
Abstract  Projections of future carbon sinks and stocks are important because they show how the world's 
ecosystems will respond to elevated CO2 and changes in climate. Moreover, they are crucial to inform 
policy decisions around emissions reductions to stay within the global warming levels identified by the Paris 
Agreement. However, Earth System Models from the 6th Coupled Model Intercomparison Project (CMIP6) 
show substantial spread in future projections—especially of the terrestrial carbon cycle, leading to a large 
uncertainty in our knowledge of any remaining carbon budget (RCB). Here we evaluate the global terrestrial 
carbon cycle projections on a region-by-region basis and compare the global models with regional assessments 
made by the REgional Carbon Cycle Assessment and Processes, Phase 2 activity. Results show that for each 
region, the CMIP6 multi-model mean is generally consistent with the regional assessment, but substantial 
cross-model spread exists. Nonetheless, all models perform well in some regions and no region is without 
some well performing models. This gives confidence that the CMIP6 models can be used to look at future 
changes in carbon stocks on a regional basis with appropriate model assessment and benchmarking. We find 
that most regions of the world remain cumulative net sources of CO2 between now and 2100 when considering 
the balance of fossil-fuels and natural sinks, even under aggressive mitigation scenarios. This paper identifies 
strengths and weaknesses for each model in terms of its performance over a particular region including how 
process representation might impact those results and sets the agenda for applying stricter constraints at 
regional scales to reduce the uncertainty in global projections.

Plain Language Summary  Future climate change, and higher levels of CO2 in the atmosphere will 
have significant effects on ecosystems around the world. It is important that we can model these effects both 
because the ecosystems are important in their own right and because the carbon they store affects how much 
CO2 accumulates in the atmosphere, and thus, how strongly we must reduce human emissions in order to meet 
internationally agreed climate goals. However, the models often give different results, leading to a large spread 
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Key Points:
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1.  Introduction
Earth System Models (ESMs) are used to project future climate and carbon sinks and inform the remaining 
carbon budgets (RCBs) which allow us to stay within target warming levels. These models remain the most 
comprehensive and complex tools available for making such projections, and IPCC assessments of RCBs have 
relied on these since IPCC AR5 (IPCC,  2014). The techniques for determining future carbon budgets have 
matured since AR5 and can now be broken down into different components (IPCC, 2018; Rogelj et al., 2019). In 
parallel, IPCC AR6 drew on modeling results from a new generation of ESMs which contributed output to the 
6th Coupled Model Intercomparison Project (CMIP6, Eyring et al., 2016). Assessments of the RCB are centered 
on the CMIP multi-model mean as is standard when using projections without further lines of evidence to act 
as constraint, but the model spread is substantial and leads to a wide range of possible future carbon budgets. In 
AR5 the assessed carbon budget for 2°C had a spread of 570 PgC for the 33%–66% range and in AR6 this range 
was almost unchanged at 550 PgC. Thus, the large spread in model results reported in AR5 (Ciais et al., 2013) 
has not been reduced, and the dominant cause of this uncertainty remains the land carbon cycle and its response 
to environmental changes (Jones & Friedlingstein, 2020). This uncertainty therefore hinders the usefulness of the 
RCB concept, and it is an outstanding research priority to try to constrain our knowledge of future carbon cycle 
changes.

In parallel, stand-alone (or “offline”) land-surface models are used to simulate the historical and contempo-
rary carbon cycle for both global assessments (Friedlingstein, O’Sullivan, et al., 2022) and regional ones (Sitch 
et al., 2015). These offline land models are typically the same, or very similar, to the land-surface components 
of ESMs, but there is surprisingly little direct use made of offline simulation results to help inform or reduce 
uncertainty in results from coupled models. Analyses of the contemporary period also draw on many other 
lines of evidence in addition to the land models—such as atmospheric inversion modeling, forest inventories, 
national reporting of anthropogenic emissions and remote sensing products, all combined with data assimilation 
approaches (e.g., Bloom et al., 2016). So while offline models have a large hand in assessing the carbon budget 
to date, and coupled models in quantifying the RCB for the future, we believe there is an activity required to help 
join these communities to fully utilize available data and constraints to improve consistency over the historical, 
contemporary and future time periods.

Past attempts to evaluate ESMs can be broadly categorized along three orthogonal axes of focus: analysis along 
different timescales; analysis of different processes; and analysis at different regional and spatial scales. For 
example, Cox et  al.  (2013) and Bastos et  al.  (2016) explore the carbon cycle on interannual timescales, and 
Wenzel et al. (2016) and Graven et al. (2013) down to seasonal scales. Burke et al. (2013) and Koven, Riley, 
and Stern  (2013) analyze permafrost representation; Kloster et  al.  (2011) and Burton et  al.  (2019) fire; and 
Erb et  al.  (2017) and Pongratz et  al.  (2018) discuss land-use and management. Davies-Barnard et  al.  (2020) 
assess representation of the nitrogen cycle and Goll et al. (2012) the phosphorus cycle. Across regions, Anav 
et al. (2013) perform a thorough evaluation of CMIP5 models, but at global and large latitude band scale, while 
activities such as MsTMIP (Huntzinger et  al., 2013) look at single continental regions, or biomes (Ahlström 
et al., 2015), and some studies perform analysis at single sites such as FACE experiments (Walker et al., 2015) 
and forest droughting (Rowland et al., 2018). Here we extend the analysis of continental-scale regions to look 
systematically across CMIP6 projections compared with the REgional Carbon Cycle Assessment and Processes, 
Phase 2 (RECCAP2) assessments.

While there are papers looking at global constraints on climate and carbon cycle sensitivity (e.g., Cox et al., 2013; 
Wenzel et al., 2016), no activity to date has attempted to use directly the wealth of knowledge we have on the 
contemporary carbon cycle to reduce the wide spread of future projections. This is partly because there is a 
disconnect between the tools used for each job—although ESMs are often based around the same land-surface 

in our predictions of how ecosystems will respond in the future and a large uncertainty in any remaining carbon 
budget. We use expert knowledge and assessment of the carbon budget and its components for different regions. 
By comparing these assessments against the global models we see how good their future projections are, both 
as an average across models and also teaching us how individual models and processes affect prediction skill. 
For each region, the average of CMIP6 models is generally consistent with the regional assessments giving us 
confidence that CMIP6 global models can be used to look at future changes at the regional scale.
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models used in the Global Carbon Project budget updates and TRENDY (Friedlingstein, Jones, et al., 2022), the 
method of driving offline land surface models differs sufficiently that these do not provide an easy opportunity 
to constrain projections from coupled ESMs. The first RECCAP assessment (e.g., Sitch et al., 2015) brought 
together land models and regional-specific data and expertise to quantify regional carbon budgets. This activity 
is repeated in RECCAP2 (Poulter et al., 2022; https://www.globalcarbonproject.org/reccap/index.htm) enabling 
new insights into the drivers and changes in regional scale carbon cycle processes. This brings an opportunity 
to make use of this vast assembly of information to improve our ability to predict changes and constrain future 
projections of carbon stocks and fluxes.

Much activity to reduce spread in future projections comes from optimizing and constraining model parameters 
and processes (i.e., trying to improve the models before we run them). This is a valuable activity and leads to 
improved models with reduced errors (Eyring et  al.,  2019). However, as is the case with climate projections 
and quantities such as climate sensitivity, the approach of improving models in itself has not proved successful 
in terms of reducing uncertainty. A second approach—to constrain results in a posterior sense may prove more 
fruitful. A range of papers have attempted to do this for climate sensitivity based on observations (Sherwood 
et al., 2020); aerosol forcing (Bellouin et al., 2020) and rates of global warming based on recent trends (Y. Liang 
et al., 2020; Ribes et al., 2021; Tokarska et al., 2020). For the carbon cycle, the use of posterior methods has 
an advantage that different constraints can be utilized for different regions. For example, interannual variability 
might be best suited for constraining future tropical land carbon changes (Cox et al., 2013) while changes in the 
seasonal cycle reflect mid- to high-latitude changes (Wenzel et al., 2016).

This paper is an initial attempt to develop techniques to derive greater benefit from present day assessments 
in identifying short-comings in global model projections and eventually constraining future behavior of the 
carbon cycle simulated by ESMs. It is not possible in a single study to perform and combine all the possible 
constraints which could be inferred from such a wealth of understanding of regional carbon cycle processes, but 
we hope it provides guidance for more detailed and complete model evaluation and sparks research into extracting 
greater value from present day analysis to constrain future projections. We highlight regions specifically where 
global ESMs are in good agreement with each other and/or with expert assessment. For regions where there is 
pronounced disagreement, we discuss potential for both a prior improvement via model development and poste-
rior constraint via regional assessments such as RECCAP2.

2.  Methods
We present here global and regional carbon cycle projections from CMIP6. As per standard usage of such ensem-
bles we present the multi-model mean, but we also delve into individual model performance for simulation of 
carbon fluxes and carbon storage on regional scales and attempt to link this to the process completeness of each 
model.

The justification of using the unweighted multi-model mean is that there remains no better agreed way of combin-
ing outcomes from an unbalanced “ensemble of opportunity” like CMIP6. Members of the ensemble differ in 
complexity, skill, independence from each other and in number of ensemble members submitted for analysis. 
Multiple ways exist to try to select, filter or weight outputs using either or both model skill or independence but 
with the exception of global temperature no technique has been proven to add skill to the resulting mean (Lee 
et al., 2021, Box 4.1). Knutti et al. (2017) argue against the traditional “one model one vote” democracy, but show 
that success of weighting will be very application dependent. Quantities more closely related to global tempera-
ture (such as sea-ice) may be more amenable to a model weighting approach. Sanderson et al. (2017) do apply a 
regional weighting to projections from global models and discuss merits of univariate or multi-variate constraints 
showing that weighting can be done based on both skill and uniqueness, but Abramowitz et al. (2019) are clear 
that weighting schemes must be very carefully tested with out-of-sample data in order to avoid overfitting due to 
the generally limited sample size of the ensemble. They conclude that model dependence is unlikely to be able  to 
be defined in a universally unambiguous way. Weigel et al. (2010) go further and caution against weighting unless 
uncertainty in the constraint can be properly accounted for. They show that the multi-model mean often outper-
forms even the best model in an ensemble such as CMIP6 and that poorly chosen constraint metrics can actually 
be counter-productive. This is particularly true when internal variability is large (which is the case for terrestrial 
carbon fluxes)—in this case more information may be lost by inappropriate weighting than gained. An example 
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is the model selection used in AR5 (Collins et al., 2013) for sea-ice projections which was subsequently shown to 
be overly restrictive due to internal variability (Notz, 2015; Stroeve & Notz, 2015).

In the case of the carbon cycle we know that model differences are dominated by land rather than ocean carbon 
uptake. Hewitt et al. (2016) showed that model differences for land carbon outweighed internal variability and 
choice of scenarios. This was confirmed by Lovenduski and Bonan (2017) who showed very limited ability to 
constrain future projections even if they applied an impractical level of precision to the observational constraint. 
Both Hoffman et al. (2014) and Friedlingstein et al. (2014) found correlations between present day CO2 biases 
in emissions-driven simulations suggesting a possible route to constraint, but Booth et al. (2017) warn against 
over-constraining the results due to unaccounted for uncertainty in land-use emissions. Further to this, Jones 
et al. (2013) found different future biases from the same models but for different scenarios in CMIP5 simulations 
implying that the balance of feedbacks may be scenario dependent and cannot be done in an absolute sense at 
present day. Given that the terrestrial carbon cycle has large interannual variability (Braswell et al., 1997; Jones 
& Cox, 2001) we conclude that it is as yet premature to attempt to constrain future projections using a model 
weighting or selection approach.

In this paper we analyze results from 16 CMIP6 models (see Table S1 in Supporting Information S1). RECCAP2 
has identified a focus study period of the decade 2010–2019, and 10 land regions which we use for our compar-
ison with CMIP6. These regions are: North and South America, Central-, East-, South-, and South East Asia, 
Europe, Africa, Australasia, and Russia (Figures 2 and 11 in Poulter et al. (2022)). Additionally, we compare 
results for the permafrost region which cuts across some of the defined region but carries particular interest for 
future carbon cycle response to climate change.

For consistency with IPCC projections (Lee et al., 2021), we assess future carbon sinks under a high and low 
future emission scenario (SSP1-2.6, SSP3-7.0) and focus on two future time horizons (mid-term: 2041–2060, and 
the long-term: 2081–2100: Figure 1). For slow-changing quantities such as carbon storage we show results for the 
years 2050 and 2100, while for quantities such as carbon fluxes with substantial year-to-year variations we show 
means over these 20-year periods.

We perform a filtering for each carbon cycle variable in order to assess how many models perform well for each 
region and how many regions are well simulated for each model. We calculate the mean over the 2010–2019 
period from each CMIP6 model and compare with the best estimate and uncertainty from the RECCAP2 assess-
ment. This enables us to count models consistent with RECCAP2 for each region and variable. We then show 
projections into the future as both the mean and range of the full CMIP6 ensemble and also the sub-ensemble 
of models passing the filtering at present day. We note there is inevitably some circularity in this comparison 
where RECCAP2 assessments draw on very similar land models used in CMIP6 ESMs. This is unavoidable 
and is one reason discussed later we do not proceed to make quantitative constraints from this evaluation, but 

Figure 1.  Historical and future anthropogenic CO2 emissions (from fossil fuel and land-use change) following two future 
scenario pathways (SSP1-2.6, blue and SSP3-7.0, red) and showing the periods of focus from 2041 to 2060 and 2081-2100.
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the comparison is valid because the TRENDY models are constrained by use of observed climate data and the 
RECCAP2 assessments bring in other, regionally specific datasets and expert assessment.

In addition to simulated changes in land carbon stock, we also assemble regional fossil fuel emissions as specified 
in the SSP1-2.6 and SSP3-7.0 scenarios for context. We note though that these are not the output from the ESMs, 
and that the behavior of global and local climate and the carbon cycle is dependent on global-scale rather than 
regional-scale emissions. These anthropogenic emissions by region are shown in Figure 2. All regions exhibit 
similar trends, with a marked increase over the present day for SSP3-7.0 and a decrease for SSP1-2.6. Some 
regions, such as Europe and North America, have recent decreases in emissions before these scenarios diverge 
while most others have yet to peak. Globally, SSP1-2.6 has net negative emissions after about 2070, but again this 
is regionally differentiated as discussed in IPCC AR6 WG3 Summary for Policy Makers (IPCC, 2022). Figure S1 
in Supporting Information S1 shows the land-use change in the two scenarios by RECCAP2 region.

3.  Earth System Model Projections From CMIP6
3.1.  Global

Projected global climate changes from the SSP1-2.6 and SSP3-7.0 scenarios are presented in detail in the 
IPCC AR6 report (Lee et al., 2021); a brief overview is shown here in Figure 3. Compared to the recent past 

Figure 2.  Regional fossil fuel emissions for the historical period (black) and future scenarios SSP1-2.6 (blue) and SSP3-7.0 (red). In SSP1-2.6 there are large 
quantities of bioenergy with carbon capture and storage (BECCS) which create negative emissions in the energy sector, leading to some regions exhibiting net-negative 
anthropogenic emissions by 2100.
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(1995–2014), global surface air temperature is assessed to increase by 0.5–1.3°C and 0.9–1.7°C for the period 
2041–2060, respectively for scenarios SSP1-2.6 and SSP3-7.0; and increasing to 0.5–1.5°C and 2.0–3.7°C for 
the period 2081–2100. Global precipitation over land is projected to increase under all scenarios with increases 
of 2.8% and 2.5% for the period 2041–2060, respectively for scenarios SSP1-2.6 and SSP3-7.0; and increasing 
to 3.3% and 5.8% for the period 2081–2100. Uncertainty in these projections is dominated by the uncertainty 
in climate sensitivity (i.e., the response of the global climate system to a doubling of CO2 in the atmosphere), 
although regional changes in precipitation are highly variable between climate models. The near-term divergence 
between these scenarios may be driven by aerosols (SSP3-7.0 has higher aerosol emissions than any other SSP) 
and is particularly evident over Asia (Figure S3 in Supporting Information S1).

Corresponding changes in the global carbon cycle are shown in Figure 4. As with CMIP5 projections shown in 
AR5 (Ciais et al., 2013), projected carbon cycle changes show substantial uncertainty dominated by the land 
(Jones & Friedlingstein, 2020). Most ESMs agree that vegetation carbon declined during the early part of the 
twentieth century due to land-use change but increased toward the present day and that this increase continues 
into the future. ESMs are generally consistent with assessed present-day sinks but for both land and ocean are 
slightly lower than those estimated by the Global Carbon Budget (Figure 4) of 3.1 ± 0.6 for the land and of 
2.9 ± 0.4 PgC yr −1 for the ocean during the decade 2012–2021 (Friedlingstein, O’Sullivan, et al., 2022). During 
the 21st century, land and ocean sinks show similar responses, but the land sink has greater variability and spread 
between ESMs. Under the higher emissions and CO2 level of SSP3-7.0, sinks grow initially due to increasing 
atmospheric concentrations of CO2 but are subsequently limited by emerging carbon–climate feedbacks as the 
climate warms: both land and ocean sinks are projected to stop growing from the second part of the 21st century 
even as CO2 continues to increase. Under the lower emissions of SSP1-2.6, the weakening growth rate of carbon 
sinks is a response to the declining atmospheric CO2 concentrations toward the end of the century. However, 
while future projected ocean carbon sinks are clearly differentiated under different future scenarios (in common 
again with CMIP5: Hewitt et al., 2016), the spread for future land fluxes is bigger between models than across 
these very different scenarios.

Aggregating across models allows us to see that the future land and ocean carbon sinks remain of comparable 
magnitude under both high and low future emissions and for mid and long-term time horizons (Figure 5). This 
is in agreement with the assessed fractional uptake by land and ocean shown in IPCC AR6 Summary for Policy 
Makers (IPCC, 2021). For the mid-term, the two scenarios have not diverged markedly, and both land and ocean 
have taken up approximately 40 PgC over the 35 years from the present day (taken here as 2015) to 2050. By 

Figure 3.  Change, since 1850, in (a) global temperature and (b) precipitation projections from CMIP6.
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2100 though the higher CO2 in SSP3-7.0 has driven larger sinks (albeit a smaller fraction of human emissions) of 
between 100 and 150 PgC compared with around 60 PgC in SSP1-2.6.

3.2.  Regional

In order to enable direct comparison with the findings of RECCAP2, CMIP6 data is assessed on the RECCAP2 
regions. A summary of climate and carbon cycle changes is summarized here before we provide direct compari-
son with RECCAP2 assessment in Section 4.

Regional climate change is not uniform, and these regional differences may drive different responses of the 
carbon cycle. Supporting Information S1 shows CMIP6 projected changes in temperature and precipitation over 
the RECCAP2 regions (Figures S2 and S3 in Supporting Information  S1). The expected signal of SSP3-7.0 
warming more rapidly than SSP1-2.6 is clear for all regions by 2100, although at mid-century interannual varia-
bility obscures the difference between high and low emissions pathways. The picture for rainfall is more nuanced 
with most regions exhibiting substantial interannual variability. Some regions, such as North America or Russia, 
show a clear model signal toward getting wetter, especially under the high emissions scenario. In contrast, some, 
such as South America, show a weak trend or even drying.

Simulated changes in terrestrial carbon stocks are shown in Figure  6 (vegetation carbon) and Figure  7 (soil 
carbon). As with the global total some signals are clear—such as a reduction in biomass due to land use change 
simulated in many regions followed by more recent increases, which are stronger under SSP3-7.0. Equally, the 
spread between models is large and the signal of different future scenarios is small compared to the uncertainty 
between-models. This is especially true for soil carbon (Anav et  al.,  2013) which is not well represented by 
models in terms of total carbon stocks due to larger difference in turnover times (Carvalhais et al., 2014). Not all 
models include treatment of land-use change and this drives large inter-model spread in regions where this is an 
important forcing such as over Africa under SSP3-70. Here we show changes in vegetation and soil carbon stocks 
so that all models can be included from a zero baseline at 1850 and the plumes show differences in simulated 
gains and losses. In the next section, we describe region-by-region absolute amounts of carbon stocks and fluxes.

Figure 4.  CMIP6 simulation of historical (black) and projections of future carbon cycle variables for SSP1-2.6 (blue) and SSP3-7.0 (red). Stocks are shown as changes 
since 1850 for: (a) global vegetation carbon; (b) global soil carbon; fluxes are shown as (c) net land flux (nbp); (d) net ocean flux (fgco2). Global Carbon Project 
estimates for recent land and ocean sinks (“SLAND” and “SOCEAN”) are shown as green dots and error bars from Friedlingstein, O’Sullivan, et al. (2022).
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4.  Regional Assessment of Carbon Cycle Projections
In this section we present a region-by-region comparison of the carbon stocks and fluxes simulated by CMIP6 
and assessed by the RECCAP2 chapter teams. The data and its derivation are presented in detail in the regional 
chapters of the RECCAP2 assessment (special collection across multiple journals of the American Geophysical 
Union). Here we assemble top-level summary statistics of carbon stocks and fluxes for each RECCAP2 region in 
a common table to enable a direct comparison with that same region as simulated by CMIP6 ESMs. Figures show 
how the historical simulations from CMIP6 compare with the present-day RECCAP2 assessed values before 
showing projections into the future under the low and high emissions scenarios.

In this section, we discuss specific responses for each region and options to constrain the projection in future 
work. In the next section we synthesize strengths and weaknesses of each ESM and analyze systematic issues 
associated with regions or process inclusion in the models. Where there is poor agreement between CMIP and 
RECCAP we discuss why this may be. For each region we structure the analysis the same way and compare ESM 
simulated fluxes and stocks with RECCAP2 assessed values. Briefly, we compare gross and net primary produc-
tivity (GPP, NPP) and also two measures of net flux: net ecosystem productivity, NEP (defined as the difference 
between NPP and heterotrophic respiration) and net biome productivity, NBP (defined as the total flux in or out 

Figure 5.  CMIP6-simulated changes in the global carbon budget for the two scenarios SSP1-2.6 (top row) and SSP3-7.0 (bottom row) and the two focus periods up to 
2050 (left-hand column) and up to 2100 (right-hand column).
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of the land carbon stock). NBP is the same as net ecosystem exchange as defined by Ciais et al. (2022), but here 
taken with a sign convention that positive reflects a sink into the land carbon stock. The reason for comparing 
these two measures of net flux is that most CMIP6 ESMs lack some of the relevant processes (such as fire, 
harvest and lateral transport) that would be required to enable a direct comparison with regional estimates of the 
total flux, NBP. Therefore, although NBP may be more relevant in terms of capturing the full carbon balance of 
a region, NEP is more easily defined and compared directly between modeled and observed estimates. We also 
compare carbon stocks in vegetation and soils (taking the sum of CMIP variables “cSoil + cLitter”) and the total 
terrestrial carbon stock. For brevity, we show the simulated values of GPP, NBP and total terrestrial stock up to 
2100 for the two scenarios (SSP1-2.6 and SSP3-7.0). As described in Section 2, we show examples of how a 
possible filtering of CMIP6 outputs could be used to constrain future projections. The science behind such filter-
ing is not well developed and it is not possible to use such a simple technique to provide a robust constraint. Hence 
we use it to illustrate how a comparison with regional assessments may influence future projections, but we do 
not quantitatively assemble these constrained values into a new prediction of future carbon changes. Further 
justification of this approach is discussed in Section 5.

4.1.  North America

For North America there is broad agreement between CMIP6 models and RECCAP2 best estimates for all C 
fluxes and pools (Table 1). The multi-model mean is close to the assessed value for all of GPP, NBP and total 

Figure 6.  CMIP6 projected changes in vegetation carbon for SSP1-2.6 (blue) and SSP3-7.0 (red) for the REgional Carbon Cycle Assessment and Processes, Phase 2 
regions.
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terrestrial carbon (Ctot), with 9, 11 and 8 models passing the filtering respectively. Without fossil-fuel emissions, 
the region is consistently recognized as a C sink over last decade with an estimated magnitude of 0.35 ± 0.32 
PgCyr −1 in the CMIP6 models and 0.41  ±  0.23 PgCyr −1 in RECCAP2, which is also consistent with other 

Figure 7.  CMIP6 projected changes in soil carbon for SSP1-2.6 (blue) and SSP3-7.0 (red) for the REgional Carbon Cycle Assessment and Processes, Phase 2 regions.

CMIP6 (mean ± 1 sigma) RECCAP2 (best estimate ± error estimate)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 17.46 ± 2.49 16.79 ± 2.10

NPP 8.41 ± 1.69 8.87 ± 1.04

NEP 1.02 ± 2.42 2.77 ± 0.76

NBP 0.35 ± 0.19 0.41 ± 0.23

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 73.64 ± 26.86 53.3 ± 18.5

Soil carbon 313.11 ± 207.03 301.6 ± 206.8

Product carbon 1.20 ± 0.99 10.4

Total terrest. carbon 404.64 ± 204.49 382.6 ± 208.1

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 1 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for N. America
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estimates (see e.g., Cavallaro et al., 2018; Murray-Tortarolo et al., 2022). As a result, the projected total future 
land C in the region changed very little in both scenarios after applying the filtering, while nonetheless reducing 
their uncertainties.

Both GPP and Ctot show good agreement between CMIP6 outputs and RECCAP2 assessment (Figure 8). There 
is a strong overlap in the estimates with a close alignment of both the central estimates and uncertainty ranges for 
GPP and Ctot. RECCAP2 assessed values are slightly lower leading to a slight reduction in values and narrowing 
of the range after filtering. The results show an ongoing increase in GPP under SSP3-7.0 while GPP does not 

Figure 8.  CMIP6 simulated GPP (top), NBP (middle) and total terrestrial carbon stock (bottom) for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for N. America. The panels show individual CMIP6 models in faint lines. For the historical period, individual models are shown 
in gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle Assessment 
and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed range are 
shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. Filtering just 
those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering are shown to 
the right of the plots.
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increase under SSP1-2.6 after mid 21st century. This leads to the two scenarios diverging significantly by 2100. 
However, this does not translate into similar increases in carbon stocks with both scenarios showing very similar 
changes (slight increases) on both 2050 and 2100 time horizons.

Despite this agreement, some key processes of the C cycle of the region are not necessarily well characterized 
either in the models or in our best estimations in the RECCAP2 project. For example, mountain pine beetle 
outbreaks have been shown to drive large pulses of C to the atmosphere, via increased tree mortality and reduced 
C uptake; a process widely missing from both estimations (Kurz et al., 2008). Similarly, disturbance—particularly 
fire and drought—seems to be exerting increasingly larger control on the interannual variability of the C uptake 
(Murray-Tortarolo et al., 2022; J. A. Wang et al., 2021), processes likely to strengthen in the future, and most of 
which are not represented in most ESMs. Finally, both estimates lack the inclusion of lateral fluxes, such as wood 
and crop trade, or the C transport to the ocean. Thus, future efforts to constrain future C projections in the region 
should focus on further benchmarking model results based on the inclusion of these fluxes.

4.2.  South America

CMIP6 simulated, and RECCAP2 assessed values of South American carbon fluxes and stocks are summarized 
in Table 2. The multi-model mean is close to the assessed value for GPP and biased low for NBP but within the 
error bars and close for Ctot, with 10, 16 and 11 models passing the filtering respectively. With extensive tropical 
forests, GPP and NPP are high compared to other regions, and the CMIP6 simulations are in good agreement with 
these estimates. However, the strong productivity of the land biosphere is balanced with high emission fluxes 
from deforestation and wildfires (Assis et al., 2020; Harris et al., 2021) and the resulting carbon budget is particu-
larly difficult to quantify, due to challenging methodological difficulties associated with sampling such complex 
ecosystem processes. Fire emissions alone, based on the Global Fire Emissions Database version 4 (GFED4s, 
Van Der Werf et al., 2017), amount to 0.285 PgC yr −1 in 2010–2019, mostly due to fires in Brazil (68%) and 
Bolivia (15%), followed by Venezuela, Argentina, Paraguay and Colombia (15%).

The estimates for NBP from RECCAP2 that combine process-based models (TRENDY v9) and a land data 
assimilation system (CARDAMOM; Bloom et al., 2016) referred here as “bottom-up” estimate, and an ensemble 
of atmospheric inversion models, referred here as “top-down” estimate, both show small regional sinks, but are 
not distinct from carbon neutrality given their large uncertainty ranges. For alternative data sources for carbon 
stocks in the regions, assessment from remote sensing products estimate a range of 94–120 PgC stored in the 
vegetation carbon (Gloor et al., 2012) and around 220 PgC stored in soils (Hengl et al., 2017). The ensemble of 
CMIP6 models tend to estimate higher values for the vegetation carbon stock and lower for soil carbon, but both 
within the large uncertainty bounds.

Filtering of GPP leads to a lower magnitude and range than from the full set of CMIP6 models (Figure  9). 
This is because, despite general good agreement between CMIP6 and RECCAP2 mean and uncertainty values, 

CMIP6 (mean ± 1 sigma) RECCAP2 (best estimate ± error estimate)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 33.72 ± 5.81 33.02 ± 5.23

NPP 14.14 ± 3.53 15.38 ± 3.47

NEP 1.19 ± 4.76 1.51 ± 5.56

NBP 0.21 ± 0.41 Bottom-up: +0.7 ± 3.4

Top-down: +0.083 ± 0.55

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 140.38 ± 29.43 94.1 ± 37.3 a

Soil carbon 158.28 ± 74.34 220.6 ± 66.2 b

Product carbon 1.12 ± 1.00

Total terrest. carbon 315.11 ± 81.78 314.7 ± 76.0

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.
 avegetation carbon estimated from Spawn et al. (2020).  bSoil carbon estimated from Poggio et al. (2021).

Table 2 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for S. America
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the filtering removes a few of the models at the top end of ESM results thus reducing future projections of 
GPP. The results show a small, but ongoing increase in GPP under SSP3-7.0 while GPP stops its increase under 
SSP1-2.6 after mid 21st century. It is likely that the larger warming in this region under SSP3-7.0 reduces future 
increases in GPP, and thus lead to the two scenarios diverging less significantly by 2100 than in temperature or 
higher-latitude regions. A similar trend is seen for Ctot, but in this case the very close agreement between present 
day values is a compensation of CMIP6 models have significantly greater biomass and smaller soil carbon than 
regional assessments—again highlighting the dangers of a simplistic filtering approach.

Figure 9.  (top) CMIP6 simulated GPP, (middle) NBP, and (bottom) total terrestrial carbon stock for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for S. America. The panels show individual CMIP6 models in faint lines. For the historical period, individual models are shown 
in gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle Assessment 
and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed range are 
shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. Filtering just 
those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering are shown to 
the right of the plots.
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4.3.  Europe

CMIP6 simulated, and RECCAP2 assessed values of European carbon fluxes and stocks are summarized in 
(Table 3). The multi-model mean is close to the assessed for both GPP and NBP. Two and seven models pass the 
filtering for GPP and NBP respectively, whilst RECCAP2 did not assess carbon stocks.

While we do not attempt to evaluate CMIP6 trends in fluxes, we note the different contributions between managed 
and natural land in driving changes in GPP for Europe over the last decade. GPP in Europe has an increasing trend 
over 2000–2018 by 18.2 TgC yr −2 (S. Liang et al., 2021), which when separated into natural ecosystems versus 
agricultural vegetation (cropland and pasture), using Hilda + data (Winkler et al., 2021) as mask, both contrib-
ute about half of the total absolute value of GPP. However, natural land drives the upwards trend, primarily due 
to  an increase in areal GPP rates (+5.2 gC m −2 yr −2), and secondarily due to an increase in areal extent of natural 
vegetation at the expense of agricultural area (+5 tsd. Km 2/yr). Agricultural GPP does not show any significant 
trend during this period. From regional inversions, RECCAP2 finds a tendency to predict CO2 sources in SW and 
E-Europe, but stronger sinks in rest of Europe (mainly in Central, Northern and SE Europe), while TRENDYv10 
models simulate a net land sink in most of Europe. This indicates that increase in natural vegetation GPP is the 
likely main cause of net-C sink, stressing the need to better understand—and include in land models and CMIP 
ESMs—fuller description of land-use and management (Pongratz et al., 2018).

For Europe, RECCAP2 assessed GPP is slightly higher than the CMIP6 mean and the narrow uncertainty range 
results in the filtering leading to a marked decrease in future projection spread, but little change in mean value 
(Figure 10). In either case, though, both filtered and unfiltered results show an ongoing increase in GPP under 
SSP3-7.0 while GPP stops increasing under SSP1-2.6 after mid 21st century. This leads to the two scenarios 
diverging significantly by 2100.

4.4.  Africa

CMIP6 simulated, and RECCAP2 assessed values of African carbon fluxes and stocks are summarized in Table 4. 
The multi-model mean matches the assessed value very well for GPP while being low but within the error bars for 
NBP. It is biased high but again within the error bars for Ctot, largely due to CMIP6 simulating greater soil carbon 
amounts. Six, 12 and 5 models pass the filtering respectively.

For both GPP and Ctot, but especially for carbon stocks, RECCAP2 assesses lower values than simulated by 
CMIP6 ESMs (Figure 11). Filtering for GPP leads to narrowed projected ranges but centrally based within the 
unfiltered range. This leads to SSP3-7.0 diverging more markedly above SSP1-2.6 future projection of GPP.

For Ctot only about the lower half of CMIP6 models fall within the present-day range of RECCAP2 and so filtered 
results much lower and narrower than unfiltered. A notable feature unique to Africa is that future NBP is lower 
for SSP3-7.0 thank SSP1-2.6 despite substantially higher GPP. This is explained not by a climate-driven effect on 
turnover, but by regional land-use changes. Figure S1 in Supporting Information S1 shows Africa has the highest 
increase in land-use (defined here as crop and pasture fraction) of any region under SSP3-7.0. Thus, when looking 
at carbon stocks, SSP3-7.0 actually sees reduced carbon storage on land by 2100.

CMIP6 (mean ± 1 sigma) RECCAP2 (best estimate ± error estimate)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 5.04 ± 0.89 5.48 ± 0.5

NPP 2.57 ± 0.64 Not available from RECCAP2 assessment

NEP 0.40 ± 1.00 0.86 ± 0.43

NBP 0.09 ± 0.08 0.10 ± 0.05

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 16.61 ± 9.15 Not available from RECCAP2 assessment

Soil carbon 61.13 ± 42.34 Not available from RECCAP2 assessment

Product carbon 0.50 ± 0.48 Not available from RECCAP2 assessment

Total terrest. carbon 83.38 ± 46.30 Not available from RECCAP2 assessment

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 3 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for Europe
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4.5.  Russia

CMIP6 simulated, and RECCAP2 assessed values of Russian carbon fluxes and stocks are summarized in Table 5. 
There is strong agreement between the simulated results of CMIP6 models and those of RECCAP2 regarding 
overall carbon fluxes and stocks (Table 5). CMIP6 models show slightly lower estimates of biomass and slightly 
higher estimates of soil carbon but GPP, NPP, NBP are extremely close, with 12 and 7 models passing the filter-
ing for GPP and NBP. The carbon stores also appear close but are outside the RECCAP2 assessed range for all 
models (i.e., none pass the filtering) due to the low uncertainty stated in RECCAP2.

Figure 10.  (top) CMIP6 simulated GPP, (middle) NBP, and (bottom) total terrestrial carbon stock for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for Europe. The panels show individual CMIP6 models in faint lines. For the historical period, individual models are shown in 
gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle Assessment 
and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed range are 
shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. Filtering just 
those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering are shown to 
the right of the plots.
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Future projections of fluxes for this region (Figure 12) show a strong dependence on scenario, with GPP under 
SSP3-7.0 increasing strongly due to both elevated CO2 and warmer temperature sin this high-latitude region. 
It is the region where GPP differs most under the two scenarios by 2100 although this is not reflected in NBP 
increases where SSP3-7.0 is only slightly higher than SSP1-2.6 due to increased turnover as well as increased 
productivity. It is also, however, a region where carbon stocks vary extremely widely across CMIP6 ESMs indi-
cating an urgent need for models here to be confronted with data. A factor of almost 10 between the highest and 
lowest values of total carbon stock show the huge discrepancy between models. Part of the reason for this is that 
this region covers a large amount of frozen ground. Permafrost carbon is not represented well in CMIP6 models 
and this is discussed more in Section 4.11. The RECCAP2 assessment here is for the top 1 m of mineral and 
organic soils of Russia (Schepaschenko et al., 2013).

4.6.  Central Asia

CMIP6 simulated, and RECCAP2 assessed values of Central Asian carbon fluxes and stocks are summarized in 
Table 6. The carbon flux and carbon pool values for Central Asia RECCAP2 assessment were based on TRENDY 
model all-combined simulations (version 10) (Friedlingstein, Jones, et  al.,  2022). The ensemble mean of 17 
terrestrial biosphere models (TRENDY v10 models) was considered as the best estimate for Central Asia region, 
and the standard deviation between model outputs was used as uncertainties.

There is a general agreement between the simulated results of CMIP6 models and those of RECCAP2 regarding 
overall carbon fluxes and stocks (Table 6). CMIP6 models show slightly lower estimates with broader ranges 
than RECCAP2 for GPP, NEP and NBP. In contrast, they suggest slightly lower estimates with narrower ranges 
for NPP, soil carbon stock, and biological products carbon pool. The CMIP6 multi-model mean is above the 
RECCAP2 assessment for vegetation carbon stock but within the uncertainty range. For NBP CMIP6 model 
mean and RECCAP2 assessment suggest a weak sink. CMIP6 mean agrees well with RECCAP2 for GPP, NBP 
and Ctot. Thirteen, 1, and 9 models pass the filtering respectively.

The results show (Figure 13) an ongoing increase in GPP under SSP3-7.0 while GPP stops its increase under 
SSP1-2.6 after mid 21st century. While the multi-model mean NBP values are in close agreement, the narrow 
range of uncertainty in the RECCAP2 assessment means only one CMIP6 ESM passes the filtering, although the 
filtered projections remain central within the unfiltered CMIP6 range. The two scenarios diverging significantly 
by 2100. As seen for other regions, this does not translate into similar increases in carbon stocks with both scenar-
ios showing very similar changes (slight increases) on both 2050 and 2100 time horizons. It may further indicate 
that the components of terrestrial ecosystem C cycle in Central Asia are vulnerable to and strongly influenced 
by climate changes.

CMIP6 (mean ± 1 sigma) RECCAP2 (best estimate ± error estimate)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 26.74 ± 6 27.95 ± 3.62 (TRENDY)

24.67 ± 2.46 (satellite)

Best estimate: 26.3 ± 3.1

NPP 12.13 ± 4 12.8 ± 2.8

NEP 1.25 ± 5 0.65 ± 4.8

NBP 0.24 ± 0.4 0.432 ± 0.484

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 85.05 ± 25 84 ± 12

Soil carbon 127.02 ± 55 87.7 ± 11

Product carbon 0.90 ± 0.9 Not available from RECCAP2 assessment

Total terrest. carbon 220.2 ± 75 171.7 ± 16

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 4 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for Africa
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4.7.  East Asia

For East Asia, CMIP6 model predictions generally agree with the RECCAP2 evaluation results for 2010–2019 
(Table 7). The multi-model mean is close to the assessed value for GPP, NBP and Ctot, with 8, 1 and 8 models 
passing the filtering respectively. The ensemble mean of CMIP6 models lies within the uncertain bounds of 
RECCAP2 best estimates for all terrestrial carbon fluxes and stocks except NBP (i.e., net carbon flux). The 
RECCAP2 reveals the region is a net carbon sink by combining a bottom-up approach utilizing inventory, simple 
ESM (OSCAR, Gasser et al., 2020), statistical models based on satellite and field measurements (0.370 ± 0.042 

Figure 11.  CMIP6 simulated GPP (top), NBP (middle) and total terrestrial carbon stock (bottom) for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for Africa. The panels show individual CMIP6 models in faint lines. For the historical period, individual models are shown in 
gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle Assessment 
and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed range are 
shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. Filtering just 
those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering are shown to 
the right of the plots.
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PgC/yr) and top-down inverse modeling approach (0.341 ± 0.125 PgC/yr). The two different approaches show 
great agreement even though the uncertainty bounds derived from inverse modeling are wider than that from 
the bottom-up approach due to the lack of atmospheric CO2 measurements to constrain the carbon flux over 
the region (Y. Wang et  al., 2022). CMIP6 models slightly underestimate the net carbon flux with a value of 
0.20 ± 0.23 PgC/yr, consistent with the previous finding showing that process-based models tend to underesti-
mate the carbon flux in the region compared to inverse modeling (Kondo et al., 2020). The underestimation of 
CMIP6 models may come from the not well-implemented processes (e.g., land use change and forest demogra-
phy) in most CMIP6 models to accurately simulate the several decades of afforestation effects in the region (Piao 
et al., 2012; J. Wang et al., 2020).

Both GPP and Ctot agree well with the CMIP6 mean estimate, but the RECCAP2 assessment has narrower uncer-
tainty bounds leading to reduced spread in filtered projections (Figure 14). The results show an ongoing increase 
in GPP under SSP3-7.0 while GPP stops increasing under SSP1-2.6 after mid 21st century. For SSP3-7.0 this 
increase is quite marked and leads to the two scenarios diverging significantly by 2100. This leads to diverging 
NBP trends. After an increase until the mid 21st century, NBP remains constant for SSP3-7.0 but rapidly decrease 
for SSP1-2.6. This trend is also reflected somewhat in carbon stocks with SSP3-7.0 showing a larger increase by 
2100, which is especially notable in the filtered results as being above SSP1-2.6.

4.8.  South Asia

CMIP6 simulated, and RECCAP2 assessed values of South Asian carbon fluxes and stocks are summarized 
in Table 8. The multi-model mean is below the assessed value for GPP but the error bars overlap and close for 
NBP. It is also biased low but for Ctot but again the error bars overlap, with 4, 11 and 5 models passing the filtering 
respectively.

In this region, the RECCAP2 assessment of the magnitude of NPP and NBP and stock values (vegetation and 
total terrestrial carbons) are similar to those simulated in CMIP6, but for some other variable differences are quite 
large. For example, in the case of flux values, CMIP6 GPP is 27% too low, whereas, CMIP total carbon (Ctot) is 
30% underestimated compared to RECCAP2 assessment (Table 8 and Figure 15). These values result in filtered 
ranges being narrower and higher than the raw unfiltered results for 2050 and 2100 cases. This outcome is espe-
cially true for Ctot where the filtering removes a cluster of ESMs from the bottom of the range. The results show 
an ongoing increase in GPP under SSP3-7.0 while GPP stops increasing under SSP1-2.6 after mid 21st century. 
This leads to the two scenarios diverging significantly by 2100. However, the divergence does not translate into 
similar increases in carbon stocks, with both scenarios showing similar changes (slight increases) for both 2050 
and 2100 time horizons.

4.9.  South East Asia

CMIP6 simulated, and RECCAP2 assessed values of South East Asian carbon fluxes and stocks are summarized 
in Table 9. The multi-model mean is below the assessed value for GPP and for NBP CMIP6 mean simulates a 

CMIP6 (mean ± 1 sigma) RECCAP2 (best estimate ± error estimate)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 9.65 ± 1.08 9.41 ± 1.12

NPP 5.09 ± 1.06 5.33 ± 0.37

NEP 0.58 ± 1.21 1.19 ± 0.14

NBP 0.34 ± 0.16 0.33 ± 0.09

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 48.85 ± 17.18 59.50 ± 4.85

Soil carbon 368.32 ± 283.34 317.10 ± 15.86

Product carbon 0.57 ± 0.52 0.65 ± 0.33

Total terrest. carbon 438.90 ± 283.05 377.25 ± 15.90

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 5 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for Russia
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weak sink while RECCAP2 assesses a source. The error bars do not overlap in this region for NBP, which is the 
only case we found for all regions and variables assessed. However, the CMIP6 mean agrees well for Ctot. Overall 
7, none and 5 models pass the filtering respectively.

GPP, NPP, NEP, and carbon stocks of Southeast Asia were estimated by an ensemble of DGVM simulations from 
TRENDY v10 (Friedlingstein, Jones, et al., 2022), and the carbon budget of the region was estimated by averaging 
estimates from three independent approaches: bottom-up, top-down, and carbon stock change (∆C) approaches 
(Ciais et al., 2022; Kondo et al., 2020, 2022). The bottom-up approach integrates all major sources  and sinks of 
CO2 in the region, such as GPP, RE, CO2 emissions from land-use and land-cover changes, emissions from peat 
drainage and peat fire, CO2 evasion from rivers and lakes, coastal carbon fluxes, and lateral transport of carbon 

Figure 12.  (top) CMIP6 simulated GPP, (middle) NBP, and (bottom) total terrestrial carbon stock for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for Russia. The panels show individual CMIP6 models in faint lines. For the historical period, individual models are shown in 
gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar. Future projections are for SSP1-2.6 (blue) and 
SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. Mean values for 2050 and 2100 are shown to the right of the plots.
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through river carbon export. Top-down and ∆C estimates provide a partial net carbon balance, the former only 
represents the vertical component of the net balance, and the latter only represents the aboveground component 
of the net balance. Missing components in top-down and ∆C approaches were supplemented by independent data 
so that all three approaches fully account for necessary components to represent the net carbon balance for South 
East Asia.

CMIP6- and RECCAP2-estimated mean GPP, RE, and NEP values were similar in magnitude, and consistent in having 
positive NEP values suggesting natural vegetation uptake of CO2 in the region. However, a discrepancy between the 
methods appeared in NBP, where CMIP6 indicates carbon neutrality, but all three approaches in RECCAP2 esti-
mated a net CO2 source. This discrepancy is likely attributed to differences in the land-use change representation 
between the methods, and maybe lack of inclusion of fire in many ESMs. RECCAP2 explicitly considers the key 
components of land-use change fluxes in Southeast Asia, not only CO2 fluxes from deforestation and forest regrowth, 
but also emissions from peat drainage and peat fires. However, CMIP6 models are not comprehensive enough to 
represent such specific land-use change fluxes, thus resulting in underestimated CO2 emissions in Southeast Asia.

For South East Asia, the filtering had similar results to South Asia for GPP, with RECCAP2 values being consistent 
but slightly above CMIP6 simulated values (Figure 16). However, for Ctot RECCAP2 had marked tighter uncertainty 
bounds and therefore the filtering led to strongly reduced spread as models at both the top and bottom of the CMIP6 
range were filtered out. The results show an ongoing increase in GPP under SSP3-7.0 while GPP stops its increase 
under SSP1-2.6 after mid 21st century. This leads to the two scenarios diverging significantly by 2100. This differ-
ence can also be seen in carbon stocks, with SSP3-7.0 leading to slightly greater increases in carbon storage by 2100.

4.10.  Australasia

Major carbon flux components (GPP, NPP, NEP) for Australasia RECCAP2 assessment were calculated by combin-
ing three different model simulations: CABLE-POP model (Australia), Biome-BGC MuSO (NZ), and CenW 
(NZ) simulations. RECCAP2 Carbon fluxes for New Zealand were simulated with the Biome-BGC MuSO model 
(Hidy et al., 2016, 2022) and CenW model (Kirschbaum & Watt, 2011). Biome-BGC MuSO was used to repre-
sent grasslands and native forest (evergreen broadleaf forest), whereas CenW was used to model non-native forests 
(Pinus radiata/plantation forest) and shrub (∼60% Manuka/Kanuka) landcover classifications. Two different models 
were used for New Zealand because Biome-BGC MuSO was calibrated specifically for New Zealand grasslands 
(including grazed pasture), whereas CenW was calibrated for plantation forest and Manuka/Kanuka. No calibration 
currently exists for NZ native forest, so the default evergreen broadleaf forest biome in Biome-BGC MuSO was used. 
Although New Zealand contributes a small component of the total Australasia carbon budget, it is worth noting that 
the Biome-BGC MuSO and CenW models are not currently used in any of the CMIP models, and so they provide 
an independent assessment. It also explicitly includes the effect of grazing on carbon fluxes, which affects about half 
of all land in New Zealand. We expect that CMIP6 models that do not include grazing show larger disagreement.

Australian carbon flux components were derived from CABLE-POP in the set-up of the BIOS3 environment 
(referred to as CABLE-BIOS3) (Haverd et al., 2018) simulations. CABLE model same as BGC MuSO and CenW 
models, are not used in CMIP and provide an independent assessment; both represent the best knowledge of Australia 

CMIP6 (mean ± 1 sigma) RECCAP2 (mean ± 1 sigma)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 2.24 ± 1.16 2.33 ± 1.08

NPP 1.10 ± 0.49 1.22 ± 0.59

NEP 0.13 ± 0.60 0.19 ± 0.19

NBP 0.05 ± 0.05 0.06 ± 0.02

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 3.78 ± 2.27 2.83 ± 1.09

Soil carbon 29.33 ± 18.36 33.14 ± 20.96

Product carbon 0.06 ± 0.09 0.13 ± 0.33

Total terrest. carbon 35.32 ± 20.20 36.07 ± 21.62

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 6 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for Central Asia
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and New Zealand's carbon cycle because they were forced with regional driver and observations. NPP from CABLE 
simulation were also corrected for fire disturbances, and fire fluxes for New Zealand were assumed to negligible.

The spread (the standard deviation) between Australian and New Zealand model output (GPP, NPP NEP), and 
ensemble mean of 16 global dynamic vegetation models (DVGMs) (TRENDY models (version 10) (Friedling-
stein, Jones, et al., 2022) was used as uncertainties. We considered ensemble mean of TRENDY models as a base-
line for Australasia, because it offers good representation of fluxes across the region. Australasia RECCAP2 net 
carbon exchange (NBP) was built considering the terrestrial carbon fluxes described above and other carbon flux 
components: land-to-ocean aquatic continuum (LOAC) system (water CO2 emissions from lakes and reservoirs), 

Figure 13.  (top) CMIP6 simulated GPP, (middle) NBP, and (bottom) total terrestrial carbon stock for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for Central Asia. The panels show individual CMIP6 models in faint lines. For the historical period, individual models are shown 
in gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle Assessment 
and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed range are 
shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. Filtering just 
those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering are shown to 
the right of the plots.
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estuaries and coastal ecosystems, as well as lateral fluxes associated with harvested crop, wood products and 
livestock and fossil fuel emissions.

CMIP6 results agree with the Australasia RECCAP2 assessment within the uncertainty estimate (Table 10). The 
multi-model mean is close to the assessed value for GPP and NBP and biased low but within the error bars for 
Ctot, with 14, 9, and 12 models passing the filtering respectively. Results filtered for present-day model skill show 
only a very small reduction in the range of predicted land carbon stocks (Figure 17). A more thorough analysis 
of predicted carbon fluxes and stocks for the Australasian region will be covered elsewhere, including additional 
criteria to filter CMIP6 model results.

Australasia NBP (based on RECCAP2 of the region) is very close to carbon neutral (0.0004 ± 0.08 PgC yr −1) 
compared to CMIP6 (0.04 ± 0.07 PgC yr −1). The sink in CMIP6 does not include carbon sources from estuaries 
or sinks from coastal ecosystems (e.g., mangroves or seagrasses) or correction for lateral fluxes (e.g., river carbon 
export) in the simulations.

Given that the carbon in soil is one of the most uncertain estimates in the ESMs, we also compared the soil carbon 
estimates from RECCAP2 derived from TRENDY against the Harmonized World Soil Database (HWSD, version 
1.2). We found that the RECCAP2 estimate of 44.74 ± 24.01 is in closer agreement with the HWSD of 45.66 PgC 
yr −1, when compared with the CMIP6 estimate of 30.74 ± 15.22 PgC yr −1, which suggest a possible reason for 
the disagreement between the two approaches.

4.11.  Permafrost

RECCAP2 also assesses the carbon cycle of the permafrost region, which cuts across the North America and 
Russia RECCAP2 regions described above. That is, the permafrost region overlaps with others, and therefore, is 
not additional to the others, and as such, values presented here are not additive to the totals given for the other 
regions. The permafrost region is of particular interest given that high latitudes are warming substantially faster 
than the global land average (Chylek et al., 2022) and the large amount of carbon stored there (Schuur et al., 2022). 
This region provides a potentially important but under-studied feedback on future climate projections, but it is at 
best poorly represented (or more often not at all) in CMIP models (Burke et al., 2013). Important feedbacks also 
exist with methane (Gedney et al., 2019) and frozen nitrogen (Burke et al., 2022).

Estimates of present-day carbon balance for the permafrost region differ in sign with site based extrapolation indi-
cating the possibility of a net source, while top-down inversion estimates suggesting the region to be a net sink of 
CO2. Process-based models also simulate a net sink for terrestrial ecosystems, but disturbances such as fire and 
abrupt thaw, which are likely to be a source of carbon, along with aquatic ecosystems are not typically included. 
A model-data fusion based on the CARDAMOM framework (Bloom et al., 2016) has a large uncertainty in the 
carbon budget with both the NEP and NBP spanning the source-sink boundary.

Here we present the RECCAP2-assessed and CMIP6 simulated last decade values (Table 11) and CMIP6 future 
projections (Figure 18). The multi-model mean is close to the assessed value for NBP, with 16 models passing the 

CMIP6 (mean ± 1 sigma) RECCAP2 (best estimate ± error estimate)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 9.44 ± 1.74 9.32 ± 1.39

NPP 4.68 ± 0.91 4.72 ± 0.79

NEP 0.54 ± 1.26 0.68 ± 0.50

NBP 0.20 ± 0.17 Bottom-up: 0.370 ± 0.042

Top-down: 0.341 ± 0.125

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 32.12 ± 7.63 33.34 ± 14.26

Soil carbon 113.06 ± 61.27 115.81 ± 36.24

Product carbon 0.89 ± 0.66 0.97 ± 0.63

Total terrest. carbon 154.19 ± 63.01 150.12 ± 38.95

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 7 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for East Asia
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filtering despite substantially over-estimating GPP where only two models pass the filtering. Due to the incom-
pleteness of permafrost-related processes in CMIP6 ESMs we do not attempt a constraint based on comparison 
with the regional RECCAP2 contemporary assessment. We conclude that there is much work to be done  in 
this area and that inclusion of properly evaluated permafrost biogeochemistry and hydrological processes in 
CMIP-class climate models is a high priority.

CMIP6 projections show that future changes in gross fluxes (e.g., GPP: Figure 18) are strongly dependent on 
the choice of scenario, in this case with SSP3-7.0 leading to large increases in GPP—possibly even doubling 

Figure 14.  (top) CMIP6 simulated GPP, (middle) NBP, and (bottom) total terrestrial carbon stock for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for East Asia. The panels show individual CMIP6 models in faint lines. For the historical period, individual models are shown 
in gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle Assessment 
and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed range are 
shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. Filtering just 
those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering are shown to 
the right of the plots.
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compared to present day, although it cannot be found from these results if this is due to elevated CO2 or regional 
warming—both of which can enhanced vegetation productivity in high-latitude regions. However, compensating 
changes in residence time mean that increased productivity may not result in increased carbon storage, and so most 
CMIP6 models show only weak scenario-dependence in terms of future carbon stocks, with the multi-model mean 
increasing slightly more under SSP3-70 than under SSP1-2.6. Previous studies from CMIP5 also found a persistent 
sink under low and medium warming scenarios, but a suggestion of a transition to a source under the very highest 
scenario (RCP8.5) (Qiu et al., 2020). The inclusion of permafrost carbon, omitted from the majority of CMIP6 
models, will impact this assessment of the carbon budget under future climate scenarios (Schuur et al., 2022).

5.  Synthesis and Discussion
For each region, we explore to what extent the CMIP6 simulated values are consistent with RECCAP2 assessments 
for the past decade and the possible implications for future projections. Techniques do not yet exist to robustly 
constrain future projected values. For example, it would be possible (even tempting) to simply filter out those models 
which do not match RECCAP2 assessed values for each variable, and that would lead to a reduced spread of future 
projections. In such a case, models may perform better in some regions due to better calibration or process inclusion 
(such as permafrost or nutrient inclusion), and therefore there is some merit in treating the world as a mosaic and 
reassembling the projections from the best suited models for each region. However, we do not feel that this technique 
is yet mature enough for quantitative application, but rather is better suited to drawing insights model-by-model and 
region-by-region into the value of different processes. For illustration we have shown the results from such a filtering 
for each region, and this is illustrative when making expert judgments on the ability of global models contributing to 
CMIP6 to make regional-scale projections. But we find it is not a robust quantitative constraint to be able to simply 
use this filtering to reduce spread in future projections. Reasons why this is not yet robust include:

•	 �Weighting by model skill is a debated art (Abramowitz et al., 2019; Merrifield et al., 2020) but it is generally 
accepted that simple binary filtering of models in/out is not optimal. More details are provided in Section 2.

•	 �Filtering variable-by-variable and region-by-region would leave different models selected each time and 
therefore potential inconsistent projections if they got the right answer for the wrong reasons. For example, 
for South Asia, results show consistent projections of present day carbon stocks, but a significant bias in GPP, 
meaning there are likely compensating errors in other processes in the CMIP6 ESMs.

•	 �Filtering on all variables (e.g., only use models with both the correct stocks and fluxes) would potentially 
leave very few (or none) models remaining, and therefore over-reliance on too few models whilst discarding 
potentially useful information from others.

•	 �Inconsistent definitions of variables—especially for NBP it is likely that CMIP6 models lack many of the rele-
vant components and processes which may be included in the RECCAP2 regional assessments—for example, 
such as fire, harvesting and grazing.

•	 �Poorly quantified error estimates on observed values—RECCAP2 regions have taken different approaches 
to providing error or uncertainty estimates for different quantities, and hence a one-size-fits-all approach to 
model selection would not be appropriate.

CMIP6 (mean ± 1 sigma) RECCAP2 (mean ± 1 sigma)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 3.71 ± 1.30 5.11 ± 1.13

NPP 1.74 ± 0.73 2.46 ± 0.63

NEP 0.25 ± 1.00 0.12 ± 0.06

NBP 0.05 ± 0.06 0.04 ± 0.06

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 7.91 ± 5.80 9.29 ± 3.26

Soil carbon 19.53 ± 10.65 30.44 ± 12.3

Product carbon 0.36 ± 0.35 0.41 ± 0.26

Total terrest. carbon 28.02 ± 12.93 39.84 ± 11.21

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 8 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for South Asia
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•	 �Circularity of evidence—we know that many CMIP6 models draw on the same process representation, and 
often the same land-model components that also contribute to TRENDY and RECCAP2 regional assessments. 
This may lead to spurious constraints or over-confidence in any constrained results from CMIP6 results.

We are therefore left with a more subjective approach whereby we can make qualitative statements about regional 
scale projections. Nevertheless, although we stop short of making quantitative adjustments to CMIP6 projections 
we can dig into model performance at an individual level and then synthesize multi-model performance across 
variables.

Figure 15.  (top) CMIP6 simulated GPP, (middle) NBP, and (bottom) total terrestrial carbon stock for the historical period (1850–2014, left-hand side) and future 
projections (to 2100, right-hand side) for South Asia. The panels show individual CMIP6 models in faint lines. For the historical period, individual models are shown 
in gray and multi-model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle Assessment 
and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed range are 
shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. Filtering just 
those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering are shown to 
the right of the plots.
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5.1.  Model and Process Assessment

For GPP, NBP, and Ctot we assess which models, ESM-by-ESM, perform well or not in terms of whether they fall 
within the error bars of the RECCAP2 regional assessment. The number of regions for which each ESM passes 
this filtering can be counted and compared to the process complexity of each model to assess whether different 
processes add skill.

Table 12 shows the results for GPP, NBP, and Ctot for each ESM and each region, along with a list of process 
detail. For this assessment we consider whether or not each model includes: terrestrial nitrogen cycle; permafrost 
dynamics; dynamic vegetation and fire because these processes are routinely documented and reported compo-
nents of the models (e.g., see Table 2 of Arora et al. (2020)).

5.1.1.  Model-By-Model Analysis

We discuss here model-by-model results as if they were all independent and different models but note that in 
reality some are more closely related to each other than others. For example, there are high- and low-resolution 
variants of NorESM2 and some of these models share land-surface schemes. Brunner et al.  (2020) present a 
family-tree of CMIP6 models to help judge levels of independence.

In our analysis, 7 out of 16 models passed the filtering in half or more regions for GPP although all but two do so 
for five of the 11 regions. Ten out of 16 pass for half or more regions for NBP, and 9 of 13 passed for Ctot noting 
that not all models reported soil carbon in the CMIP data archive and so cannot be included in the Ctot compar-
ison. Five out of 13 models passed the filtering for half or more regions for all three quantities. Some models 
simulated one quantity better than another—for example, IPSL-CM6A-LR performed the best in simulating 
GPP (in terms of the number of regions where it passed the filtering) but worst in simulating Ctot. Conversely, 
EC-Earth3-Veg was one of the poorest for GPP but the best for Ctot.

This analysis therefore may be useful for individual model development groups to identify specific areas for 
improved simulation in their models. It is not possible though in this study to explore specific reasons for these 
differences—be they simply not fully calibrated components, climate biases or lack of appropriate complexity. 
But we recommend that model evaluation for development goes beyond simple global or latitudinal metrics, as 
per Anav et al. (2013), and draws on regional information such as provided by RECCAP2.

5.1.2.  Region-By-Region Analysis

For both GPP and NBP, 6 out of 11 regions saw half or more models pass the filtering, while for Ctot, 5 out of 9 
regions saw half or more models pass.

In simulating GPP, for most regions about half (circa 8 from 16) the CMIP models fell within the filtering. Well 
simulated regions spanned the world and were not restricted to hot, cold or dry or wet bioclimatic zones—for 

CMIP6 (mean ± 1 sigma) RECCAP2 (best estimate ± error estimate)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 10.31 ± 2.35 11.67 ± 2.43

NPP 4.19 ± 1.05 4.79 ± 0.92

NEP 0.42 ± 1.10 0.47 ± 0.32

NBP 0.05 ± 0.16 Bottom -up: −0.46 ± 0.14

Top-down: −0.28 ± 0.12

∆C: −0.44 (no std estimate)

Best estimate: −0.39 ± 0.10

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 44.95 ± 12.57 48.11 ± 13.43

Soil carbon 37.09 ± 17.18 39.95 ± 15.53

Product carbon 0.69 ± 0.68 1.13 ± 1.09

Total terrest. carbon 84.31 ± 22.85 89.20 ± 10.02

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 9 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for South East Asia
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example, South America, Australasia, Russia and the permafrost regions were all simulated by the majority of 
models, while for Europe and South Asia skill was lower. Areas with fewer successful models were for differ-
ent reasons—in South Asia it represented a real disparity between the CMIP6 ESMs which consistently and 
substantially under-estimated productivity while for Europe and Africa the CMIP models were clustered around 
the RECCAP2 estimate but the RECCAP2 estimated error bars are very tight and therefore remove many more 
models than in regions where the assessment is less confident.

Figure 16.  (top) CMIP6 simulated GPP, (middle) NBP, and (bottom) total terrestrial carbon stock for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for South East Asia. The panels show individual CMIP6 models in faint lines. For the historical period, individual models 
are shown in gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle 
Assessment and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed 
range are shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. 
Filtering just those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering 
are shown to the right of the plots.
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For NBP regions were split into well simulated or poorly simulated. South America and Africa were well captured 
by the CMIP6 ensemble, but hardly at all for Central, East and South East Asia where only one, one, and none of 
the models passed the filtering respectively. In Central Asia the multi-model mean was only slightly smaller than 
the assessed range, but individual models fell outside this tightly constrained range, while in East Asia RECCAP2 
assessed a higher NBP estimate than the CMIP6 mean. In South East Asia however there was a much bigger 
difference with RECCAP2 assessed NBP of −0.39 PgC yr −1 from a range of estimates, while CMIP6 models 
consistently simulated a small sink of 0.05 PgC yr −1. Land-use is especially dominant in this heavily managed 
region and this is not well captured by the CMIP6 ESMs in the detail required to recreate the observed carbon 
balance.

When simulating carbon stocks, there was a slightly lower level of success for most regions, with typically 
fewer than half passing the filtering. This may be due to the greater importance of land-use and management in 
controlling biomass stocks, or the well documented lack of agreement between CMIP models in simulating stocks 
compared to fluxes (Anav et al., 2013). This is especially true for soil carbon and residence times (Carvalhais 
et  al.,  2014; Todd-Brown et  al.,  2014) for all of South Asia, South-East Asia and Africa, Ctot was less well 
simulated as these regions are heavily affected by land use (Figure S1 in Supporting Information S1). For North 
America, the reason for poorer carbon stock simulation may be due to bias in simulated residence time in soil. 
Other areas in high latitudes lack the carbon stock information to back this up.

5.1.3.  Process-Analysis

Models with a nitrogen cycle consistently appear to score better than models without for both NBP and Ctot, but 
we note that this is not necessarily causal—caution is needed because there are conflating issues around model 
complexity and performance skill. For example, some ESMs make use of the same underlying land model (e.g., 
CESM2 and NorESM2 both use the CLM5 land model) and so these results are not made up of fully independent 
data points. A more nuanced consideration is that some models have larger research groups, or greater resource 
for model development and calibration leading to models with higher complexity also being better calibrated. 
That does not necessarily mean that the greater skill comes from the added complexity. Documentation and 
testing for each model may reveal the extent to which adding a process improves the representation of the carbon 
cycle (e.g., Wiltshire et al.  (2021) for UKESM-CN). To fully isolate the impact of process addition to model 
skill a “with” and “without” pair of model simulations would be needed, and these are not available for CMIP6 
simulations. Nonetheless there is reasonable evidence that suggests that nitrogen-cycle models better capture the 
productivity and storage of the terrestrial carbon cycle.

Dynamic vegetation shows little discernible signal in determining filtering skill at regional level. For GPP, 
DVGMs are comparable in skill having the same range of number of well simulated regions. NBP has slightly 
lower and Ctot slightly higher number of well simulated regions. This apparent lack of contribution to skill is 
perhaps not unexpected for this process which captures very slow processes and does not have a marked impact 
on the carbon cycle up to present day but has been shown to be important in future projections (Davies-Barnard 
et al., 2015; Pugh et al., 2018).

CMIP6 (mean ± 1 sigma) RECCAP2 (best estimate ± error estimate)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 4.85 ± 1.69 4.61 ± 2.62

NPP 2.19 ± 0.84 2.12 ± 0.59

NEP 0.18 ± 0.97 0.15 ± 0.07

NBP 0.06 ± 0.07 0.0004 ± 0.08

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 10.50 ± 4.34 11.88 ± 6.93

Soil carbon 30.74 ± 15.22 44.74 ± 24.01

Product carbon 0.09 ± 0.07 0.24 ± 0.22

Total terrest. carbon 43.74 ± 17.12 53.86 ± 25.00

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 10 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Stocks and Fluxes for Australasia
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Fire as a process, similar to nitrogen cycle but not as clear-cut, appears to slightly improve simulation skill. It 
increases the number of regions well simulated for NBP and Ctot. Fire is important to enable models to simulate 
the right vegetation cover for a given ecosystem and also the carbon residence time (and hence carbon storage) of 
land carbon, but the results are not clear-cut enough to conclude the impact of fire on model skill.

Very few models include permafrost carbon. In fact, only one land model (CLM5) does so, so the two ESMs with 
permafrost (CESM and NorESM) are effectively double counting. By sight the inclusion of permafrost does not 
improve GPP but does improve NBP and carbon storage. The former is not surprising as permafrost processes 

Figure 17.  (top) CMIP6 simulated GPP, (middle) NBP, and (bottom) total terrestrial carbon stock for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for Australasia. The panels show individual CMIP6 models in faint lines. For the historical period, individual models are shown 
in gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle Assessment 
and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed range are 
shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. Filtering just 
those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering are shown to 
the right of the plots.
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would not be expected to have a big impact on GPP. The latter cannot be seen to be robust either because the 
regions which are better simulated are not permafrost regions, and so this is not an evaluation of permafrost 
carbon, but clearly an artifact that this particular land model performs well for carbon storage, but not as a result 
of including permafrost. It may, however, be related to the inclusion of vertically resolved carbon (Koven, Riley, 
Subin, et al., 2013) in the soil, which is a requirement to simulate permafrost carbon and may improve simulations 
of soil carbon and moisture elsewhere.

When we combine these processes to assess the role of the full degree of complexity the picture is mixed. In 
general models with high degrees of complexity (3 out of 4 of the focus processes), perform better than those 
with none of them. But there are cases of low-complexity models performing well and high-complexity models 
performing poorly. Given the high number of degrees of freedom of this analysis (number of regions and number 
of processes) and the few number of ESMs (not all of which are independent) it is not surprising that robust rela-
tionships cannot be found. However, the following broad statements can be made which are supported by the table:

•	 �Nitrogen-cycle is beneficial. There is strong evidence that without considering the role of nutrients, CMIP 
ESMs over-estimate future potential for carbon sequestration (Hungate et al., 2003; Zaehle et al., 2015). The 
inclusion of nitrogen cycling in land models has therefore begun to address this issue reducing feedback 
strength (Arora et al., 2020) and limiting future carbon sinks. Much work is required to ensure process-realism 
of this development, but coordinated development and testing is showing encouraging signs (Davies-Barnard 
et al., 2020).

•	 �Vegetation dynamics are needed to simulate long term changes in vegetation structure but are not well 
constrained by present day observations used here and have little influence on model skill of these metrics. 
Inclusion of this process though is important as future changes this century may be equally significant from 
natural dynamics as human land-use (Davies-Barnard et al., 2015) and even larger still beyond 2100 (Pugh 
et al., 2018). Existing vegetation dynamics models differ greatly in their own level of complexity, but recent 
literature suggests that a representation of tree demography (either by age or size class) is important (Argles 
et al., 2022).

•	 �Fire as a process that disturbs vegetation and controls carbon storage in many ecosystems and is missing in 
many ESMs—especially in conjunction with vegetation dynamics. There is very limited evidence here that 
it helps evaluation against regional carbon balance assessment, but it is a vital process to represent in models 
as it could be a major mechanism for tipping points and abrupt ecosystem changes (Parry et al., 2022). Other 
disturbances, currently missing in both observation-based assessments and models might also be important, 
at least for some regions.

•	 �Permafrost carbon is not yet represented in many models but is a commonly quoted process important in 
future carbon cycle changes (Chadburn et al., 2017; MacDougall et al., 2015). In order to simulate permafrost 
carbon, models are developing more realistic and extensive treatment of vertically resolved soils which have 
benefit to simulations outside permafrost areas too such as tropical forests where rooting depths can extend 
many meters. Evaluation of soil carbon in particular would benefit from process understanding of residence 
times, such as can be estimated from soil warming experiments (Van Gestel et al., 2018).

CMIP6 (mean ± 1 sigma) RECCAP2 (best estimate ± error estimate)

Fluxes PgC/yr mean over 2010–2019 inclusive GPP 9.11 ± 1.79 7.0 ± 0.5

NPP 4.76 ± 1.28 4.3 ± 0.6

NEP 0.47 ± 1.76 0.9 ± 1.1

NBP 0.34 ± 0.17 0.65 ± 1.15

Stocks PgC mean over 2010–2019 inclusive Vegetation carbon 49.41 ± 19.61

Soil carbon 440.40 ± 386.45

Product carbon 0.31 ± 0.29

Total terrest. carbon 512.78 ± 383.94

Note. Values are shown as the average over a 10 year period from 2010 to 2019, and ranges are one standard deviation unless stated otherwise. For model outputs this 
reflects spread across different models, while for assessed values this can include other means of assessing uncertainty. Units are PgC or PgC yr −1.

Table 11 
Comparison of CMIP6 Simulated and REgional Carbon Cycle Assessment and Processes, Phase 2 Assessed Carbon Fluxes for the Permafrost Region
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More generally, routine evaluation and process-based sensitivity will enable models to develop. It is important 
that the push toward increasing complexity should not be to the detriment of improving existing parametrizations. 
Especially the response of the land carbon-cycle to elevated CO2, and sensitivity to environmental changes.

In addition to this analysis, we know that the role of land-use is important, but these simulations lack enough 
detail to assess how land-use change and land management in CMIP6 models affects simulated outcomes. In 
CMIP5 some models did not include land-use at all (see Jones et al., 2013, Figure 2) and could relatively easily 
be excluded from projections for this reason. Pongratz et  al.  (2018) show large diversity of complexity level 

Figure 18.  (top) CMIP6 simulated GPP, (middle) NBP, and (bottom) total terrestrial carbon stock for the historical period (1850–2014, left hand side) and future 
projections (to 2100, right hand side) for the permafrost region. The panels show individual CMIP6 models in faint lines. For the historical period, individual models 
are shown in gray and multi model mean in thick black. CMIP6 mean and standard deviation are shown by the black dot and error bar, and REgional Carbon Cycle 
Assessment and Processes, Phase 2 (RECCAP2) assessed best estimate and uncertainty by the green dot and error bar. Models which fall within the RECCAP2 assessed 
range are shown in pale green. Future projections are for SSP1-2.6 (blue) and SSP3-7.0 (red), with single models in faint lines and multi-model mean in thick lines. 
Filtering just those models which match the RECCAP2 assessed range gives the red and blue shaded region. Mean values for 2050 and 2100 before and after filtering 
are shown to the right of the plots.
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ACCESS-ESM1-5 CanESM5 CESM2-WACCM CMCC-CM2-SR5 CNRM-ESM2-1 EC-Earth3-Veg GFDL-ESM4 INM-CM4-8

GPP

Region Permafrost 1 1

Russia 1 1 1 1 1 1 1

North America 1 1 1 1 1

Europe 1

Central Asia 1 1 1 1 1 1

East Asia 1 1

South Asia 1 1

SE Asia 1 1 1

Africa 1

South America 1 1 1 1 1 1

Australasia 1 1 1 1 1 1

GPP Sum 6 7 6 4 5 5 5 3

(% out of 11 
regions)

54.55 63.64 54.55 36.36 45.45 45.45 45.45 27.27

NBP

Region Permafrost 1 1 1 1 1 1 1 1

Russia 1 1

North America 1 1 1 1 1

Europe 1 1 1

Central Asia 1

East Asia

South Asia 1 1 1 1 1

SE Asia

Africa 1 1 1 1 1 1

South America 1 1 1 1 1 1 1 1

Australasia 1 1 1 1

NBP Sum 7 6 6 5 6 6 2 4

(% out of 11 
regions)

63.64 54.55 54.55 45.45 54.55 54.55 18.18 36.36

Ctot

Region Permafrost – – – – – – – –

Russia

North America 1 1 1 1 – –

Europe – – – – – – – –

Central Asia 1 1 1 1 1 – –

East Asia 1 1 1 1 – –

South Asia 1 1 1 – –

SE Asia 1 1 1 1 – –

Africa 1

Table 12 
CMIP6 Earth System Model Analysis by Region and Process
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Model

SumINM-CM5-0 IPSL-CM6A-LR MIROC-ES2L MPI-ESM1-2-LR NorESM2-LM NorESM2-MM TaiESM1 UKESM1-0-LL

(% of 16 models)

2 12.5

1 1 1 1 1 12 75

1 1 1 1 9 56.25

1 2 12.5

1 1 1 1 1 1 1 13 81.25

1 1 1 1 1 1 8 50

1 1 4 25

1 1 1 1 7 43.75

1 1 1 1 1 6 37.5

1 1 1 1 10 62.5

1 1 1 1 1 1 1 1 14 87.5

5 7 5 6 5 6 5 7

45.45 63.64 45.45 54.55 45.45 54.55 45.45 63.64

(% of 16 models)

1 1 1 1 1 1 1 1 16 100

1 1 1 1 1 7 43.75

1 1 1 1 1 1 11 68.75

1 1 1 1 7 43.75

1 6.25

1 1 6.25

1 1 1 1 1 1 11 68.75

0 0

1 1 1 1 1 1 12 75

1 1 1 1 1 1 1 1 16 100

1 1 1 1 1 9 56.25

5 8 5 7 8 8 2 6

45.45 72.73 45.45 63.64 72.73 72.73 18.18 54.55

(% of 13 models)

– – – – – – – – – –

0 0

– 1 1 1 1 8 61.5384615384615

– – – – – – – – – –

– 1 1 1 1 9 69.2307692307692

– 1 1 1 1 8 61.5384615384615

– 1 1 5 38.4615384615385

– 1 5 38.4615384615385

1 1 1 1 5 38.4615384615385
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ACCESS-ESM1-5 CanESM5 CESM2-WACCM CMCC-CM2-SR5 CNRM-ESM2-1 EC-Earth3-Veg GFDL-ESM4 INM-CM4-8

South America 1 1 1 1 1 – –

Australasia 1 1 1 1 1 – –

Ctot Sum 5 6 6 3 4 7 – –

(% out of 9 
regions)

55.56 66.67 66.67 33.33 44.44 77.78 – –

Process N-cycle 1 0 1 1 0 1 0 0

Dyn veg 0 0 0 0 0 1 1 0

Fire 0 0 1 1 1 1 1 0

permafrost 0 0 1 0 0 0 0 0

process Sum 1 0 3 2 1 3 2 0

(% out of 4 
processes)

25 0 75 50 25 75 50 0

Note. A “1” in a box indicates that that model passed the filtering for that region and variable, and a blank box indicates that it did not. A dash (“–”) indicates that 
either the model did not provide that output or that the region did not assess that variable—and hence no filtering was possible. At the bottom of each column is 
a sum of the number of regions for which each models passed the filtering, and at the end of each row a sum of how many models passed for that region. 
The base of the table indicates (again with a “1”) which model included each process from: nitrogen cycle; dynamic vegetation; fire and permafrost.

Table 12 
Continued

in ESMs for CMIP6 and plans beyond this. We therefore recommend use of the LUMIP factorial experiments 
(Lawrence et al., 2016) to address testing and evaluation of the components of land-use and management. It is no 
longer enough to simply categorize models which do or do not include land-use as the distinction is not binary.

5.2.  Multi-Model Synthesis

Here we assemble a synthesis table of which regions are well or poorly simulated for the key variables of GPP, NBP, 
and vegetation and soil carbon by the CMIP6 multi-model mean. For each region we make a semi-quantitative 
assessment (Table 13) of whether simulated multi-model mean values are low, medium or high quality. Such a 
table can be used to inform judgment on the use of CMIP6 models for future projections. To do this we define:

•	 �High quality—CMIP6 multi-model mean is within the RECCAP2 uncertainty bars, and we propose that 
CMIP6 outputs can be used to make useful inferences about these quantities.

•	 �Medium quality—CMIP6 mean is outside RECCAP2 uncertainty, but error bars overlap, and we propose that 
CMIP6 outcomes may be useful but should be used with care and not over-interpreted as quantitatively robust.

•	 �Low quality—no overlap in error bars between CMIP6 and RECCAP2, and we propose that CMIP6 outputs 
should not be used quantitatively for these variables/regions.

Table 13 shows that CMIP6 multi-model mean is remarkably good with respect to capturing the magnitude of 
carbon stocks and fluxes at regional scales, at least within the estimated uncertainty of the RECCAP2 assess-
ments. While only five CMIP6 models pass the filtering for half or more regions in all three variables (GPP, 
NBP, and Ctot), the performance of the multi-model mean is much better. 31 out of 40 boxes are green, denoting 
that the CMIP6 mean is within the uncertainty range of RECCAP2, while 8 out of 40 boxes are yellow denoting 
overlap of the error bars. Only one box of the 40 is red which denotes values without overlap in the uncertainty 
ranges—here the NBP for South East Asia is poorly captured by CMIP6 models which in the mean simulate a 
sink (but spanning zero) compared to an assessed source from RECCAP2.

We note that there is some duplication in methodology with RECCAP2 assessments drawing on land model 
simulations many of which are shared with the CMIP6 ESMs. But we stress that none of these simulations are 
initialized at present day values and have been simulated from 1850 within climate models that exhibit their own 
errors and biases in meteorology and climate forcing. Nevertheless, we should be careful not to see this evaluation 
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Model

SumINM-CM5-0 IPSL-CM6A-LR MIROC-ES2L MPI-ESM1-2-LR NorESM2-LM NorESM2-MM TaiESM1 UKESM1-0-LL

– 1 1 1 1 1 1 11 84.6153846153846

– 1 1 1 1 1 1 1 12 92.3076923076923

– 2 6 6 6 6 3 3

– 22.22 66.67 66.67 66.67 66.67 33.33 33.33

(% of 16 models)

0 0 1 1 1 1 0 1 9 56.25

0 0 0 1 0 0 0 1 4 25

0 0 0 1 1 1 0 0 8 50

0 0 0 0 1 1 0 0 3 18.75

0 0 1 3 3 3 0 2

0 0 25 75 75 75 0 50

as a “model versus observation” comparison, but rather a comparison of coupled climate models with a range of 
lines of evidence assessed by experts on a region-by-region basis. On the whole there are more cases of a nega-
tive bias (CMIP6 models simulating too small stocks or fluxes) than positive but there is no obvious systematic 
pattern of the sign of error.

Based on this assessment we think it is reasonable to present and consider future projections from the CMIP6 
ESMs. But as discussed above we do not attempt to weight or select models based on how well they agree 
with RECCAP2 assessments. Based on numbers assembled in Section 4 we can build “waterfall” diagrams for 

each region and combine with regional fossil fuel emissions to synthesize 
the full net carbon balance of each region for the 21st century. These show 
how the state of the global carbon cycle has changed on two time horizons: 
between present day (defined here as 2015 being the start of future simula-
tions in CMIP6) and “mid-term” (2040–2060: Figure 19) and “long-term” 
(2080–2100: Figure 20) under illustrative low (SSP1-2.6) and high (SSP3-
7.0) emissions scenarios. Unfortunately, it is not possible from existing 
CMIP6 simulations to diagnose land-use fluxes distinct from other changes 
in simulated land stocks. Hence, we are restricted to showing the fossil fuel 
emissions for each region (taken directly from the scenarios) and the changes 
in simulated land carbon stocks, apportioned here into living carbon (cVeg) 
and dead carbon (the sum of cSoil, cLitter and cProduct). We plot fossil fuel 
emissions from 2015 to 2050 and 2090 respectively, and changes in stocks 
from the recent past (average from 1995 to 2014) up to the average of 2040–
2060 and 2080–2100 respectively.

At 2050, the higher CO2 concentration of SSP3-7.0 drives larger terrestrial 
sinks while the timescale of climate response means that the climate is rela-
tively similar between high and low scenarios. Therefore, for all regions, 
natural sinks are larger under SSP3-7.0 than SSP1-2.6.

The analysis so far has been on the land sinks, but we can also compare with 
regional fossil fuel emissions from the socio-economic scenarios. At 2050 

cVeg cSoil GPP NBP

North America + = + −

South America + − = −

Europe n/a n/a − −

Africa = + = −

Russia − + = =

Central Asia + − = −

East Asia = = = −

South Asia − − − +

South East Asia − = − −

Australasia − − = +

Permafrost n/a n/a + −

Note. Green: high quality; yellow: medium quality; red: low quality. “+” and 
“−” indicate if the CMIP6 is biased high or low respectively.

Table 13 
Synthesis of CMIP6 Multi-Model Mean Fidelity Recreating REgional 
Carbon Cycle Assessment and Processes, Phase 2 Assessed Present Day 
Carbon Stocks and Fluxes
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Figure 19.  Global synthesis of regional carbon balance in 2050s under low (SSP1-2.6) and high (SSP3-7.0) scenarios.

the main fossil-fuel emitting regions will continue to be substantial sources of CO2 to the atmosphere. Namely—
North America, Europe and Central-, South-, South East- and East-Asia. This is true even for the low emissions 
scenario as it is not until after mid-century when most regions will see large emissions reductions even under 
ambitious mitigation.

For other regions, the net response of fossil-fuel and terrestrial sinks differs. In Russia, large natural sinks outweigh 
regional fossil-fuel emissions and the region is a net sink. But we note that for this region in particular a large fraction 
of the global permafrost stock exists and is not accounted for in these projections as we discussed in Section 4.11. 
Any large-scale loss of carbon from thawing permafrost has the potential to turn this and other high-latitude regions 
into substantial sources. Elsewhere, South America is also simulated to be a net sink but this is also highly uncertain, 
albeit for different reasons. The role of land-use and land-use change is central and future scenarios do not attempt to 
capture national-scale policies which will clearly play a crucial role in determining the carbon balance of countries 
with large tropical forests (e.g., Wiltshire et al., 2022). South America, and especially the Amazon forest is also an area 
identified as especially vulnerable to future climate change and loss of tropical forest (Armstrong McKay et al., 2022; 
Salazar & Nobre, 2010) and some CMIP6 models have been shown to exhibit localized dieback of the Amazon forest 
in future projections (Parry et al., 2022). Africa and Australasia show a relatively close balance of fossil fuel emission 
and terrestrial sink partly due to these regions being relatively less fossil-fuel intensive for their land-area.

The situation at 2100 is somewhat different and all regions exhibit a strong dependence on the choice of scenario. 
Results for SSP1-2.6 are very similar to those at 2050 due to the approximate stabilization of regional climate 
after mid-century (supplementary figures). But for SSP3-7.0 the very large increase in fossil-fuel emissions 
and larger regional climate changes mean that all regions except for Russia are now a net source of carbon. As 
discussed above, even Russia could become a substantial source in these models if full representation of perma-
frost processes was accounted for. These results are the basis for the IPCC assessment that the proportion of CO2 
emissions taken up by natural carbon sinks is smaller in scenarios with higher cumulative CO2 emissions.
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Figure 20.  Global synthesis of regional carbon balance in 2100 under low (SSP1-2.6) and high (SSP3-7.0) scenarios.

6.  Conclusions
CMIP6 models project future changes in carbon fluxes and stores and this is the primary resource used to quantify 
RCB estimates consistent with global climate goals. But these simulations are not evaluated at regional scales 
nor fully consistent with land-modeling used to quantify the present-day carbon budgets. Here we draw on the 
updated RECCAP2 assessment of regional carbon balance to assess the status of CMIP6 projections and consist-
ency with our expert knowledge of the contemporary carbon cycle.

When evaluating the multi-model mean, we find generally good agreement with 78% of regions' fluxes and 
stocks simulated within the RECCAP2 assessed ranges, and less than 3% failing to overlap uncertainty estimates. 
This consistency means we can have reasonable trust in the credibility of future projections based on CMIP6 
multi-model mean and we can use the ensemble of models to explore the future carbon balance of each region 
under different future scenarios and on different time horizons. We find that by mid-century, projected changes 
are relatively insensitive to scenario but that the choice of scenario has set the world on very different paths 
beyond this time horizon, with a very strong dependence on scenario by 2100. At mid-century, most regions are 
a carbon source even under aggressive mitigation pathways and by 2100 all regions are a carbon source under 
high emissions scenarios.

We demonstrated a very simplistic filtering approach to show the impact of imposing agreement between the 
CMIP6 ensemble and regional assessments. This analysis provides insight into model-by-model systematic 
biases and guides development, and regional insight into the importance of different processes. We find that 
more than half the models perform well at more than half the regions but no model performs well in all regions 
or for all output variables. Models with greater complexity, especially inclusion of the nitrogen cycle, appear to 
perform better than lower-complexity models but the sample size does not allow robust attribution of skill to 
process inclusion. Hence we recommend that analyses use as many CMIP6 models as possible and do not rely on 
single models unless directly evaluated for a specific study.
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For many reasons this filtering approach is not robust enough to be applied as an actual constraint and more 
research is required into potential techniques to do this. Possible constraints on future projections could include: 
adding observationally constrained estimates (e.g., Chadburn et  al., 2017) as a correction term in permafrost 
regions to account for CMIP models absence of process-completeness; adjusting regional projections, especially 
in tropical forests, to account for national-scale land-use policies; or applying emergent constraints which have 
been shown to be regional in their applicability (e.g., interannual variability can be used to constrain tropical 
carbon cycle sensitivity to warming (Cox et al., 2013) and seasonal cycle response mid-latitude sensitivity to CO2 
(Wenzel et al., 2014)) or applied to sensitivity of processes (such as GPP response to doubling CO2). Canadell 
et al. (2021) show a synthesis of powerful emergent constraints in their Figure 5.28 which could be used alongside 
regional evaluations from RECCAP2.

We argue though that our regional analysis of these global models brings insight into their behavior and offers 
the potential to reduce the spread across model projections at global scale and we encourage the land modeling 
community to more regularly consider detailed regional assessments of global models.
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