Kumar 
et al., 2019; Ma et al., 2017; Norton et al., 2019; Scholze et al., 2016; Wu 
et al., 2020) should improve their ability to characterize phenological, 
physiological and hydrological processes, which will be a useful way to 
substantially improve GPP simulations. 

We are aware that most PB models are designed to conduct carbon 
cycle projection for the future, which means they should be fully prog
nostic, for example should simulate LAI, without help of real-time sat
ellite data. But, they are also widely used to quantify historical carbon 
fluxes to support the assessments of global carbon budget and climate 
extreme impacts. The use of remotely sensed data for historical GPP 
simulations could help to advance our understanding of carbon cycle 
processes, which eventually promote the modeling of carbon cycle with 
PB models for future projections. 

5. Conclusions 

This study investigated the spatial pattern of GPPPGS and responses of 
GPP to climate extremes over North America using a large ensemble of 
GPP estimates from state-of-the-art satellite and process based models. 
We found that two SIF-based GPP estimates (WECANN and GOPT) were 
bilaterally consistent in terms of spatial pattern of GPPPGS (with the 
largest uptake at the Corn-Belt area in U.S.) and climate extremes-driven 
responses. The three LUE models (CASA, VPM, and MOD17) showed 
relatively consistent spatial pattern of GPPPGS and climate extremes- 

W. He et al.                                                                                                                                                                                                                                      



Agricultural and Forest Meteorology 298-299 (2021) 108292

13

driven responses, which agreed well with SIF-based estimates and sat
ellite based metrics. Contrastingly, the 10 PB models (including 8 
TRENDY models, SiBCASA, and BEPS that driven by two different LAI 
data sets) exhibited noticeable divergences in spatial patterns of GPPPGS 
and most of them failed to reasonably replicate the pattern. In addition, 
both satellite models and PB models were comparably able to capture 
the impacts of climate extremes on GPP, but showing obvious di
vergences in the magnitude of impacts among different models. Mean
while, satellite models generally outperformed PB models in locating 
GPP changes caused by climate extremes. Our study reveals the 
importance of satellite data, for example SIF, in improving GPP simu
lations especially under environmental stresses, which thus serves for 
accurately assessing global carbon buPCdget and impacts of climate 
extremes on terrestrial ecosystems. 
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Priego, Ó., Wohlfahrt, G., Montagnani, L., 2014. Terrestrial gross primary 
production inferred from satellite fluorescence and vegetation models. Global 
Change Biol. 20 (10), 3103–3121. 

Peng, J., Niesel, J., Loew, A., Zhang, S., Wang, J., 2015. Evaluation of satellite and 
reanalysis soil moisture products over Southwest China using ground-based 
measurements. Remote Sens. 7 (11), 15729–15747. 

Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., 
Klooster, S.A., 1993. Terrestrial ecosystem production: a process model based on 
global satellite and surface data. Glob. Biogeochem. Cycles 7 (4), 811–841. 

Raczka, B.M., Davis, K.J., Huntzinger, D., Neilson, R.P., Poulter, B., Richardson, A.D., 
Xiao, J., Baker, I., Ciais, P., Keenan, T.F., Law, B., Post, W.M., Ricciuto, D., 
Schaefer, K., Tian, H., Tomelleri, E., Verbeeck, H., Viovy, N., 2013. Evaluation of 

W. He et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0026
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0026
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0026
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0027
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0027
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0027
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0027
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0028
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0028
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0028
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0029
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0029
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0029
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0030
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0030
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0030
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0030
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0030
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0031
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0031
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0031
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0032
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0032
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0032
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0033
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0033
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0033
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0033
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0034
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0034
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0034
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0034
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0035
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0035
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0035
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0035
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0036
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0036
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0036
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0036
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0037
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0037
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0037
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0038
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0038
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0038
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0038
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0038
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0039
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0039
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0039
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0040
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0040
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0041
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0041
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0041
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0042
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0042
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0042
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0042
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0042
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0042
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0043
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0043
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0043
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0044
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0044
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0044
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0045
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0045
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0045
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0046
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0046
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0046
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0046
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0047
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0047
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0047
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0047
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0048
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0048
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0048
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0048
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0049
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0049
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0049
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0049
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0050
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0050
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0050
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0051
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0051
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0051
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0051
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0052
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0052
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0052
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0053
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0053
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0053
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0054
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0054
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0054
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0054
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0055
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0055
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0055
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0056
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0056
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0056
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0057
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0057
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0057
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0058
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0058
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0058
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0058a
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0058a
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0058a
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0059
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0059
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0059
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0060
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0060
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0060
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0061
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0061
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0061
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0062
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0062
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0062
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0063
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0063
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0063
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0063
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0064
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0064
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0064
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0065
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0065
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0066
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0066
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0067
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0067
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0067
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0067
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0068
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0068
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0068
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0069
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0069
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0069
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0069
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0070
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0070
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0070
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0070
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0071
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0071
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0071
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0071
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0072
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0072
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0072
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0073
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0073
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0073
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0074
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0074
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0074


Agricultural and Forest Meteorology 298-299 (2021) 108292

15

continental carbon cycle simulations with North American flux tower observations. 
Ecol. Monographs 83 (4), 531–556. 

Randerson, J.T., Thompson, M.V., Malmstrom, C.M., Field, C.B., Fung, I.Y., 1996. 
Substrate limitations for heterotrophs: implications for models that estimate the 
seasonal cycle of atmospheric CO2. Glob. Biogeochem. Cycles 10 (4), 585–602. 

Reichstein, M., Bahn, M., Mahecha, M.D., Kattge, J., Baldocchi, D.D., 2014. Linking plant 
and ecosystem functional biogeography. Proc. Natl. Acad. Sci. 111 (38), 
13697–13702. 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., 
Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., 
Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., 
Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., 
Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., 
Yakir, D., Valentini, R., 2005. On the separation of net ecosystem exchange into 
assimilation and ecosystem respiration: review and improved algorithm. Global 
Change Biol. 11 (9), 1424–1439. 

Richardson, A.D., Anderson, R.S., Arain, M.A., Barr, A.G., Bohrer, G., Chen, G., Chen, J. 
M., Ciais, P., Davis, K.J., Desai, A.R., Dietze, M.C., Dragoni, D., Garrity, S.R., 
Gough, C.M., Grant, R., Hollinger, D.Y., Margolis, H.A., McCaughey, H., 
Migliavacca, M., Monson, R.K., Munger, J.W., Poulter, B., Raczka, B.M., Ricciuto, D. 
M., Sahoo, A.K., Schaefer, K., Tian, H., Vargas, R., Verbeeck, H., Xiao, J., Xue, Y., 
2012. Terrestrial biosphere models need better representation of vegetation 
phenology: results from the North American Carbon Program Site Synthesis. Global 
Change Biol. 18 (2), 566–584. 

Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., 
Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., 
Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R.D., Lucchesi, R., 
Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C.R., Reichle, R., Robertson, F. 
R., Ruddick, A.G., Sienkiewicz, M., Woollen, J., 2011. MERRA: NASA’s modern-era 
retrospective analysis for research and applications. J. Clim. 24 (14), 3624–3648. 

Rogers, A., 2014. The use and misuse of Vc,max in Earth System Models. Photosynth. 
Res. 119 (1), 15–29. 

Rogers, A., Medlyn, B.E., Dukes, J.S., Bonan, G., Von Caemmerer, S., Dietze, M.C., 
Kattge, J., Leakey, A.D., Mercado, L.M., Niinemets, Ü., 2017. A roadmap for 
improving the representation of photosynthesis in Earth system models. New Phytol. 
213 (1), 22–42. 

Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M., Reeves, M., Hashimoto, H., 2004. 
A continuous satellite-derived measure of global terrestrial primary production. 
Bioscience 54 (6), 547–560. 

Running, S.W., Zhao, M., 2015. Daily GPP and annual NPP (MOD17A2/A3) products 
NASA Earth Observing System MODIS land algorithm. MOD17 User’s Guide, 2015.  

Schaefer, K., Collatz, G.J., Tans, P., Denning, A.S., Baker, I., Berry, J., Prihodko, L., 
Suits, N., Philpott, A., 2008. Combined simple biosphere/Carnegie-Ames-Stanford 
approach terrestrial carbon cycle model. J. Geophys. Res.: Biogeosciences 113 (G3). 

Schaefer, K., Schwalm, C.R., Williams, C., Arain, M.A., Barr, A., Chen, J.M., Davis, K.J., 
Dimitrov, D., Hilton, T.W., Hollinger, D.Y., Humphreys, E., Poulter, B., Raczka, B.M., 
Richardson, A.D., Sahoo, A., Thornton, P., Vargas, R., Verbeeck, H., Anderson, R., 
Baker, I., Black, T.A., Bolstad, P., Chen, J., Curtis, P.S., Desai, A.R., Dietze, M., 
Dragoni, D., Gough, C., Grant, R.F., Gu, L., Jain, A., Kucharik, C., Law, B., Liu, S., 
Lokipitiya, E., Margolis, H.A., Matamala, R., McCaughey, J.H., Monson, R., 
Munger, J.W., Oechel, W., Peng, C., Price, D.T., Ricciuto, D., Riley, W.J., Roulet, N., 
Tian, H., Tonitto, C., Torn, M., Weng, E., Zhou, X., 2012. A model-data comparison 
of gross primary productivity: results from the North American carbon program site 
synthesis. J. Geophys. Res.: Biogeosciences 117 (G3). 

Schewe, J., Gosling, S.N., Reyer, C., Zhao, F., Ciais, P., Elliott, J., Francois, L., Huber, V., 
Lotze, H.K., Seneviratne, S.I., 2019. State-of-the-art global models underestimate 
impacts from climate extremes. Nat. Commun. 10 (1), 1005. 

Scholze, M., Kaminski, T., Knorr, W., Blessing, S., Vossbeck, M., Grant, J.P., Scipal, K., 
2016. Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ 
observations to constrain the global terrestrial carbon cycle. Remote Sens. Environ. 
180, 334–345. 

Shabanov, N.V., Dong, H., Wenze, Y., Tan, B., Knyazikhin, Y., Myneni, R.B., Ahl, D.E., 
Gower, S.T., Huete, A.R., Aragao, L.E.O.C., Shimabukuro, Y.E., 2005. Analysis and 
optimization of the MODIS leaf area index algorithm retrievals over broadleaf 
forests. IEEE Trans. Geosci. Remote Sens. 43 (8), 1855–1865. 

Sippel, S., Reichstein, M., Ma, X., Mahecha, M.D., Lange, H., Flach, M., Frank, D., 2018. 
Drought, heat, and the carbon cycle: a review. Curr. Clim. Change Rep. 4 (3), 
266–286. 

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S., Murray-Tortarolo, G., Ahlström, A., 
Doney, S.C., Graven, H., Heinze, C., Huntingford, C., 2015. Recent trends and drivers 
of regional sources and sinks of carbon dioxide. Biogeosciences 12 (3), 653–679. 

Slevin, D., Tett, S.F., Exbrayat, J.-F., Bloom, A.A., Williams, M., 2017. Global evaluation 
of gross primary productivity in the JULES land surface model v3. 4.1. Geosci. Model 
Dev. 10 (7), 2651–2670. 

Song, L., Guanter, L., Guan, K., You, L., Huete, A., Ju, W., Zhang, Y., 2018. Satellite sun- 
induced chlorophyll fluorescence detects early response of winter wheat to heat 
stress in the Indian Indo-Gangetic Plains. Global Change Biol. 24 (9), 4023–4037. 

Stocker, B.D., Zscheischler, J., Keenan, T.F., Prentice, I.C., Seneviratne, S.I., Peñuelas, J., 
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Wu, Z., Ahlström, A., Smith, B., Ardö, J., Eklundh, L., Fensholt, R., Lehsten, V., 2017. 
Climate data induced uncertainty in model-based estimations of terrestrial primary 
productivity. Environ. Res. Lett. 12 (6), 064013. 

Xia, J., McGuire, A.D., Lawrence, D., Burke, E., Chen, G., Chen, X., Delire, C., Koven, C., 
MacDougall, A., Peng, S., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T.J., 
Ciais, P., Decharme, B., Gouttevin, I., Hajima, T., Hayes, D.J., Huang, K., Ji, D., 
Krinner, G., Lettenmaier, D.P., Miller, P.A., Moore, J.C., Smith, B., Sueyoshi, T., 
Shi, Z., Yan, L., Liang, J., Jiang, L., Zhang, Q., Luo, Y., 2017. Terrestrial ecosystem 
model performance in simulating productivity and its vulnerability to climate 
change in the northern permafrost region. J. Geophys. Res.: Biogeosciences 122 (2), 
430–446. 

Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore B., III, 
Ojima, D., 2004. Modeling gross primary production of temperate deciduous 
broadleaf forest using satellite images and climate data. Remote Sens. Environ. 91 
(2), 256–270. 

Xiao, Z., Liang, S., Jiang, B., 2017. Evaluation of four long time-series global leaf area 
index products. Agric. For. Meteorol. 246, 218–230. 

Zan, M., Zhou, Y., Ju, W., Zhang, Y., Zhang, L., Liu, Y., 2018. Performance of a two-leaf 
light use efficiency model for mapping gross primary productivity against remotely 
sensed sun-induced chlorophyll fluorescence data. Sci. Total Environ. 977–989 s 
613–614.  

W. He et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0074
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0074
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0075
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0075
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0075
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0076
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0076
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0076
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0077
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0077
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0077
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0077
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0077
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0077
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0077
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0077
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0078
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0078
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0078
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0078
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0078
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0078
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0078
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0078
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0079
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0079
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0079
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0079
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0079
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0079
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0080
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0080
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0081
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0081
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0081
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0081
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0082
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0082
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0082
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0083
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0083
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0084
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0084
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0084
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0085
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0086
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0086
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0086
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0087
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0087
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0087
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0087
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0088
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0088
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0088
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0088
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0089
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0089
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0089
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0090
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0090
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0090
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0091
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0091
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0091
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0092
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0092
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0092
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0093
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0093
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0093
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0094
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0094
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0094
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0094
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0095
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0095
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0095
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0095
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0096
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0096
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0096
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0096
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0096
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0097
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0097
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0097
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0098
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0098
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0098
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0098
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0099
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0099
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0099
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0099
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0099
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0100
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0100
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0100
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0100
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0101
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0101
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0101
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0102
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0102
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0102
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0103
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0103
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0103
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0103
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0103
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0103
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0103
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0104
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0104
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0104
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0105
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0105
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0106
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0106
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0106
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0106
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0107
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0107
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0107
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0108
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0108
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0108
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0108
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0109
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0109
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0109
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0110
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0110
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0110
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0110
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0111
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0111
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0111
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0111
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0111
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0112
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0112
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0112
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0113
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0113
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0113
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0113
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0113
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0113
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0113
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0113
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0114
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0114
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0114
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0114
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0115
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0115
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0116
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0116
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0116
http://refhub.elsevier.com/S0168-1923(20)30394-4/sbref0116


Agricultural and Forest Meteorology 298-299 (2021) 108292

16

Zeng, N., Mariotti, A., Wetzel, P., 2005. Terrestrial mechanisms of interannual CO2 
variability. Glob. Biogeochem. Cycles 19 (1), GB1016. 

Zhang, L., Qiao, N., Huang, C., Wang, S., 2019a. Monitoring drought effects on 
vegetation productivity using satellite solar-induced chlorophyll fluorescence. 
Remote Sens. 11 (4), 378. 

Zhang, Y., Guanter, L., Berry, J.A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A., 
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