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Climate change already affects agricultural productivity world-
wide via many mechanisms, driven largely by warmer mean 
and extreme temperatures, altered precipitation regimes and 

drought patterns, and elevated atmospheric CO2 concentrations 
([CO2])1. Uncertainties arising from greenhouse gas emission sce-
narios, climate model projections and the understanding and repre-
sentation of complex impact processes render estimates of future crop 
yield highly uncertain2. A way towards improving yield projections 
is the development of benchmarked multi-model ensemble simu-
lations driven by harmonized simulation protocols3. Facilitated by 
the Agricultural Model Intercomparison and Improvement Project 

(AgMIP)4 and the Inter-Sectoral Impact Model Intercomparison 
Project (ISIMIP)5, here we present a new systematic assessment of 
agricultural yield projections, based on a protocol similar to the one 
used by the Coupled Model Intercomparison Project (CMIP) for 
climate models6.

In 2014, AgMIP’s Global Gridded Crop Model Intercomparison 
(GGCMI) provided the first set of harmonized crop model pro-
jections based on CMIP5 (GGCMI–CMIP5; hereafter ‘GC5’), 
which identified substantial climate impacts on all major crops, 
but also demonstrated that crop models might indeed introduce 
larger uncertainty than climate models7. CMIP6 now provides new  
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Potential climate-related impacts on future crop yield are a major societal concern. Previous projections of the Agricultural 
Model Intercomparison and Improvement Project’s Global Gridded Crop Model Intercomparison based on the Coupled Model 
Intercomparison Project Phase 5 identified substantial climate impacts on all major crops, but associated uncertainties were 
substantial. Here we report new twenty-first-century projections using ensembles of latest-generation crop and climate models.  
Results suggest markedly more pessimistic yield responses for maize, soybean and rice compared to the original ensemble. 
Mean end-of-century maize productivity is shifted from +5% to −6% (SSP126) and from +1% to −24% (SSP585)—explained 
by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9% shifted 
to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The ‘emergence’ of climate impacts 
consistently occurs earlier in the new projections—before 2040 for several main producing regions. While future yield esti-
mates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks 
sooner than previously anticipated.
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reference climate projections8,9, and improved bias-adjustment and 
downscaling methods10 benefit the impact modelling community. 
With improved and further harmonized inputs and cropping system  
configurations, and an advanced ensemble of state-of-the-art 
process-based crop models, GGCMI is able to provide a new stan-
dard in global crop yield projections for the twenty-first century 
for several major crops using CMIP6 climate scenarios (GGCMI–
CMIP6; hereafter ‘GC6’).

Climate change impacts are usually quantified in terms of dif-
ferences over time, but especially in view of adaptation measures, 
it is the amplitude of the change compared to the local background 
variability and uncertainty of the recent past that is often more rele-
vant11. Time of climate impact emergence (TCIE)—the point in time 
by which the yield levels of exceptional years (negative or positive) 
have become the new norm—is a critical measure for risk assess-
ment. Time of emergence12 metrics have been applied to climate 
variables including temperature13, precipitation14 and others15,16 and 
demonstrate that major food-producing regions are increasingly 
facing changing climate profiles in the near term. Here we introduce 
the TCIE concept with respect to future agricultural risks.

Recent literature has focused on capturing the temperature  
sensitivity of crops in isolation17–19. To quantify climate change 
impacts more comprehensively, additional factors including pre-
cipitation changes, temperature–moisture feedbacks and [CO2] 
need to be considered. The projections presented here dynamically 
respond to these climate drivers and shed new light on the effects of 
elevated [CO2], which are among the largest sources of uncertainty 
in long-term crop yield estimates20–22.

As the first update since GC5 in 20147, the aims of this initial GC6 
study are: (1) to provide latest-generation ensemble projections for 

the productivity of major crops for the twenty-first century, (2) to 
assess climate change impacts on crop yields from a risk perspec-
tive, employing the TCIE concept, (3) to improve understanding of 
regional patterns of change and (4) to explore drivers of uncertainty 
related to climate models, crop models and responses to [CO2].

Global production response of major crops
The simulation protocol is based on two representative concentra-
tion pathways (RCPs), RCP2.6 and RCP8.5 (hereafter ‘SSP126’ and 
‘SSP585’; adaptation measures associated with the shared socio-
economic pathways are not considered)9, chosen to sample the 
range of available scenarios and to make the results comparable 
with GC5. Twelve GGCMs each simulated five GCM forcings, 
resulting in about 240 climate–crop model realizations per crop 
(GGCMs × GCMs × RCPs × CO2 settings). The climate projec-
tions from the five GCMs (Supplementary Table 1), bias-adjusted 
and downscaled, are selected by ISIMIP based on benchmark per-
formance, equilibrium climate sensitivity and output availability 
(Methods). All simulations are carried out globally on a 0.5° grid, 
covering the time period 1850–2100 and we evaluate results based 
on transient atmospheric [CO2] (that is, ‘default [CO2]’). This study is 
based on temporally constant management assumptions, focusing on 
the isolated climate change effect on current crop production systems.

The ensemble response across the new generation of climate and 
crop models to the SSP126 and SSP585 forcing is markedly more 
pronounced than in GC5 (ref. 7) (Fig. 1). Wheat results are more 
optimistic, while maize, soybean and rice results are decisively more 
pessimistic. For maize, the most important global crop in terms 
of total production and food security in many regions, the mean 
end-of-century (2069–2099) global productivity response is ∼10% 
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Fig. 1 | Ensemble end-of-century crop productivity response. Global productivity changes (2069–2099 compared to 1983–2013) for SSP126 and SSP585 
are shown as the mean across climate and crop models for the four major crops (highlighted by numbers in circles underneath each plot). Whiskers indicate 
the range of individual climate model realizations (dashed line, as the mean across crop models), and the range across crop models (solid line, as the mean 
across climate models). Individual model results are indicated by the bullets along the whisker lines (for SSP585 only); violin shades additionally highlight the 
model distribution. For context, grey bars and whiskers reference previous GGCMI simulations based on CMIP5 (GC5; Rosenzweig et al.7) in the same way, 
without specifying individual models. Data are shown for the default [CO2]. Not all crop models simulate all crops, see Supplementary Table 3 for details.
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(SSP126) and ∼20% (SSP585) lower than in GC5. This shifts the 
SSP585 estimate from +1% (interquartile range (IQR) of crop–cli-
mate model combinations: −10% to +8%) to −24% (IQR: −38% to 
−7%) and for SSP126 from +5 to −6%.

For wheat, the second largest global crop in terms of produc-
tion, the SSP585 ensemble estimate is shifted upwards from +10%  
(IQR: −1% to +15%) to +18% (IQR: −2% to +39%), and under 
SSP126 from +5% to +9%. The SSP585 ensemble estimates for  
soybean are revised downward from +15% (IQR: −8% to +36%) 
to −2% (IQR: −21% to +17%) and for rice from +23% (IQR: +1% 
to +33%) to +2% (IQR: −15% to +12%). Overall, the new climate 
and crop model combinations narrow the range of crop yield pro-
jections for soybean and rice, but disagreement among crop mod-
els remains substantial and is largely indecisive about the sign of 
change at the global level (t test: P > 0.5 for both crops). The maize 
and wheat responses are robust and became more distinct since 
GC5. While the range of crop projections somewhat increased, 
85% of model combinations indicate negative maize changes and 
73% project positive wheat changes under SSP585. Both responses 
are now statistically significant (P < 10−5); the maize response 
in GC5 was not (P > 0.6). There is larger agreement on positive 
change for wheat under SSP126 (89%) than under SSP585, indicat-
ing peak-and-decline trajectories for parts of the ensemble under 
high-emissions scenarios (Supplementary Fig. 1).

As a C4 crop, maize has a smaller capacity to benefit from  
elevated [CO2] (ref. 23), and is also grown across a wider range of low 
latitudes that are projected to experience the largest adverse impacts 
due in large part to current proximity to crop-limiting temperature 
thresholds24. As a C3 crop, the positive wheat response is explained 
by its relatively stronger CO2 response and the fact that global 
warming leads to wheat yield increases in high-latitude regions that 
are currently temperature-limited19.

Three factors explain the more pronounced crop yield response 
in GC6. First, CMIP6 has markedly higher [CO2] than CMIP5 
(Fig. 2), with year 2099 concentrations increased from 927 ppm 
(RCP8.5) to 1,122 ppm (SSP585)9. Second, CMIP6 has higher aver-
age end-of-century warming levels than CMIP5, adequately rep-
resented in the five GCMs sampled here (Supplementary Tables 1  
and 2). While both RCP2.6 and RCP8.5 are on average ∼0.3 °C 
warmer in CMIP6 than in CMIP5 over land and oceans, the  

difference is even more pronounced (>0.5 °C) across the main 
maize-producing regions (Fig. 2). Third, the new crop model ensem-
ble features advanced versions of previous models, several new 
members and improved input data, which resulted in more realistic 
sensitivities to climate and [CO2] changes (see details below).

Emergence of the climate change signal in agriculture
The TCIE describes the point in time when average climate change 
impacts are projected to occur outside the envelope of historical 
variability and uncertainty (‘noise’). We define TCIE as the year 
in which the multi-model 25 yr moving-average crop production 
change (‘signal’) emerges from the noise (that is, the standard devia-
tion of simulated variability across all GCM × GGCM combinations 
in 1983–2013).

Maize consistently shows emerging negative productivity 
changes (‘negative TCIE’) among major producer regions. The 
ensemble median signal emerges from the noise at the global level 
in the year 2032 under SSP585 and in the year 2051 under SSP126 
(Fig. 3). Of all individual GCM × GGCM realizations, 84% show a 
negative TCIE by 2099 under SSP585 (52% under SSP126) and the 
IQR spans from 2014 to 2056, indicating sizeable agreement among 
models. This is a substantial shift away from the GC5 simulations in 
which the ensemble median shows no emergence by 2099 under any 
emission pathway, only seen in 46% of individual GCM × GGCM 
combinations under RCP8.5 (IQR: 2044–2080). Overall, the TCIE 
signal at the global level is shifted earlier and is more pronounced in 
the new generation of climate and crop model projections (Fig. 4).

By the end of the century, 10% (SSP126) to 74% (SSP585) of 
current global maize cultivation areas are projected to undergo 
negative TCIE (Fig. 5). Under SSP585 this trajectory is markedly 
earlier, with higher late-century fractions of cropland area affected 
compared to the respective 47% in GC5 (RCP8.5). Crop models 
indicate early negative maize TCIE before 2040 even under SSP126 
in Central Asia, the Middle East, southern Europe, the western 
United States and tropical South America. Projections referencing 
the 1983–2013 period suggest that the mean yield signal is already 
starting to emerge in some of these regions (Figs. 3e and 5), patterns 
largely in line with recent observations14,25,26.

The standard deviation of grid-level TCIE estimates under 
SSP585 ranges between 25 and 35 yr across most breadbasket 
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regions, with slightly higher values under SSP126 (Supplementary 
Fig. 2). Such uncertainty ranges are in line with time of emergence 
estimates for climatological variables, yet somewhat higher due to 
the additional layer of crop model uncertainties12,13. Clearest emer-
gence signals, that is, largest signal-to-noise ratios with values <−2, 
are found among lower latitudes in the tropics but also in Central 
Asia, the Middle East and the western United States (Supplementary 

Fig. 2e). As internal variability—and thus total noise—decreases 
with averaging, earlier TCIE is generally found for larger spatial 
scales.

For wheat, ensemble projections indicate TCIE of positive pro-
ductivity changes (‘positive TCIE’) at the global level (Fig. 3b) and 
across large parts of currently cultivated areas (Fig. 5). While also 
found in GC5 simulations, TCIE is shifted ∼10 yr earlier in GC6, 
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suggesting that climate-related increases might occur globally 
within the next few years (year 2023 under SSP585, year 2025 under 
SSP126; IQR, 2014–2029 and 2015–2029) and across major bread-
basket regions within the next two decades (Fig. 5). In some regions 
we already detect a TCIE signal today, which is in line with the 
range of time of emergence estimates for temperature and precipita-
tion13,14. Such effects are difficult to distinguish from rapidly chang-

ing management practices in observational data, but climate change 
impacts have been documented, for example, in Central and South 
Asia, northern China and the United States25,27. The TCIE estimates 
for wheat show high consistencies across the model ensemble—76% 
(SSP126) and 88% (SSP585) of individual model combinations 
show positive TCIE by 2099. As for maize, the TCIE signal is shifted 
earlier and is more pronounced in GC6 than in GC5 (Fig. 4).
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Supplementary Fig. 2); estimates of the affected areas in e and f account for signal changes.
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The share of wheat cultivation areas projected to see positive 
TCIE increased substantially in GC6, from 8% (GC5, RCP8.5) to 
37% (GC6, SSP585; Fig. 5f). This share levels off by midcentury, 
a result of peak-and-decline trajectories seen in some crop models 
(compare Fig. 5d and Supplementary Fig. 2f for regions that show 
TCIE early on but not by late century). Wheat also exhibits negative 
TCIE among important growing regions in South Asia, the southern 
United States, Mexico and parts of South America around midcen-
tury. The uncertainty among grid-level TCIE estimates is generally 
higher for wheat than for maize and the extent of areas with very 
high signal-to-noise ratios (that is, >2) is smaller (Supplementary 
Fig. 2f).

Ensemble median soybean and rice productivity peak midcen-
tury and decline towards the end of the century at the global level 
(Supplementary Fig. 3). The soybean response exhibits late-century 
negative TCIE (year 2096) under SSP585; rice, on the other hand, 
shows early positive TCIE (year 2030, SSP585) but late-century 
declines are not projected to reach the level of negative TCIE at the 
global level (38% of GCM × GGCM combinations under RCP8.5 
indicate negative TCIE by 2099; Supplementary Fig. 4). Rice is the 
only crop in this study that indicates positive TCIE in the tropics, 
which drives early net global gains before productivity is simu-
lated to decline again by about 2060 (Supplementary Fig. 3c). As 
for maize and wheat, the TCIE signal is shifted earlier and is more  
pronounced in GC6 than in GC5 (Supplementary Fig. 4).

Regional patterns of yield change
Projections of crop yield changes include regions of losses and 
gains for all crops (Fig. 3 and Supplementary Fig. 3). Global average 
responses can hide important regional changes, which are supported 
by strong crop model agreement. Maize projections show spatially 
homogeneous losses especially among main growing regions in 
North America, Mexico, West Africa, Central Asia and China, where 
crop model agreement is high (Fig. 3c). The high-latitude gains 
found in GC5 are not as prevalent in GC6 and are associated with 
high crop model uncertainty and low baseline yields. Wheat shows 
distinct geographic gradients with losses in spring wheat regions in 
Mexico, the southern United States, South America and South Asia, 
supported by good model agreement. Sizeable wheat gains are pro-
jected by many models for the North China Plains, Australia, Central 
Asia, the Middle East and for the winter-wheat-growing regions in 
the northern United States and Canada (Fig. 3d). Soybean shows 
the greatest losses in the main-producer regions—the United States, 
Brazil and Southeast Asia—paired with large gains across parts of 
China and generally higher latitudes (Supplementary Fig. 3). Major 
declines in rice yields are simulated in Central Asia, and gains in 
South Asia, northeastern China and South America. Both soybean 
and rice yield changes must be interpreted in view of the wide range 
in crop model ensemble results (Fig. 1 and Supplementary Fig. 3). 
A breakdown of yield responses for the top-ten producer countries 
per crop highlights a wide range of CO2 effects embedded in the 
signal (Supplementary Figs. 5 and 6).

A latitudinal profile of yield changes under SSP585—simulated 
in all grid cells irrespective of the current cropland distribution—
indicates that losses are most prevalent among low-latitude tropical 
regions with highest gains found at higher latitudes beyond 50° N 
and 30° S for all crops (Fig. 6). Maize exhibits widespread losses 
between 50° N and 30° S, while losses for the other crops are more 
concentrated in the tropics with a less distinct signal for soybean 
and rice. Major wheat breadbaskets are generally located at higher 
latitudes than maize, which further contributes to overall wheat 
gains when aggregated across currently cultivated areas. Although 
more than 90% of maize and wheat is currently produced in the 
temperate and subtropical climate zones, major yield losses will 
affect the livelihoods and food security of many smallholder farm-
ers in the tropics. Overall, our results show that lower latitudes face 

the largest losses for all crops, while higher latitudes see potential 
gains. These conclusions are in line with the IPCC AR5 (ref. 28) and 
recent studies7,29,30 and such uneven distribution of impacts may 
further increase regional disparities that are a ‘reason for concern’31 
regarding climate change risks.

Drivers of more pronounced ensemble response
It is difficult to determine to what degree the differences in crop 
yield projections between GC6 and GC5 can be explained by the 
new atmospheric forcing, the new crop model ensemble or new 
input data. A subset of GC6 and GC5 crop models that participated 
in both ensembles (albeit in different versions) shows very similar 
responses compared with the respective full ensemble, suggesting 
that the crop model selection does not explain the differences (Fig. 7).  
Further, standardized comparisons of crop model responses to 
specific mean temperature increases over cropland areas (‘warm-
ing sensitivity’; under constant [CO2] conditions, but including 
changes in other climate variables) from 1 to 2 °C and from 2 to 
3 °C, respectively, highlights that the isolated warming sensitivity in 
GC6 has substantially increased for maize (from 2–3% in GC5 to 
8–9% in GC6) and decreased for wheat (from 7% to 3–6%; Fig. 7). 
With higher overall warming levels in CMIP6, net warming-related 
maize losses by 2069–2099 thus increased from 12% (4.6 °C maize 
cropland warming) to 30% (5 °C maize cropland warming) in GC6. 
Moreover, the CO2 sensitivity at 500 and 700 ppm, but also net 
effects by the end of the century, have decreased for both maize and 
wheat. In summary, the more pessimistic maize response in GC6 
can largely be attributed to a higher sensitivity to warming and a 
lower compensating effect due to CO2 fertilization in the crop mod-
els, and to a smaller extent to the higher absolute warming levels in 
CMIP6. For wheat on the other hand, the more optimistic response 
in GC6 can be explained by lower losses per degree warming  
(with stronger temperature-related gains in high-latitude regions), 
overcompensating for a lower CO2 fertilization effect than in GC5 
(despite higher total [CO2] levels). For soybean and rice, in contrast, 
the more pessimistic response in GC6 is largely attributed to higher 
warming levels in CMIP6 compounded by a higher crop model sen-
sitivity to warming, with similar sensitivities to changes in [CO2] 
(Supplementary Fig. 7).

Crop and climate model uncertainty
The range of crop model responses under SSP585 (mean across cli-
mate models) is substantially larger than the range introduced by the 
five climate models (mean across crop models; Fig. 1). However, for 
all crops and RCPs, the uncertainty associated with the five CMIP6 
climate models has increased compared to the five climate models 
sampled in GC5. In turn, the fraction of total variance induced by 
the crop models is substantially reduced for all crops in GC6 (for 
maize from 97% to 69%; Fig. 8), which highlights that the crop 
response became more consistent, despite the fact that the number 
of crop models increased. Absolute variance induced by the climate 
models has increased for all crops (Fig. 8), which is explained by a 
wider distribution of climate sensitivities tracked by the five CMIP6 
GCMs (Supplementary Tables 1 and 2), but also by higher [CO2] 
assumed in CMIP6 (Fig. 2). In this sample, UKESM1 is the most 
pessimistic GCM for both RCPs and all crops, the global mean 
warming level by 2099 is ∼2.6 °C higher than in GFDL-ESM4, and 
the transient climate response is 1.2 °C higher (see Supplementary 
Table 1 for more details)6. Generally, the least pessimistic crop 
impacts are found with MRI-ESM2 (Fig. 1).

Higher emission scenarios inflate the crop model uncertainty 
(SSP585), while the overall climate- and crop model-induced uncer-
tainty range in GC6 is of comparable size under SSP126 (Fig. 1).  
Uncertainty in the CO2 effect causes much of the crop model  
uncertainty for wheat, soybean and rice (Supplementary Fig. 8), yet 
the range of maize responses is not fundamentally reduced without 

NATuRE FOOD | www.nature.com/natfood

http://www.nature.com/natfood


ArticlesNATuRe FOOd

the CO2 effect. In line with physiological knowledge23, crop mod-
els mostly show the smallest CO2 effects for C4 crops (maize) and 
much larger responses for C3 crops (wheat, soybean, rice). However, 
the CO2 effects differ widely across crop models; the ensemble 
median rainfed response is 19% for maize, 33% for wheat, 48% for 
soybean and 37% for rice by the year 2099 (Supplementary Fig. 8), 
which is generally in line with field experiments given that model 
simulations include nutrient limitations20,23. CYGMA and CROVER 
exhibit a strong peak-and-decline CO2 response for some crops, 
resulting in negative CO2 effects for maize in CYGMA after 2090 
(Supplementary Fig. 8). This is driven by increased water use effi-
ciencies under elevated [CO2], eventually leading to adverse excess 
moisture effects in humid regions—a new feedback represented  
primarily in CYGMA and underexplored in previous studies32.

In addition to the CO2 effect, climate change affects simulations 
of crop growth and development in various ways. These include, for 
example, changed precipitation patterns, extreme heat and drought 
events, and importantly, accelerated maturity. Higher temperatures 
lead to faster phenological development and substantial reductions 
in the growing season length in all crop models, which in turn lead 
to complex processes affecting yield, including shorter grain-filling 
periods, smaller canopies and reductions in photosynthesis. This 
effect varies across models and additional work is needed to further 
narrow the range of crop model responses33. After all, the standard 
deviation of simulated yield variability matches observational data 
to a much higher degree in GC6 (R = 79%) than in GC5 (R = 44%), 
adding to more realistic yield responses (Supplementary Fig. 9).

Discussion
We introduce the concept of climate impact emergence to the field 
of agriculture impacts, highlighting that major shifts in global crop 
productivity due to climate change are projected to occur within the 
next 20 yr, several decades sooner than estimates based on previous 
model projections. The impact on crop productivity under SSP126 
and SSP585 is largely similar for the coming decade, which leaves 
little room for climate mitigation efforts. In light of the much larger 
climate and crop model agreement for these short-term projections 

than for the late century, the findings highlight challenges for food 
system adaptation faced with noticeably shorter lead times.

These CMIP6 multi-model crop yield projections suggest that cli-
mate change impacts on global agriculture will be more pronounced 
than in GC5, with substantially larger losses for maize, soybean and 
rice and additional gains for wheat. This is supported by a generally 
more consistent crop model ensemble. However, large uncertainties 
remain, particularly in TCIE estimates—the standard deviation for 
global maize TCIE is 24 yr (SSP585), which is similar to estimates of 
temperature emergence12. Yet the signal is robust: more than 80% of 
the GCM-GGCM combinations indicate TCIE for maize and wheat 
by late century across major breadbaskets (SSP585). TCIE esti-
mates based on different metrics qualitatively agree (for example, 
multi-model ensemble mean TCIE for maize is found in the year 
2032, the median of individual GCM × GGCM estimates in the year 
2027, and the mean in the year 2036). Leaving one crop model out at 
a time introduces a TCIE standard deviation of only 1.5 yr for both 
maize and wheat (SSP585). That said, time of emergence estimates 
are sensitive to the underlying definitions (for example, noise, pre-
industrial or recent climate, smoothing approach, threshold selec-
tion) and can push the emergence date earlier or later in time12–14. 
Absolute TCIE estimates are therefore more challenging to interpret 
than relative comparisons among regions, crops and especially the 
two ensemble projections GC5 and GC6.

Wheat yield increases are projected to level off by midcentury 
and part of the climate–crop model ensemble indicates net losses 
under SSP585 by 2099 (Fig. 1 and Supplementary Fig. 1). Maize 
yield, on the other hand, is projected to decline steadily, supported 
by higher model agreement than for wheat. These general response 
differences are also in line with previous findings34. The more pro-
nounced response of the new projections can be explained primar-
ily by higher equilibrium climate sensitivities, higher [CO2] and 
different crop model sensitivities per degree warming and [CO2] 
changes. With regard to CMIP6, higher and wider-ranging climate 
sensitivities are critically discussed and associated with differing 
parameterizations of cloud feedback and cloud–aerosol interac-
tions35–38. While better simulations of cloud liquid water contents 
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and their radiative behaviour render the climate models more  
realistic, it is unclear whether these improvements translate into 
more accurate estimates of equilibrium climate sensitivity (ECS) and 

overall warming levels. Additional improvements of the GCMs, and 
the bias-adjustment and downscaling methods used, result in bet-
ter representations of extreme events and internal variability10,39–41, 

1

2

5

7

GC5
subset

–1.2

5

8

9

10

GC6
subset

–19.8

1

2

3

4

5

6

7

GC5

–0.6

1
2

3

4

5

6

7

8

9

10

11

12

GC6

–22.4

–60

–40

–20

0

20

40

G
lo

ba
l p

ro
du

ct
iv

ity
 c

ha
ng

e 
(%

)

E
nd

-o
f-

ce
nt

ur
y 

re
sp

on
se

GGCMI–CMIP5
GGCMI–CMIP6

Maizea

1

2

3

4

5

6

7

–3.1

2

3

5
6

7
8

9

10

11

12

–7.5

From 1 to 2 °C
cropland T change

–20

–15

–10

–5

0

5

G
lo

ba
l p

ro
du

ct
iv

ity
 c

ha
ng

e 
(%

)

W
ar

m
in

g 
se

ns
iti

vi
ty

(c
on

st
an

t C
O

2)

c

1

2

3

4

5

6

7

–1.9

2

3

56

7
8

9

10

11

12

–7.4

From 2 to 3 °C
cropland T change

1

2

3

4

5

6

7

–11.9

2

3

56

7
8

9

10

11

12

–30.2

(2069–2099)
4.6 °C 5 °C

–60

–40

–20

0

20

40

1 2

34

5

6

7

4.6

2

3

5
6
78 9

10

11

12

2.3

500
ppm

1
2

3
4

5

6

7

10.3

2

3
5

6

7

8 9

10

11

12

7.4

700
ppm

1

2

3
4

5

6

7

12.7

2
3

5

6

7

8

9

10

1112

10.3

(2069–2099)

794
ppm

921
ppm

0

10

20

30

G
lo

ba
l p

ro
du

ct
iv

ity
 c

ha
ng

e 
(%

)

C
O

2 
se

ns
iti

vi
ty

e

1

2

5

7

GC5
subset

6.1

5

8

9

10

GC6
subset

11.3

1

2

3

4

5
6

7

GC5

2.6

1

2

3

45
6

7

8

9

10

11 12

GC6

9.8

–20

0

20

40

G
lobal productivity change (%

)

Wheatb

1

2

3
4
5

6

7

–5.6

2

3

5

6

7

8

9

10

11

12

–4.7

From 1 to 2 °C
cropland T change

–10

–5

0

G
lobal productivity change (%

)

d

1

2

3
4

5

6

7

–5.7

2

3

5

6

7

8

9

10 11

12

–4.4

From 2 to 3 °C
cropland T change

1

2 3

4

5

6

7

–13.6

2

3

5

6

7

8

9

10

11

12

–15.3

(2069–2099)
4.9 °C 5.2 °C

–40

–30

–20

–10

0

10

1
23

4

5
6
7

14.1

2 3

5 6
7 8910

11 12

8.3

500
ppm

1

23

4

5

6

7

28.3

2

3

5

6

7 89
10

11

12

20.3

700
ppm

1

2
3

4

5

6

7

32.6

2

3

5

6

78
9 10

11

12

28.8

(2069–2099)

794
ppm

921
ppm

0

20

40

60

80 G
lobal productivity change (%

)

f

GC5 crop models

1  EPIC
2  GEPIC
3  IMAGE
4  LPJ-GUESS

5  LPJmL
6  PEGASUS
7  pDSSAT

GC6 crop models

1  ACEA
2  CROVER
3  CYGMA1p74
4  DSSAT-Pythia

5  EPIC-IIASA
6  ISAM
7  LandscapeDNDC
8  LPJmL

9  pDSSAT
10  PEPIC
11  PROMET
12  SIMPLACE-LINTUL5

Fig. 7 | Driver attribution of crop model responses. a,b, Projected end-of-century global productivity changes for maize (a) and wheat (b) under RCP8.5 
(climate model mean) are shown for all members of the crop model ensembles GGCMI–CMIP5 (GC5) and GGCMI–CMIP5 (GC6), and for a subset of 
crop models that participated in both rounds (note substantial differences between model versions). c,d, The sensitivity to global mean warming of the 
full ensembles is shown for temperature (T) changes over maize (c) and wheat (d) cropland areas from 1 to 2 °C, from 2 to 3 °C, and for the total change 
between 1983–2013 and 2069–2099. The warming sensitivity is based on [CO2] held constant at the 2015 level but includes changes in other climate 
variables. e,f, The CO2 sensitivity for maize (e) and wheat (f) in GC5 and GC6 is shown at specific [CO2] and for the 2069–2099 mean concentrations. 
Warming and CO2 sensitivities are calculated based on crop model responses over a 21 yr window centred on the year in which a certain temperature change 
or [CO2] occurs in each climate model. Filled circles indicate the median crop model response, additionally highlighted by circled numbers underneath each 
plot. Black bars show the IQR and individual models are indicated by numbers. Note that both c and d include two different legends. See Supplementary Fig. 
7 for soybean and rice results. ACEA and DSSAT-Pythia have not submitted simulations for the constant [CO2] setting and are excluded from c–f.

NATuRE FOOD | www.nature.com/natfood

http://www.nature.com/natfood


ArticlesNATuRe FOOd

which are critical for crop modelling. Higher [CO2] in CMIP6 are 
due to a revised trade-off between [CO2] and [CH4] resulting from 
updated observations and assumptions in the MAGICC7.0 model42.

The GGCMI crop model ensemble has substantially changed 
and consists of revised and new members. For example, LPJmL 
contributed to GC5 and has since been fundamentally improved 
with the addition of the nitrogen cycle43 and heat unit parameter-
ization44. In addition, input data and model harmonization have 
been improved, including growing season harmonization based on 
a new crop calendar developed for this study (Methods). A com-
prehensive attribution of crop response differences between GC5 
and GC6 to changes in climate forcing, crop model selection and 
sensitivities, and input data is not feasible. But standardized com-
parisons of changes in cropland warming and [CO2] indicate that, 
for maize and wheat, changes in crop model ensemble sensitivities 
dominate the response, and for soybean and rice, higher warm-
ing levels and warming sensitivity explain much of the differences  
(Fig. 7 and Supplementary Fig. 7).

The new GCM bias adjustment, crop model advancement, 
improved input data and a new crop yield bias correction serve to 
substantially reduce the amount of variance induced by the crop 
models compared to the climate models, rendering the new GC6 
ensemble more balanced and consistent than GC5 despite a larger 
ensemble size (12 crop models in GC6, 7 in GC5; Fig. 8). In a similar 
vein, Müller et al.45 comprehensively compared crop yield uncer-
tainties under all CMIP5 and CMIP6 GCMs based on GGCMI crop 
model emulators46, confirming that CMIP6 introduces a wider range 
of yield responses with more pessimistic average impacts. In view of 
improved model harmonization, inputs and GGCM versions and 
performance, we consider GC6 more reliable than GC5—despite 
ongoing discussions on the temperature sensitivity in CMIP6.

The uncertainty in the mechanisms and overall size of the effects 
of CO2 fertilization manifested in farmers’ fields are reflected in a 
wide range of CO2 sensitivities among the crop models contributing 
to the GGCMI archive20. Average simulated CO2 fertilization effects 
are generally in line with field experiments20,47,48, but the wide range 
of this effect merits more rigorous model testing at the process 
level, which in turn requires better reference data, especially at high 
[CO2] levels. Moreover, elevated [CO2] boosts crop yield, but may 

also affect the nutritional content of the crops49,50. Impacts related 
to excess moisture, water resource limitations and new distributions 
of pests and diseases may lead to additional regional biotic stresses 
requiring follow-on analysis.

Cropping system adaptation can substantially reduce and even 
outweigh adverse climate change impacts, for example, by switch-
ing to other crops51 or better-adapted varieties52. Integrated into 
ISIMIP’s wider cross-sector activities, GGCMI will systematically 
evaluate farming system adaptation and changes in yield variability 
and extreme event impacts in subsequent efforts.

In conclusion, the new generation of AgMIP’s GGCMI provides 
the most comprehensive ensemble of process-based future crop 
yield projections under climate change to date. The degree to which 
even high mitigation climate change scenarios are projected to push 
global farming outside of its historical regimes suggests that cur-
rent food production systems will soon face fundamentally changed 
risk profiles. Despite prevailing uncertainties, these ensemble pro-
jections spotlight the need for targeted food system adaptation and 
risk management across the main producer regions in the coming 
decades.

Methods
Time of emergence metric. We define TCIE as the year in which the smoothed 
climate change signal (‘signal’) exceeds the underlying internal variability and 
model uncertainty (‘noise’). The signal is the multi-model ensemble mean crop 
productivity change against the 1983–2013 reference period (smoothed with a 
25 yr moving window). Noise is defined as the standard deviation of simulated 
historical variability of crop productivity across all individual GCM × GGCM 
combinations (1983–2013). TCIE is the first year in which the signal emerges 
from the noise, that is, when the signal-to-noise ratio becomes greater than 1. 
Similar time of emergence definitions have been used in previous studies (for 
example, refs. 12,14,53,54). Historical productivity time series are not detrended as we 
hold all management factors constant throughout the simulations. To assess TCIE 
uncertainties, we calculate TCIE also for each individual climate–crop model 
realization as suggested by Hawkins and Sutton12, and we analyse the distribution 
of the individual estimates (including mean, median, IQR and s.d.). We find that 
the multi-model ensemble mean TCIE usually occurs between the median and the 
mean of individual TCIE estimates. For example, global-level maize production 
under RCP8.5 shows a multi-model ensemble mean TCIE in year 2032, the 
median of individual estimates occurs in year 2027 and the mean in year 2036. 
Wheat shows the same pattern and results are qualitatively the same across the 
different methods. To test the robustness of results in another way, we calculate the 
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multi-model ensemble mean TCIE iteratively while removing one crop model at a 
time. The s.d. of this distribution at global level is marginal; 1.5 yr for both maize 
and wheat under RCP8.5. As a final metric, we also compare the number of climate 
and crop model combinations that show an emergence signal by the end of the 
century. We calculate TCIE at global level, for different Koeppen–Geiger climate 
zones, and for individual grid cells. Earlier TCIE is generally found for larger 
spatial scales as the variance of internal variability decreases with averaging. For 
additional discussions see, for example, refs. 11–13.

ISIMIP climate input datasets. GGCMI simulation efforts for CMIP6 impact 
assessment are aligned with the ISIMIP5 activity in which GGCMI represents the 
agriculture sector. Key modelling inputs such as information on climate, land 
use, fertilizer input, soils, among others, are harmonized across various research 
sectors. CMIP6 climate model outputs are centrally bias-adjusted and downscaled 
by the ISIMIP framework to provide climate-input datasets on a daily regular 
0.5° × 0.5° global grid. The bias-adjustment method employs a quantile mapping 
approach and uses the observational W5E5 v.1.0 dataset55,56. This historical 
dataset compares favourably with climatic forcing datasets that have been used 
previously by AgMIP GGCMI57. The new quantile-mapping method adjusts 
biases and preserves trends in all quantiles of the distribution of simulated daily 
climate model outputs; for more details see Lange10. To lower the barrier for 
participation in this study we provide climate input data for five CMIP6 GCMs: 
GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-
0-LL (see Supplementary Table 1 for further details). The GCM selection is 
based on data availability at the time of selection, performance in the historical 
period, structural independence, process representation and equilibrium climate 
sensitivity (ECS). The five GCMs are structurally independent in terms of their 
ocean and atmosphere model components and overall they represent the range of 
ECS across the full CMIP6 ensemble, including three models with below-average 
ECS (GFDL-ESM4, MPI-ESM1-2-HR and MRI-ESM2-0) and two models with 
above-average ECS (IPSL-CM6A-LR and UKESM1-0-LL)8. ECS and transient 
climate response (TCR) for all GCMs used are listed in Supplementary Table 1. The 
mean and s.d. of both ECS (mean, 3.7 °C; s.d., 1.1) and TCR (mean, 2.0 °C; s.d., 0.5) 
across the five GCMs used here precisely match the mean and s.d. across the full 
CMIP6 ensemble with 38 members (Supplementary Tables 1 and 2), much better 
than in GC5, although the range of ECS in the CMIP6 ISIMIP models is larger 
than in the CMIP5 ISIMIP models.

The daily weather variables at a 0.5° spatial resolution that are used as input 
for the crop models include: daily mean, minimum, and maximum 2 m air 
temperature (T, Tmin and Tmax, respectively (°C)), daily total precipitation (P (mm)), 
and daily mean shortwave and longwave radiation (SR and LR (W m−2)).

GGCMI phase 3 crop modelling protocol. Bias-adjusted climate model 
projections are used to drive transient crop model simulations, that is, 
uninterrupted runs for the historical (1850–2014) and future (2015-2100) time 
periods. Potential future trajectories are represented by SSP1 with RCP2.6 (here 
SSP126) and SSP5 with RCP8.5 (here SSP585). Therefore, each crop model 
performs 20 future simulation runs for each crop (5 GCM × 2 RCP × 2 [CO2] 
settings). Note that in this study any socioeconomic forcing or adaptation effort 
associated with the SSP storylines is held constant at the year 2015 level to isolate 
the climate signal (that is, year 2015 land-use, fertilizer application, growing 
seasons, crop cultivars, but also NO3 and NH4 deposition rates, are used in years 
after 2015). To help isolate yield effects associated with the CO2 fertilization  
effect, all crop model simulations are run for two separate assumptions:  
(1) transient [CO2] in line with the respective RCP (‘default [CO2]’), and  
(2) [CO2] concentration held constant at the 2015 level at 399.95 ppmv (‘constant 
[CO2]’). Differences between the two [CO2] levels are not a measure of [CO2] 
uncertainty, as there is no plausible climate change scenario without increasing 
[CO2]22. Instead, this set-up is used to quantify the size of the CO2 fertilization 
effect and for climate change factor attribution. All simulations are carried out 
at the 0.5° global grid. In addition to the GCM forcing, we include historical 
simulations based on the reanalysis product GSWP3-W5E5 v.1.055,56 for each  
crop model and crop to better evaluate crop model performance against 
observational data.

We focus on the four major global grain crops, that is, maize (Zea mays L.), 
wheat (Triticum sp. L.), rice (Oryza sativa L.) and soybean (Glycine max L. Merr.). 
Wheat is simulated as winter and spring wheat individually; grain and silage maize 
are not distinguished. These four main crops contribute 90% of today’s global 
caloric production of all cereals and soybean58.

All crops are simulated under both rainfed conditions and full irrigation 
(where soil moisture is set to field capacity every day, without constraints on water 
availability) in all grid cells—independent of the current cropland distribution. The 
physical cropland extent is applied in postprocessing based on the MIRCA2000 
(Monthly Irrigated and Rainfed Crop Areas around the year 2000) reference 
dataset59 and irrigated fractions are adapted from Siebert et al.60; both are held 
constant over time.

Soil moisture and soil temperature for various soil layers are calculated by most 
crop models in a transient way, that is, without reinitializing at the beginning of 
each year. All models use a classic phenological heat sum approach to determine 

physiological stages between planting and maturity. Heat unit accumulation can 
be modified by the sensitivity to day length (photoperiod) and for winter wheat is 
stalled until vernalization requirements are reached, that is, the exposure to cold 
temperatures before anthesis. Planting dates (Crop calendar and crop varieties) are 
constant over time but the heat sum approach leads to different growing season 
lengths depending on the daily temperature distribution in each growing season. 
Except for rice, we simulate only one growing season per calendar year. The first 
and last years of the transient runs are removed from crop model simulations due 
to partially incomplete growing seasons. Simulations in grid cells with a growing 
season length <50 d are removed, as are simulations resulting in premature harvest 
(that is, accumulated heat units <80% of required heat units; this applies only to 
those models that can provide such outputs).

The harmonization of crop models includes the required use of a central crop 
calendar product (new development for this study, see below), fertilizer inputs and 
soil information. Additional protocol characteristics are recommended but not 
required, as not all models can address all features (see below).

Simulation protocols determine mineral and organic fertilizer (kgN ha−1)  
inputs per crop and grid cell. Mineral fertilizer (ammonium nitrate; NH4NO3) 
application is crop specific and is derived from the LUH2 product61, harmonized 
by ISIMIP and GGCMI. Manure application inputs (C:N ratio, 14.5) are grid 
cell specific, but constant across crops62. All other nutrients are considered 
non-limiting. Fertilizer scheduling follows a simple assumption with 20% applied 
at sowing and 80% applied when 25% of the heat units required to reach maturity 
are accumulated. As for all other management aspects, fertilizer application is held 
constant throughout the simulation period. Atmospheric nitrogen deposition is 
considered, separating NHx and NOy, based on Tian et al.63 and held constant at the 
2015 level.

Soil input is harmonized across crop models for the first time in GGCMI, 
derived from the Harmonized World Soil Database (HWSD)64. While the same 
HWSD dataset is used across ISIMIP sectors, in this study we employ a different 
algorithm to aggregate the data to 0.5° in order to be cropland specific. The 
pDSSAT model uses the Global Soil Data set for Earth system modelling (GSDE)65 
and DSSAT-Pythia uses the Global High-Resolution Soil Profile Database for Crop 
Modelling Applications66 due to difficulties in retrieving all soil parameters from 
HWSD.

Finally, the following management aspects are encouraged to be harmonized 
across crop models, but are not accounted for by all teams: tillage (two tillage 
events, planting day and harvest day, 200 mm depth, full inversion), residues (70% 
of above-ground residues removed), no pest and disease damage, no soil erosion 
and no cover crops. Except for rice and wheat, which are simulated for two separate 
growing seasons, we do not consider multicropping systems or crop rotations. 
Inputs are provided for 18 different crops globally, but most crop models can only 
simulate the major crops, which we focus on in this study. All socioeconomic and 
farm management input data are publicly available via www.isimip.org.

Participating GGCMI crop models. Twelve process-based global crop models 
participate in this study: ACEA, CROVER, CYGMA1p74, DSSAT-Pythia, 
EPIC-IIASA, ISAM, LandscapeDNDC, LPJmL, pDSSAT, PEPIC, PROMET 
and SIMPLACE-LINTUL5 (see Supplementary Table 3 for further details and 
references). The full ensemble, therefore, consists of roughly 240 future crop model 
simulations per crop plus one historical reference run for each crop and climate 
model and one historical reanalysis run per crop model. Due to computational 
constraints, ACEA has only run GCMs UKESM1-0-LL and MRI-ESM2-0 so far, 
and DSSAT-Pythia has not yet run UKESM1-0-LL. ACEA and DSSAT-Pythia have 
not yet finished simulations for the constant [CO2] setting.

All crop models are considered independent. LPJmL, pDSSAT, EPIC-IIASA, 
PROMET and PEPIC have participated in previous GGCMI protocols7,67–69, but the 
individual models and their parameterizations have substantially advanced. This 
is especially the case for those models that participated in GC5 and GC6 (LPJmL, 
pDSSAT, EPIC-based models) and a comprehensive account of changes in the 
model code, parameters, inputs and the modelling protocol is beyond the scope 
of this study. The main structural differences for LPJmL include the addition of 
a nitrogen cycle, crop residue and tillage management, and manure application; 
PEPIC and EPIC-IIASA in GC6 used the Penman–Monteith method to estimate 
PET, GEPIC and EPIC in GC5 used the Hargreaves method and more generally 
a substantially different model parameterization and spin-up protocol. In GC5 
pDSSAT used DSSAT4.0 and different yield and cultivar calibrations. As opposed 
to GC6, in GC5 fertilizer application rates and timing, planting and harvest dates, 
soil information, irrigation and soil erosion were not harmonized across modelling 
teams.

While the other models are new GGCMI ensemble members, they have been 
thoroughly evaluated individually (see references in Supplementary Table 3). To 
participate in this study, each model was required to go through a benchmark 
performance evaluation for the historical period based on GSWP3-W5E5 
reanalysis data (results available upon request). An overview of the degree to which 
the GC6 crop models explain observed interannual yield variability is presented 
in Supplementary Fig. 10. For the top five producer countries per crop, the 
ensemble mean generally shows higher performance in terms of correlation and 
root-mean-square error than the bulk of individual models. Generally, explained 
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variability in individual models is satisfactory for most maize, wheat and soybean 
main-producer countries. The metrics are lower for rice which also links to the 
fact that the weather signal in (largely irrigated) rice is smaller than in other crops, 
and the overall observed interannual variability in these rice producer countries 
is smaller than for the other crops. Since management decisions (planting dates, 
crop rotations and areas, fertilizer application, irrigation and so on) are held 
constant over time, the crop models can only capture the interannual weather 
signal in reported yields, which in general is much smaller in the tropics compared 
to mid- to high-latitude regions. Additional in-depth GGCMI model comparison 
and evaluation is presented by Müller et al.67. Overall, crop model performance 
evaluation based on historical yield variability provides limited insight into the 
models’ capability to project future yield impacts70.

Since GCM-based crop model simulations are difficult to compare with 
observed interannual yield levels (for example, the 1988 drought does not 
necessarily occur in 1988 in the GCM), we compare the overall range of simulated 
and observed yield variability across the historical reference period. The standard 
deviation of observed national yield variability is matched to a substantially higher 
degree in GC6 (R = 79%, r.m.s.e. = 0.11) than in GC5 (R = 44%, r.m.s.e. = 0.17), 
which is indicative of more realistic yield responses in GC6 (Supplementary Fig. 9).  
These improvements are linked to a combination of factors, including different 
internal variability in CMIP6, new GCM bias-adjustment method, improved  
crop model ensemble, new crop yield bias-correction and improved crop model 
inputs. The match with observed yield variability using GC6 simulations based  
on GSWP3-W5E5 reanalysis data is only slightly better (R = 87%, r.m.s.e. = 0.09) 
than with GCM-forced simulations, which highlights that the CMIP6 GCMs  
do not introduce substantial errors in terms of historical variability  
(Supplementary Fig. 9).

While the models generally reproduce yield declines in extreme years, adverse 
impacts of excess water on crop growth due to lower aeration, waterlogging 
and nitrogen leaching are generally underrepresented in current global crop 
models32. As an exception, the crop model CYGMA accounts for effects due to 
excess moisture stress71. ACEA, EPIC-based, and DSSAT-based crop models also 
have processes related to waterlogging and root aeration but associated stresses 
occur rarely and foremost on sensitive soils72. Many models do not handle 
direct effects of extreme heat (for example, on leaf senescence, pollen sterility; 
see Supplementary Table 3)3. Individual model responses to elevated [CO2] are 
shown in Fig. 7 and Supplementary Fig. 8 and discussed in the main text. The 
ISAM model requires sub-daily weather data and therefore uses CRU–National 
Centers for Environmental Prediction (CRUNCEP) diurnal factors to convert 
daily bias-adjusted climate model data to diurnal data. The PROMET model also 
requires sub-daily weather data and uses ERA5-derived diurnal factors to convert 
climate model data to diurnal inputs; it also uses WFDE5 instead of GSWP3-W5E5 
for reanalysis simulations.

All models use spin-up simulations of various lengths to reach soil and carbon 
pool equilibrium. EPIC-IIASA uses dynamic soil handling during spin-up to 
generate soil attributes. Subsequently these are used as an input in the actual 
simulations with static soil handling, that is annual reinitialization of all soil 
attributes (including soil organic matter fractions and soil texture among others) 
except mineral nutrient pools, temperature and soil moisture. The models do not 
account for human management intervention other than fertilizer application, 
irrigation, seed selection, growing periods and basic field management such as 
tillage and residue removal.

All models follow a phenology calibration with respect to grid cell-specific 
cultivar parameterizations (that is, phenological heat units) based on the respective 
crop calendar and weather forcing (Supplementary Table 3). Yield calibration 
is not harmonized across crop models and each team follows their individual 
protocol, including grid cell-specific calibration against SPAM73 reference yields 
(for example, pDSSAT), various site-specific efforts based on field experiments 
(for example, ISAM) and calibrations with national FAO58 statistics (for example, 
PEPIC).

Crop yield bias correction. Crop production is calculated as yield times harvested 
area of the respective crop. We omit grid cells with <10 ha cropland area for each 
crop. To compare results across crop models, but also to represent realistic overall 
crop production estimates and spatial pattern, we calculate fractional yield changes 
from each individual crop model simulation between the historical reference 
period (1983–2013) and the respective future projection and multiply these with 
a spatially explicit (0.5°) observational yield reference dataset (see Supplementary 
Fig. 14 in ref. 74). SPAM (Spatial Production Allocation Model)73 is used as the 
main reference yield data as it separates rainfed and irrigated systems. Grid cells 
with missing SPAM yield data but with >10 ha MIRCA2000 harvested area are 
gap-filled with Ray et al.75 yield data; both SPAM and Ray et al. represent the time 
period 2003 to 2007.

Crop calendar and crop varieties. We provide planting and maturity dates for 
each crop in each grid cell, separate for rainfed and irrigated systems, based on a 
new observational crop calendar product. See Supplementary Information section 
GGCMI crop calendar and Supplementary Figs. 11-14 for details. Growing season 
inputs are static over time throughout the historical and future time period to 

avoid confounding trends. Each model calculated required reference heat units to 
reach physiological maturity for each crop in each grid cell by averaging annual 
heat sums over all growing seasons between 1979 and 2010.

Map projection and smoothing. Global maps are based on the Robinson 
projection and grid-level data are smoothed to improve clarity and visual 
appearance. Smoothing is done by first resampling the raw data to five times finer 
resolution, followed by a 5 × 5 grid cell focal mean window aggregation. Map 
smoothing is done for visualization purposes only and all analyses are based on the 
raw data.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper 
and/or the Supplementary Information. Model inputs are publicly available via 
https://www.isimip.org/ or from the corresponding author. The GGCMI crop 
calendar is accessible at https://doi.org/10.5281/zenodo.5062513; fertilizer inputs 
are available at https://doi.org/10.5281/zenodo.4954582. Crop model simulations 
will be made publicly available under the CC0 license pending publication.

Code availability
Details and code for each crop model can be requested from the contact persons 
listed in Supplementary Table 3. Code developed for data analysis and figures is 
available from the corresponding author upon request.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Crop models contributing data to the study are written in various languages including C, Python, Fortran, etc. Details and code for each model 
can be requested from the respective contact person listed in the Supplement.

Data analysis All data analyses and the preparation of figures are done using R version 3.6.2 (Copyright (C) 2019 The R Foundation for Statistical Computing, 
Platform: x86_64-pc-linux-gnu (64-bit)).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Model inputs are publicly available via 
https://www.isimip.org/ or from the corresponding author. The GGCMI crop calendar is accessible under the DOI: 10.5281/zenodo.5062513, fertilizer inputs under 
the DOI: 10.5281/zenodo.4954582. Crop model simulations will be made publicly available under the CC0 license pending publication.”
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Five climate models provide inputs for an ensemble of harmonized global crop models to simulate potential responses of crop 
productivity to climate change. 

Research sample Five global climate models from the Coupled Model Intercomparison Project (CMIP) phase 6 are bias-adjusted and downscaled by 
ISIMIP. The ensemble of GGCMI global process-based crop models samples a range of state-of-the-art dynamic modeling approaches.

Sampling strategy Climate models were selected by ISIMIP based on benchmark performance, equilibrium climate sensitivity, and output availability. 
Crop model participation is based on an open call to the GGCMI community, all submissions are considered.

Data collection Crop model simulations provide the data for the study.

Timing and spatial scale Crop model simulations run from the year 1850 until 2100 with global coverage and 0.5° spatial resolution.

Data exclusions No data were excluded.

Reproducibility Modeling experiments are numerically reproducible, given the archived model version and input data set. 

Randomization Not relevant, data are not grouped and all data are shown.

Blinding Not relevant, process-based models are equally-weighted independent approaches.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Eukaryotic cell lines
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Animals and other organisms
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Clinical data

Dual use research of concern

Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging
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