
1. Introduction
Crop yield has and will be affected by environmental factors, such as atmospheric carbon dioxide level 
([CO2]) and changes in temperature and precipitation patterns. For instance, an increase in the [CO2] 
positively influences the crop yields due to an increase in the photosynthesis process and reduced water 
requirement under increasing [CO2] (Ainsworth, 2008; Gray et al., 2016). On the other hand, increasing 

Abstract A land process model, Integrated Science Assessment Model, is extended to simulate 
contemporary soybean and maize crop yields accurately and changes in yields over the period 1901–2100 
driven by environmental factors (atmospheric CO2 level ([CO2]) and climate), and management factors 
(nitrogen input and irrigation). Over the twentieth century, each factor contributes to global yield 
increase; increasing nitrogen fertilization rates is the strongest driver for maize, and increasing [CO2] is 
the strongest for soybean. Over the 21st century, crop yields are projected under two future scenarios, 
RCP4.5-SSP2 and RCP8.5-SSP5; the warmer temperature drives yields lower, while rising [CO2] drives 
yields higher. The adverse warmer temperature effect of maize and soybean is offset by other drivers, 
particularly the increase in [CO2], and resultant changes in the phenological events due to climate 
change, particularly planting dates and harvesting times, by 2090s under both scenarios. Global yield for 
maize increases under RCP4.5-SSP2, which experiences continued growth in [CO2] and higher nitrogen 
input rates. For soybean, yield increases at a similar rate. However, in RCP8.5-SSP5, maize yield declines 
because of greater climate warming, extreme heat stress conditions, and weaker nitrogen fertilization than 
RCP4.5-SSP2, particularly in tropical and subtropical regions, suggesting that application of advanced 
technologies, and stronger management practices, in addition to climate change mitigation, may be 
needed to intensify crop production over this century. The model also projects spatial variations in yields; 
notably, the higher temperatures in tropical and subtropical regions limit photosynthesis rates and reduce 
light interception, resulting in lower yields, particularly for soybean under RCP8.5-SSP5.

Plain Language Summary A land surface model is used to estimate changes in global 
maize and soybean yields in response to changes in environmental conditions (climate (temperature 
and precipitation) and carbon dioxide concentration ([CO2])), and agricultural management activities 
(irrigation, nitrogen application, and dynamic planting time decisions) over the 20th and 21st centuries. 
Estimated current crop yields compare well with the observed crop yields circa 2000. We then project 
how maize and soybean resources may change in the future under two climate and socio-economic 
assumptions: a high-end emission pathway (RCP8.5-SSP5) and a mitigated emission pathway (RCP4.5-
SSP2). We find that future increase in [CO2] drives yield higher and alleviates the negative climate impacts 
on soybean productivity. The maize yield increases under the mitigated emission pathway because of 
earlier planting dates and the continued [CO2] growth and nitrogen application. However, under the 
high-end emission pathway with greater warming and lower nitrogen application, the maize yield reduces 
by 14% by the end of this century, suggesting that climate change mitigation and improved agricultural 
technologies and practices may be needed to intensify crop production over this century. Crops’ exposure 
to heat stress during grain formation is represented by canopy temperature and is projected to increase by 
the 2090s.
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temperature increases atmospheric water demand, causing water stress and drought that severely decrease 
crop growth and yields worldwide (Lobell et al., 2014; Rahimi-Moghaddam et al., 2018). The Global Grid-
ded Crop Model Intercomparison (GGCMI) of Agricultural Model Intercomparison and Improvement Pro-
ject (AgMIP) compares the crop yield results for global gridded crop models over this century for maize, 
wheat, rice, and soybean (Elliott et al., 2015; Müller et al., 2017). The AgMIP study generally finds that the 
models’ estimated effects of environmental factors on crop yields are qualitatively consistent with the meas-
urement studies (Müller et al., 2015).

However, the magnitude of these effects remains uncertain on a global scale and understanding of envi-
ronmental factors' interactions with crop management practices (e.g., irrigation and nitrogen (N) fertilizer 
inputs), and the effects of extreme climate events, such as heat stress (HS) and droughts on yields, remain 
incomplete. Studies show that agricultural management practices generally can alleviate not only the ad-
verse effects of climate change but also modulate the positive effects of increasing [CO2]. Levis et al. (2018) 
find irrigation can mitigate the yield losses due to increased respiration and water demand caused by tem-
perature increases. Similarly, Rosenzweig et al. (2014) simulate higher yields under the assumption of no 
N-limitation. However, the AgMIP study does not explicitly study the synergistic effects of environmental 
and management factors and the effects of extreme climate events, specifically the effects of HS on crop 
productivity.

Studies show interactions between effects of environmental and management factors on crop yield. For 
instance, crop growth enhanced by the CO2 fertilization effect is suppressed by low N supply and water 
stress conditions during the growing season (Ainsworth, 2008; Jain et al.,  2009). Simultaneously, as the 
climate becomes warmer and wetter, inorganic soil N availability increases due to enhanced N minerali-
zation associated with increased microbial decomposition and respiration rates (Jain et al., 2009; Rustad 
et al., 2001). Thus, improved N availability and uptake lead to enhanced crop productivity. Conversely, N 
deficits reduce crop growth rate, biomass, harvest index, and yields (Pandey et al., 2000). Although some 
crops are N fixation crops, for example, soybean field measurements suggest N fertilization can somewhat 
enhance yield depending on the yield potential of abiotic and biotic stresses (Cafaro La Menza et al., 2017; 
Salvagiotti et al., 2008).

Extreme climate events such as HS shorten both the vegetative and reproductive phases of the crop phenol-
ogy (Asseng et al., 2004; Teixeira et al., 2013), resulting in the decrease of the average growing season length 
and crop yields. In addition, crops are sensitive to critical high temperatures during the reproductive period 
(Bolanos & Edmeades, 1996; Deryng et al., 2014; Gourdji et al., 2013). During this period, the negative im-
pact of high temperature reduces carbon assimilation at the leaf level and directly impairs flower and crop 
grain development, resulting in crop yield loss (Sage et al., 2015; Teixeira et al., 2013).

This study aims to address three specific questions: (a) what are the synergistic effects of environmental 
([CO2] and climate) and management (irrigation and nitrogen input) factors on maize (a C4 crop) and 
soybean (a C3 crop) yields over the past century? (b) what are the effects of extreme HS on maize and soy-
bean yields over the past century? (c) how do these effects change under two future scenarios over the 21st 
century?

It is to be noted that while several modeling studies have evaluated the effects of environmental factors, 
such as climate change, on crop yields at the site, country, and/or global scale, this is the first study, which 
quantifies not only the synergistic effects of climate change and management factors but also extreme cli-
mate events on crop yields over the past and 21st centuries. In addition, while few previous modeling stud-
ies have quantified the effects of HS, either at a regional or global scale, they use prescribed surface air tem-
perature data to calculate the HS effect. In contrast, this is the first study that estimates the HS effect using 
the canopy temperature on a global scale because the canopy temperature explains better yield reductions 
associated with heat stress under drier, rainfed, and irrigated conditions.

We address the above three questions using a process-based land surface model, the Integrated Science As-
sessment Model (ISAM) (Song et al., 2013). The model is driven by historical climate data (1901–2015) and 
projected climate data (2016–2100) for two Representative Concentration Pathways: RCP4.5 and RCP8.5. 
The other model input variable–N input is developed here using the literature data for the historical time 
and two Shared Socioeconomic Pathways, SSP2 and SSP5, which represent agricultural activities under 
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RCP4.5 and RCP8.5 scenarios, respectively (O'Neill et al., 2014; van Vuuren et al., 2011). We also evaluate 
our model results for crop yield at regional (Figure S1 in Supporting Information S1) and global scale by 
comparing data and other published model studies for the historical and future periods.

2. Methods and Input Data
2.1. Model Description

ISAM, improved upon and used in this study, is a coupled biogeochemical and biogeophysical model with 
0.5° × 0.5° spatial resolution and multiple temporal resolutions ranging from half-hour to yearly time steps. 
It simulates C, N, energy, and water budgets for various terrestrial ecosystems through photosynthesis, sur-
face hydrology, radiative transfer, carbon allocation, and ecosystem respiration (Barman et al., 2014a, 2014b; 
Yang et al., 2009). Moreover, ISAM incorporates crop growth processes for C3 and C4 food crops (maize, 
soybean, wheat, and rice) and bioenergy grasses (miscanthus, cave-in-rock, and alamo), which are evalu-
ated at site-level, regional, and global scales (Gahlot et al., 2020; Lin et al., 2017; Niyogi et al., 2015; Song 
et al., 2013, 2015, 2016). Some of the important features, unique to ISAM and critical for crop yield calcula-
tions, include (a) dynamic crop-specific phenology and carbon allocation schemes (Song et al., 2013, 2015), 
accounting for the sensitivity of different crops to extreme environmental conditions; (b) dynamic vegeta-
tion structures, which better capture seasonal variability in leaf area index (LAI), canopy height, and root 
depth; (c) dynamic root distribution processes at the depth that improve simulated root-mediated soil water 
uptake and transpiration. The current study considers two crops: maize and soybean.

ISAM has been extensively calibrated, validated, and evaluated for agricultural applications (Gahlot 
et al., 2020; Niyogi et al., 2015; Song et al., 2013, 2015, 2016) and in nonagricultural application studies 
(Barman et al., 2014a, 2014b, 2016; El-Masri et al., 2013, 2015; Gahlot et al., 2017; Jain et al., 2006, 2013). 
Specifically, modeled estimated LAI, above and below-ground biomass, yield, and carbon, water, and energy 
fluxes for maize and soybean are calibrated and evaluated using the site level and county scale observation 
data (Song et al., 2013; Niyogi et al., 2015).

To improve the ISAM simulated crop growth processes and yields at a global scale, we extend ISAM to in-
clude (a) crop-specific dynamic planting time decision (Text S1 in Supporting Information S1), (b) crop-spe-
cific seeding rates (Text S2 in Supporting Information S1), (c) the curvature to the light response curve 
for the CO2 fertilization effect (Text S3 in Supporting Information S1), (d) nutrient (i.e., N) stress while 
allocating the assimilated carbon to leaf, root, stem, and grain pools (Text S4 in Supporting Information S1), 
and (e) extreme heat stress effect during the crop reproductive stage of penology (Text S5 in Supporting In-
formation S1). After implementation of newly added processes, modeled yields for the two crops are further 
evaluated for elevated [CO2], heat stress effect, N input, and irrigation effects using Free-Air Carbon dioxide 
Enrichment (FACE) experiments and other site-specific data sets, and published model results at specific 
sites, regional, and global scales over historical time and under future scenarios.

2.2. Input Data

2.2.1. Environment Forcing Data

Atmospheric CO2 concentrations and climate conditions for historical (1901–2015) and future (2016–2100) 
periods are inputs for ISAM simulations of crop productivity. For the historical period, we use yearly [CO2] 
data from the Global Carbon Budget (Quéré et al., 2018) and climate forcing data from Climate Research 
Unit–National Centers for Environment Prediction (CRU-NCEP, Harris et al., 2014; Viovy, 2016), which are 
available at a 6-hr time scale. The future crop productivity calculations are performed for two climate sce-
narios: RCP 4.5-SSP2 and RCP8.5-SSP5 (O'Neill et al., 2014; van Vuuren et al., 2011). RCP4.5-SSP2 (hereaf-
ter referred to as RCP4.5) is a scenario to stabilize the total radiative forcing to 4.5 W/m2 by 2100. In RCP4.5, 
economic, societal, and technological trends are assumed to be similar to historical patterns.

RCP8.5-SSP5 (hereafter referred to as RCP8.5) is a high energy demand and relatively rapid economic devel-
opment scenario, causing high emissions and increased greenhouse gas (GHG) concentration by 2100. This 
scenario represents the highest GHG emission scenario available in the literature, leading to total radiative 
forcing to 8.5 W/m2 by 2100. ISAM simulations for the two scenarios use [CO2] data from Meinshausen 
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et al. (2011) and climate forcing data from a single ensemble member of NCAR’s Community Earth Sys-
tem Model (CESM) results (Levis et al., 2018; Ren et al., 2018). The CESM model results are bias-corrected 
using the CRU-NCEP climate data as described in Text S6 in Supporting Information S1. It is to note that 
the future input data, such as climate input data, is one primary but the inevitable source of uncertainty in 
modeling studies (Barman et al., 2014a, 2014b; Kheshgi et al., 1999; Jagtap & Jones, 2002). CESM climate 
scenarios that provide diurnal cycles of climate data allow us to assess the heat stress impact on maize and 
soybean yields at the hourly scale, which other global climate model outputs do not provide.

2.2.2. Crop Specific Area

The cropland area varies for the historical model simulations from 1901 to 2015. Thereafter, the area under 
the future scenarios remains fixed at an average of 1996–2005 conditions (Figure S2 in Supporting Infor-
mation S1). The time-varying crop-specific annual area for the historical period is generated at 0.5° x 0.5° 
from a combination of global crop-specific harvested areas circa year 2000 (M3, Monfreda et al., 2008) and 
the Land-Use Harmonization 2 data sets for the period 1901–2015 (LUH2, Hurtt et al., 2020). The process 
for calculating crop-specific areas at a 0.5 × 0.5 spatial scale is described in Text S7 in Supporting Informa-
tion S1. Between 1901 and 2015, the maize area increased from 88 to 167 million ha, whereas the soybean 
area increased from 45 to 86 million ha (Figure S2 in Supporting Information S1). The spatial distribution 
of croplands for 1996–2005 shows the higher areas for both crops in midwest North America (NA), Europe 
(EU), South America (SA), South and Southeast Asia (SSEA), and the northeastern plain of China (CHN) 
(Figure S3 in Supporting Information S1).

2.2.3. Crop Specific N Input Amount

Crop-specific annual spatial distribution of N input (fertilizer, manure, and atmospheric deposition) rates 
(kg N/ha) are estimated for historical time and the two future scenarios using the method described in Text 
S8 in Supporting Information S1. We use the LUH2 data set for N fertilizer (Hurtt et al., 2020), Lamarque 
et al. (2011), and Tian et al. (2018) data for airborne nitrogen deposition (wet + dry), M3 total N input (sum 
of fertilizer, manure, and deposition) data for maize and soybean (Mueller et al., 2012), and manure data 
from Zhang et al. (2017).

The estimated global N fertilizer for maize over the period 1961–2010 was 509 Tg, which was consistent 
with the other studies' estimated value of 517 TgN (Ladha et al., 2016). In the year 2000, the total N input 
rate for maize and soybean were 108 kgN/ha and 59 kgN/ha (Figure S4a in Supporting Information S1). Of 
these totals, 77% and 64% of N are attributed to N fertilizer for maize and soybean. N manure contributes 
15% for maize and 19% for soybean. Higher consumption appears in higher production regions, including 
CHN, NA, and EU (Figure S5 in Supporting Information S1). By the 2090s, N input rates for maize are about 
200 kgN/ha under RCP4.5 and 107 kgN/ha under RCP8.5; and they are about 88 kgN/ha under RCP4.5 and 
59 kgN/ha under RCP8.5 for soybean (Figure S4a in Supporting Information S1). N consumption is espe-
cially increased in AF and SA under RCP4.5 (Figure S5 in Supporting Information S1). The N input rates 
for soybean were almost 50% less than those of maize because it is an N-fixing crop. Some crop modeling 
studies assume that neither N fertilizer nor N stress is applied to soybean (Iizumi et al., 2017). In contrast, 
we follow field-based studies, which show N fertilizer is applied to soybean crops to prevent N deficiency 
(Salvagiotti et al., 2008) and include N fertilizer and N stress to estimate soybean productivity.

The global N fertilizer rates increase for both crops over historical time (Figure S4b in Supporting Informa-
tion S1). The global average N fertilizer application rates are higher under RCP4.5 (Figure S4b in Supporting 
Information S1) for future scenarios due to lower N use efficiency (Popp et al., 2017) and follow the histori-
cal trend. In contrast, rates decrease under RCP8.5 due to an increase in soil nitrogen uptake efficiency due 
to technological change (Popp et al., 2017).

The total manure N rates increased from 7.5 (maize) and 5.5 (soybean) kgN/ha in 1901 to 16.5 (maize) and 
11.0 (soybean) kgN/ha in 2000 (Figure S4c in Supporting Information S1). Of these total, about 35% is as-
sumed organic N and 65% is assumed inorganic (ammonium) N (Dangal et al., 2019). Manure application 
rate is increasing for maize but more in RCP4.5 than in RCP8.5 (Figure S4c in Supporting Information S1). 
The manure application rate for soybean also increases under both scenarios, but at a slower rate than 
maize and the rate of increase is similar in both scenarios.
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Historical N deposition rate had been increased since 1940, and there was a near peak around 1990 followed 
by a decrease until 2015 (Figure S4d in Supporting Information S1). Future N deposition rates follow the 
fossil-fuel combustion patterns and increase under RCP8.5 but decrease under RCP4.5.

In ISAM, the N fertilizer, which is inorganic N, is added to the soil mineral N pools based on NH4+/NO3− 
(Nishina et al., 2017) after emergence. The N fertilizer is evenly distributed for the first four weeks after 
emergence. The inorganic and organic manure N applications follow the same timing as N fertilizer, but the 
organic manure N is added to the soil, which is decomposed to mineral N gradually, and the inorganic N is 
added to the soil N mineral pool. N deposition has two components NHx and NOy, which are added to soil 
NH4+ and NO3

− pools at a weekly interval.

2.2.4. Irrigation

The cropland area of each grid cell is divided into irrigated and rainfed areas. The irrigated fractional area 
for each grid cell for 1901–2015 is assigned based on LUH2 (Hurtt et al., 2020) (Text S7 in Supporting In-
formation S1). After that, the irrigated area in each grid cell under the future scenarios remains fixed at 
the 1996–2005 level. ISAM provides water on an irrigated fraction of land when the root-zone soil water is 
limiting for crop photosynthesis, but the crop LAI is greater than zero as described in Text S9 in Supporting 
Information S1.

Irrigation fraction continuously increased in the twentieth century but is less than 20% of individual crop 
areas (Figure S6a in Supporting Information S1). Regarding irrigation water amount, ISAM estimates ap-
proximately 34 and 16 km3 in the year 2000, due to growing maize and soybean on irrigated croplands, 
which fall within global gridded crop models’ (11 models for maize and 10 models for soybean) estimated 
range values (11–237 for maize and 3–36 for soybean) (AgMIP, Müller et al., 2019) (Figure S6b in Supporting 
Information S1).

2.3. Historical Yield Date For Model Evaluation

To evaluate the model estimated yields with the data available in the literature (Section 3.1), we use three 
global gridded data sets: GDHY (Iizumi et al., 2014), M3 (Monfreda et al., 2008), and SPAM (You et al., 2014); 
and one country scale data set: FAOstat (FAOstat, 2017). These data sets provide yield for different periods, 
GDHY for 1982–2006, M3 for ca. 2000 (mean for 1997–2003), SPAM for 2000 and 2005, and FAOstat for 
1961–2018. We selected a 10-year period, 1996–2005, to compare the model results with the literature data. 
There are a total of 23 values available from the literature data over this period, one (2000) from M3, ten 
(1996–2005) each from GDHY and FAOstat, and two (2000 and 2005) from SPAM. We then select 23 model 
simulated values, which correspond to the same years. We calculate mean and median values from modeled 
and literature data values, which we compare in Section 3.1.

2.4. Experimental Design and Analysis

ISAM is spun-up by repeating the hourly climate forcing data (Harris et al., 2014; Viovy, 2016) for the period 
1901–1920, and fixed the year 1900 values for [CO2] (296.8 ppm, Le Quéré et al., 2018), crop area, and N 
input (Section 2.2). The model is run until the soil temperature, moisture, and C and N pools reach a steady 
state. The spin-up process is described in detail in El Masri et al. (2015) and Song et al. (2016). The spin-up 
simulation follows transient model simulations with prescribed spatial and temporal forcing data for cli-
mate, N input, and [CO2] for 1901–2100. The model calculates the annual yields and corresponding C, N, 
water, and energy fluxes. Here, simulated crop yields are converted from modeled dry grain carbon with the 
assumption of 45% carbon in the dry matter (Lobell et al., 2002) and average water content of 12% for maize 
and 9% for soybean (Wirsenius, 2000).

We also generate three sets of simulations: one to examine crop productivity over the period 1901–2005, and 
the other two for the two scenarios over the period 2006–2100. Each set consists of four model experiments 
(ECO2, ECli, ENit, and EIrr) to examine each factors' effects, and one additional experiment to study the total 
effect of management (EMan) over the two time periods (Table 1). In the reference case (ERef), all four fac-
tors vary with time over two time periods. The five additional simulations are performed differently for the 
periods 1901–2005 and 2006–2100. For the 1901–2005 set, one of the four factors remains fixed at the 1900 
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level, whereas all other factors vary with time as in ERef. For the 2006–2100 sets, we first continue to run the 
model for the ERef case through the period 2006–2100. Next, we run the model from 2006 to 2100, with one 
of the four factors remaining fixed at the 2005 level, but other variable values are assumed to change as in 
the ERef case. In the ENit and EIrr experiments, the N input or irrigation input is assumed to be zero, respec-
tively. In the EMan experiments, both N input and irrigation are assumed to be zero. We then estimate the 
effect of each factor by differencing the yields between the reference case and one of the five simulations: 
CO2 fertilization (ERef–ECO2), climate (ERef–ECli), irrigation (ERef–EIrr), N input (ERef–ENit), and combined N 
input and irrigation (ERef–EMan).

To identify and evaluate HS during reproductive stages, we performed two additional experiments. The first 
experiment is Ew/o_HS, which does not account for the HS effect. The second experiment, Ew/_HSAT, accounts 
for the HS effect, but the effect is calculated using air rather than canopy temperature (Table 1). The effect of 
HS with canopy temperature and air temperature is calculated by subtracting Ew/o_HS and Ew/_HSAT from ERef.

For 1901–2005, we calculate the contribution of individual factors (in %) over a given time relative to the 
ERef case (e.g., both averaged over 1996–2005). For the two future scenarios, we compare the results for the 
2090s (e.g., averaged over 2090–2099) relative to 1996–2005. The results are masked out using the irrigated 
and rainfed areas for each simulation at 0.5° x 0.5° (latitude x longitudes) spatial resolution. The total yield 
for each grid-cell is calculated by combining the weighted irrigated and rainfed yield (Equation S22 in Sup-
porting Information S1). The results are presented at a spatial scale at 0.5° x 0.5° and a regional scale. To 
obtain the model results at regional scales, we average the spatial results for each crop over its cropland in 
six regions shown: NA, SA, EU, AF, CHN, and SSEA (Figure S1 in Supporting Information S1). It is to be 
noted here that the model simulates yield and production for all crop areas available in the literature. How-
ever, spatial plots do not display the yields and production for those grid cells that contain less than 0.1% of 
maize or soybean crop areas, such as some Canadian Prairies locations.

3. Results
3.1. Model Evaluation

Here, we evaluate the model performance for those processes, which are added in this study.

Cases [CO2] Climate N Input Irrigation Heat stress (HS)

ERef 1901–2100 1901–2100 1901–2100 Irrigation on irrigated land, 
rainfed conditions in 
rainfed land

w/heat stress calculated using 
canopy temperature

ECO2
a Fixed at 1900 level (296.8 ppm) 

for 1901–2005 and fixed at 
2005 level (378.2  ppm) for 
2006–2100

Same as in ERef Same as in ERef Same as in ERef Same as in ERef

ECli
a Same as in ERef Recycle 1901–1920 for 1901–2005 

and recycle 1996–2005 for 
2006-2100

Same as in ERef Same as in ERef Same as in ERef

ENit
a Same as in ERef Same as in ERef No N input 

application
Same as in ERef Same as in ERef

EIrr
a Same as in ERef Same as in ERef Same as in ERef No irrigation on irrigated 

and rainfed lands
Same as in ERef

EMan Same as in ERef Same as in ERef No N input 
application

No irrigation on irrigated 
and rainfed lands

Same as in ERef

Ew/o_HS Same as in ERef Same as in ERef Same as in ERef Same as in ERef w/o heat stress effect

Ew/_HSAT Same as in ERef Same as in ERef Same as in ERef Same as in ERef w/heat stress calculated using 
air temperature

aWe first run the model of the ERef case through the period 1901–2005. Then conduct environmental and management factor experimental simulations for the 
period 2006–2100.

Table 1 
Model Experiment Design to Study the Effects of Individual Environmental and Management Factors Over 1901–2100
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3.1.1. Crop Specific Planting Time and Seeding Rates

ISAM estimates crop-specific dynamic planting time decisions rather than fixed planting time at a grid-
scale (Text S1 in Supporting Information S1). So, the dates can vary with time, depending upon the changes 
in the environmental conditions. Here, we evaluate the model estimated planting time using the literature 
data (Elliott et al., 2015) in Figure S7 in Supporting Information S1. ISAM results show that estimated plant-
ing time is controlled by climate and soil conditions (Table S1 in Supporting Information S1) associated 
with crop-specific phenology. In addition, we update the crop seeding rates and residue amount (Text S2 in 
Supporting Information S1), which vary with planting conditions (Table S2 in Supporting Information S1). 
The updated seeding rates at the sowing time are usually lower for soybean in CHN, AF, and SSEA. After 
implementing these modifications, modeled soybean yields are reduced. The revised yields in these regions 
for the 1996–2005 average compare better with the literature data. The percent bias (PBIAS, Text S10 in 
Supporting Information S1) of the modeled yield is reduced (Table 2).

3.1.2. CO2 Fertilization Effect

Crop productivity under elevated [CO2] from the original version of ISAM compared with measurements 
at FACE sites (Table S3 and Text S3 in Supporting Information S1 for FACE site calculations) shows that 
while the modeled yield for maize is consistent with FACE site measurements (Table S4 in Supporting In-
formation S1), it is overestimated for soybean (Figure S8a and Table S4 in Supporting Information S1). This 
overestimation is because the electron transport rate calculations did not account for the curvature of the 
light response curve, resulting in the overestimation of photosynthesis, canopy temperature, and stomatal 
conductance (Figures S8b and S8c in Supporting Information S1). However, after implementing curvature 
to the light response curve (see the detailed description of the method and results in Text S3 in Supporting 
Information S1), the revised ISAM results under irrigated conditions are consistent with measured values. 
While the range of AgMIP model results under irrigated conditions for maize is comparable to the FACE 
experiment results but unable to calculate the reduction in maize yield. However, ISAM can calculate maize 
yield reduction as observed in the FACE experiment (Table S4 in Supporting Information S1).

Global/Region

Maize Soybean

PBIAS (%) Yield (t/ha) PBIAS (%) Yield (t/ha)

Song et al. (2013) 
(N = 23)

This studyb 
(N = 23)

AgMIPd 
(N = 276)

Literature 
data (N = 23)

Song et al. (2013) 
(N = 23)

This studyc 
(N = 23)

AgMIPd 
(N = 276)

Literature 
data (N = 23)

Global −20.7 9.5 −21.0 4.6 −30.5 4.9 −10.4 2.2

North America (NA) −13.8 11.2 9.4 8.6 −24.2 −2.5 2.8 2.6

South America (SA) −44.2 4.0 −86.6 3.1 −13.6 30.0 −15.3 2.4

Europe (EU) −21.8 7.3 18.9 6.0 −4.6 15.7 27.1 3.0

Africa (AF) −75.0 −4.3 −132.6 1.8 −94.5 2.4 −75.6 1.0

China (CHN) −14.1 −7.4 −14.2 5.0 −81.6 −43.0 −31.7 1.8

South and South East Asia (SSEA) −15.5 19.1 −96.4 2.2 −110.5 3.4 −80.7 1.0

Note. N is the number of values used to calculate PBIAS.
aThe literature data set are Iizumi et al. (2014) for the period 1996–2005, Monfreda et al. (2008, M3) for the year 2000, You et al. (2014, MapSPAM2000 & 2005) 
for the years 2000 and 2005, and FAOstat (2017) for period 1996–2005. So, there are N = 23 sample literature data values (see Section 2.3). bThe Original and 
Revised columns are the % bias (PBIAS) for w/o and w/ N stress effect on carbon allocation for maize (Text S4 in Supporting Information S1) and heat stress 
impact (Text S5 in Supporting Information S1). cThe Original and Revised columns are the % bias (PBIAS) for w/o and w/ N stress effect on carbon allocation 
(Text S4 in Supporting Information S1), seeding rates (Text S2 in Supporting Information S1), heat stress impact (Text S5 in Supporting Information S1), and 
revised elevated CO2 effect (Text S3 in Supporting Information S1) for soybean. dThe AgMIP results are across 12 different crop models driven by AgMERRA 
with the default setting (Müller et al., 2019). For each model, 23 values are selected corresponding to the same years as literature data. So, there are N = 276 
(=12 × 23) sample data values for the AgMIP case.

Table 2 
Global and Regional-Scale Percent Bias (PBIAS, %) for Maize and Soybean Yields From the Original Version (Song et al., 2013), Revised Versions (This Study, ERef) 
of ISAM, and AgMIP Models Compared to Various Literature Data for 1996–2005a
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3.1.3. N Fertilization Effect on Maize Yield

The ISAM model of Song et al. (2013) also overestimated the maize yields at the lower N application rates 
(Figure S9a in Supporting Information S1) because the model overestimates the carbon allocated to the 
grain formation under the N stress conditions (i.e., the ratio of N supply and N demand). However, mod-
el results for soybean are consistent with the measured data (Figure S9b in Supporting Information S1). 
After accounting the N stress effect on the carbon allocation to grain during initial and post-reproductive 
(grain-filling) stages of phenology (Text S4 in Supporting Information S1), the revised ISAM results for a 
lower N fertilizer rate at six sites (Table S5 in Supporting Information S1) show stronger N stress, and lower 
grain formation compared to the results estimated based on the original ISAM (Figure S9a in Supporting 
Information S1). These results, which are consistent with the field experiment studies, suggest that maize 
growth slows down at the lower N supply rates, causing a decline in yield (Alemayehu et al., 2015; Gehl 
et al., 2005; Getachew & Belete, 2013; Hammad et al., 2011). The revised model also improves the over-
estimation of simulated global and regional maize yields, particularly in AF, where N is a limiting factor 
(Table 2).

3.1.4. Heat Stress (HS) Effect

We implement HS in ISAM by accounting for the impact of HS on reducing carbon allocation during the 
reproductive phases of the phenology (Text S5 in Supporting Information S1). While other studies use air 
temperature for the calculation of the HS effect (Deryng et al., 2014; Teixeira et al., 2013), here, our model 
simulations consider the crop canopy temperature (Text S5 in Supporting Information S1), which is shown 
to explain better yield reductions associated with HS (e.g., Gabaldón-Leal et al., 2016; Siebert et al., 2014; 
Webber et al., 2017). To evaluate the model estimated yield performance with HS effect, we compared the 
three cases (ERef, Ew/o_HS, and Ew/_HSAT) of correlation coefficients of 1982–2006 period detrended yields for 
ISAM and FAOstat (2017) (Table S6 and Figure S10 in Supporting Information S1). The results show that 
the ISAM simulated temporal variability for maize yields at global and regional scales is somewhat better 
in ERef than in Ew/o_HS. While the improvement in reproducing the observed temporal variability of maize 
yield occurs in all regions except for SA (Table S6 in Supporting Information S1), the differences between 
the two cases are small. The impact of HS on maize yield is more in AF and SSEA, where the temperature 
is higher than in other areas. Although maize growth also responds to HS calculated using air temperature, 
the resulting performance in capturing observed temporal variability in Ew/_HSAT is less than in ERef (Table 
S6 in Supporting Information S1). However, HS shows negligible effects on simulated soybean yield var-
iability because of soybean’s higher critical temperature (Text S5 in Supporting Information S1). Gourdji 
et al. (2013) showed that exposure to high critical temperatures in the reproductive period could happen in 
many places for maize but not for soybean in the twentieth century.

3.1.5. Percent Biases Results for ISAM

Overall, the PBIAS results show the model estimated yields at global and regional scales are compared well 
with the observations after model improvements, except for maize in SSEA (19%), soybean in CHN (−43%), 
and SA (30%) (Table 2). The PBIAS for maize yield is reduced from −21% to 10%, and for soybean from 
−31% to 5% globally. On the regional scale, modeled maize yield improves in NA, SA, EU, CHN, and AF, 
and soybean yield in NA, CHN, AF, and SSEA (Table 2). The remaining model biases might be due to the 
model limitations in estimating nutrients’ limitation, crop mortality effects due to ozone, wind, hail, weeds, 
pests, disease, and/or due to not accounting for the cropping systems in the model. Also, uncertainty in the 
input data, such as climate, soil, or crop management, might have introduced the biases in the modeled 
yield (Barman et al., 2014a, 2014b; Kheshgi et al., 1999; Jagtap & Jones, 2002), which we plan to carry out 
in our future modeling analysis.

3.2. Model Estimated Crop Yields and Productions

3.2.1. Yields and Productions for the Historical Time

ISAM results for maize and soybean yields for the period 1996–2005 are compared with global data sets 
available in the literature (see Section 2.3) in Figure 1, and production on a 0.5° × 0.5° grid in Figure 2. 
Overall, the calculated global maize yield averaged from literature data sets is 4.6 t/ha (Table 2), with NA 
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Figure 1. Global and regional-scale comparisons of (a) maize and (b) soybean annual yield (t/ha) from Integrated 
Science Assessment Model (ISAM), Agricultural Model Intercomparison and Improvement Project (AgMIP) (Müller 
et al., 2019), and the available data set values in the literature. Model results are the original (ISAM_O) and revised 
(ISAM_R) versions for the period 1996–2005, and the literature data include Iizumi et al. (2014) for years 1996–2005, 
Monfreda et al. (2008, M3) for 2000, You et al. (2014) for the years 2000 and 2005, and FAOstat (FAOstat, 2017) for years 
1996–2005. The AgMIP results are values across12 different crop models driven by AgMERRA with the default setting 
(Müller et al., 2019). For each model, 23 values are selected corresponding to the literature data years values. The boxes 
are the interquartile ranges, the horizontal lines plotted in the boxes are the median values, and the whiskers indicate 
the highest and lowest values of the results. The green triangles marked in the boxes are the mean values.

Figure 2. The spatial distribution of annual maize and soybean production estimated by ISAM averaged over the 
same years as literature data are compared to an average of literature data. The distribution is expressed in tonnes of 
annual production for each 0.5° × 0.5° grid-cell; the legend is, therefore, in units of tonnes/yr. The maize and soybean 
estimates from the Integrated Science Assessment Model (ISAM) model are weighted by irrigated and rainfed areas. 
The areas for both crops are masked by crop-specific areas. The literature data set is the average of three gridded 
products—Iizumi et al. (2014) for the period 1996–2005, Monfreda et al. (2008) for the year 2000, and You et al. (2014) 
for the year 2000 and 2005—as described in Section 2.3. The color scale is plotted on a logarithmic scale.
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(8.6 t/ha) and AF (1.8 t/ha) are the highest and lowest yield regions. In contrast, global soybean yield is 
about half of the maize yield (2.2 t/ha), and regional values range between 1.0 t/ha in AF and SSEA and 3.0 
in the EU (Table 2).

ISAM results for higher maize yield regions (NA, EU, and CHN) and lower maize yield regions (AF, SA, 
and SSEA) are within the range of observed contemporary yields (Figure 1a). ISAM also reproduces the 
measured pattern of soybean yields (Figure 1b) across high yield regions (NA, SA, and EU) and low yield 
regions (e.g., SSEA). Moreover, ISAM appears to capture the maize and soybean breadbaskets, including the 
Corn Belt in the United States, Argentina (Buenos Aires, Entre Rios, Cordoba, and Santa Fe), Brazil (Parana, 
Goias, Mato Grosso, and Minas Gerais), India (Madhya Pradesh, Maharashtra, and Rajasthan), and north-
eastern CHN (Figure 2). As also shown and discussed in the PBIAS section, the agreement between ISAM 
results and literature data is improved in the revised version of ISAM (ISAM_R), compared to the version 
of ISAM developed by Song et al. (2013), which is referred to as the original version of ISAM (ISAM_O) in 
Figure 1.

While ISAM captures similar patterns of literature data for maize and soybean productions (Figure 2) with 
higher production in grid cells with a higher cultivated area (Figure S3 in Supporting Information S1), some 
mismatches between modeled and literature spatial distribution data for harvested areas may have intro-
duced some differences in production patterns. In general, the model underestimates maize production in 
the Corn Belt of the United States and north CHN, soybean production in Argentina, Brazil, and overesti-
mates soybean production in northeastern CHN, and both production in Russia (Figure 2). Given that har-
vested crops' quantity and spatial patterns differ among the three literature gridded products applied here, 
the uncertainty for aggregated literature data values increases at the grid cell level (Porwollik et al., 2017). 
Therefore, it is perhaps not surprising that modeled production and yields of maize and soybean for some 
regions exhibit some differences from literature data.

3.2.1.1. Modeled Versus Measured Detrended Yield For 1982–2006

In addition, ISAM is able to reproduce the observed (FAOstat, 2017) detrended global and regional yields 
(Text S11 in Supporting Information S1 describes the method to calculate detrended yield) over the period 
1982–2006 with the correlation coefficient, r, 0.7 for maize and 0.6 for soybean (Table S6 and Figure S10 
in Supporting Information S1). These values are close to the middle of the range of values estimated based 
on the ensemble of global AgMIP model results (14 different model results for maize yield and 13 models 
results for soybean yield); 0.26–0.89 for maize and 0.00–0.64 for soybean (Müller et al., 2017) although crop 
areas and climate forcing are different. The model estimated detrended yields for both crops at the regional 
scale are also compared well with FAOstat (2017), except the values of r for soybean in AF, SSEA, and CHN 
and for maize in SSEA where ISAM estimated detrended values are higher than FAOstat (2017). The studies 
suggested that this might be related to the reporting year issue; some crop yields harvested at the end of the 
calendar year are reported by FAOstat (2017) in the following year report. Therefore, the detrended FAOstat 
yield might have a one-year delay in contrast to ISAM values in some years.

3.2.1.2. Comparison With AgMIP Model Results

Compared to literature data, 12 AgMIP crop model results for yields varied widely. However, an ensemble 
of the 12 model results compared better to literature data than the individual model results. Although the 
median of all AgMIP models gives better performance than the literature data (Figure 1), the estimated 
PBIASs for global and regional cases are higher than ISAM (Table 2), except for NA for maize and SA and 
CHN for soybean. The AgMIP models' simulated maize and soybean yields are out of the maximum range 
value reported by literature data in AF (PBIAS of −133% for maize and −76% for soybean) and SSEA (PBIAS 
of −96% for maize and −81% for soybean), where the actual productivity is low. Overestimating and under-
estimating crop yields from AgMIP models in these and other regions may be due to some processes and 
factors not considered in AgMIP models at the global scales, such as management practices, seeding rates, 
residue amount, and nutrient application (Müller et al., 2017).

3.2.2. Crop Yield Under RCP4.5 and RCP8.5 Scenarios

ISAM-estimated global crop yield changes are driven by environmental and management factors specified 
by scenarios RCP4.5 and RCP8.5. Changes in yield in the 2090s relative to that in 1996–2005 are shown in 
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Figure 3 and spatial maps in Figure S11 in Supporting Information S1. For scenario RCP8.5, the estimated 
maize yield for EMan case is projected to decrease across all regions except for the EU. For scenario RCP4.5, 
maize yield is projected to increase in all regions, except for CHN (Figure 3a). In contrast, soybean yield 
increases across all regions under both scenarios (Figure 3b).

3.3. The Effects of Changes in Environmental and Management Factors on Maize and Soybean 
Yields

Each of the four environmental and management factors (CO2, climate, N input, and irrigation) considered 
results in an estimated increase in maize and soybean yield at the global scale from 1901 to 1996–2005 
(Table S7 for numbers and Figure S12a for maps in Supporting Information S1). The yields for both crops 
increase across all regions due to the CO2 fertilization effect. However, the increase is stronger for soybean 
than for maize because for soybean, which is a C3 crop, photosynthesis is relatively less saturated under 
ambient [CO2] (McGrath & Lobell, 2013). Without the [CO2] increase, the global maize and soybean yields 
would have been lower by 5% and 19%, respectively (Table S7 in Supporting Information S1). Over the last 
century, climate change had a small positive global effect (1% and 4%), with some regions showing positive 
and negative effects (Figure S12a in Supporting Information S1).

Figure 3. (a) Maize and (b) soybean yield changes (%) at regional and global scales for the 2090s relative to the 
1996–2005 average under RCP 4.5 (green bars) and RCP 8.5 (brown bars) scenarios. Solid bars are results for ERef and 
crosshatched bars are results for EMan.
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Out of the four factors studied here, N input increases the future maize yields, and [CO2] affects the soybean 
yield the most under the two future scenarios (Table S7 in Supporting Information S1 and Figure 4). On the 
other hand, climate decreases the yields for both crops under the two scenarios. Irrigation shows a slightly 
positive effect across all regions.

Our results also reveal that management factors modulate the [CO2] and climate effects on productivity for 
both crops. The increasing [CO2] prompts higher crop yield but simultaneously requires more N, exacerbat-
ing N limitation. At the same time, although elevated [CO2] promotes water use efficiency for crops, water 
is essential to maintain the increase in carbon assimilation and leaf area index, particularly for soybean. By 
implementing N and irrigation, crop yields show a higher response to elevated [CO2] (Figure S13 in Sup-
porting Information S1). These model results are supported by the experimental results (Gray et al., 2016; 
Kim et al., 2006; Ruiz-Vera et al., 2015). In general, higher response occurs in the regions where both effects 

Figure 4. Maize and soybean yield contributions (%) for the average over the 2090s (2090–2099) at global and regional 
scales because of (CO2), climate, N input, irrigation, and combined N input and irrigation under RCP4.5 and RCP8.5 
scenarios (ERef in 2090s minus EXXX in 2090s then divided by ERef in 1996–2005). EXXX are the factor experiments shown 
in Table 1.
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of [CO2] and management on crop yield are higher (Figures S12b and S12c in Supporting Information S1). 
Therefore, the synergistic effect of [CO2] and management on crop yield is more positive in NA, EU, CHN 
for maize, and CHN and SSEA for soybean than in other locations (Figure S13 in Supporting Informa-
tion S1). The effect is substantially higher in RCP8.5 than in RCP4.5.

Similarly, compared to climate change only effect, that is, without management case, interactive effects of 
management factors and climate change effect on crop substantially decreases/enhances crop productivity 
losses/gains in the 2090s (Figure S13 in Supporting Information S1). The N and water demand for crops in-
creases under warmer and drier conditions. The demand also increases when the crop productivity is higher 
due to favorable environmental conditions. Therefore, crop growth shows a higher response in the 2090s 
than in recent years to management factors under both climate change scenarios.

4. Discussion
4.1. Model Evaluation Using Data

Global and regional crop yields estimated with the ISAM land surface model for the C3 crop soybean 
and the C4 crop maize are consistent with literature data averaged over 1996–2005 (Figures 1 and 2). IS-
AM-calculated yield variability at regional and global scales over time, 1982–2006, is consistent with FA-
Ostat (2017) (Figure S10 in Supporting Information S1). In addition to this study, the overall confidence in 
ISAM estimated yields for maize and soybean is strengthened by validating ISAM results at the site level 
(Song et al., 2013) and the county level (Niyogi et al., 2015).

4.2. Estimated Effects of Environmental and Management Factors

ISAM results show that over the past century and for two future scenarios, RCP4.5 and RCP8.5, environ-
mental and management factors affect maize and soybean yields:

4.2.1. CO2 Fertilization

We find that the modeled CO2 fertilization effect is stronger for soybean across all regions than for maize, 
because ISAM’s net photosynthesis rate increases due to higher carboxylation rates and lower photorespi-
ration rates for soybean than for maize. The effect is stronger in tropical regions (SA, AF, and SSEA) (Fig-
ure 4, Table S7 and Figure S12 in Supporting Information S1) because of (a) greater availability of N via N 
fixing bacteria (seen in measurements in Ainsworth et al., 2002), (b) smaller LAI (Figure S14 in Supporting 
Information S1), which absorbs higher photosynthetically active radiation (PAR), because PAR is inversely 
proportional to LAI (seen in measurements and model results in Sakurai et al., 2014), and (c) higher tem-
perature enhances the CO2 fertilization effect on net photosynthesis rate because both the specificity factor 
of Rubisco for CO2 and solubility of CO2 in water decline relative to O2 (seen in measurements, Bernacchi 
et al., 2006; Ruiz-Vera et al., 2013) with rising temperature.

In contrast, the CO2 fertilization effect is higher for maize in temperate drier regions (e.g., parts of NA, EU, 
AF, and CHN) in 1996–2005 (Table S7 and Figure S12a in Supporting Information S1). Rising [CO2] can 
increase crop water productivity (the ratio of yield to evapotranspiration) due to the reduction in stomatal 
conductance, which indirectly enhances crop yield by ameliorating soil water stress in dry soils (seen in 
measurements in Leakey et al., 2006). Similar to the historical case, the yield increase is stronger for soybean 
than for maize under both future scenarios due to the CO2 fertilization effect at regional and global scales in 
the 2090s (Figure 4, Figures S12b and S12c in Supporting Information S1 for maps).

We compared ISAM-estimated changes of global-average yield in 2080 for both crops with (w/) and without 
(w/o) CO2 cases under RCP8.5 with model results available in the literature–AgMIP (Deryng et al., 2016) 
and NCAR’s Community Land Model (CLM, Ren et al., 2018)—in Table 3. While ISAM-estimated maize 
and soybean yields for w/ CO2 case falls within the interquartile range values of AgMIP model results, there 
are differences in the spatial patterns (Figure S15 in Supporting Information S1). This may be because the 
representation of management practices such as irrigation, crop residue, phenology, planting dates, and 
fertilizer application are different among AgMIP models (Deryng et  al.,  2016). For example, only three 
AgMIP models apply N fertilizer. Moreover, two models allow adaptation of planting time window (time 
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interval between the earliest and latest possible planting dates), while the 
other four models assume planting window to remain fixed with time at 
the present dates. By considering the climatic effect on planting time, 
crops in ISAM are planted earlier when the temperature is higher, which 
can alleviate high-temperature exposure through the growing season. As 
such, our global crop yield w/o CO2 case is higher than AgMIP but is 
similar to CLM results that use the same CESM climate forcing (Table 3).

4.2.2. Climate Change (Excluding Heat Stress)

The climate effect on yield over the past century differs by region (Table 
S7 and Figure S12a in Supporting Information  S1), but is in line with 
previous studies (e.g., Challinor et al., 2014; Fodor et al., 2017; Rosenz-
weig et al., 2014). The hotter temperature over most of the tropical and 
subtropical regions reduced yields for both crops, even though these re-
gions experience higher precipitation. In contrast, increased temperature 
enhanced yields for both crops in colder regions (NA, eastern EU, north-
eastern CHN, and in boreal latitude zones) (Figure S12a in Supporting 
Information S1) in 1996–2005, where moderate warming increased the 
length of the growing period. For future scenarios, the adverse effect of 
climate lowers yields of both crops in all regions, with a stronger effect 
on soybean than on maize (Figure 4), because the optimum leaf temper-
ature for photosynthesis is higher for maize than that for soybean. For 
example, net photosynthesis rate, A, for maize (soybean) increases up to 
50 μmol CO2/m2/s (25 μmol CO2/m2/s) with the leaf temperature that 
increases to 40°C (25°C); after that, A decreases with increasing leaf tem-
peratures (Figure S16 in Supporting Information  S1). Moreover, rising 
temperature increases crop respiration and reduces carbon use efficiency 
(CUE), defined as the ratio of net primary production to gross primary 
production (Zhang et al., 2013). Since soybean has lower CUE and shal-

lower rooting depths than maize (Yamaguchi, 1978), soybean incurs relatively higher carbon losses through 
respiration, resulting in a much stronger response to climate change (Figure 4). CLM had also discovered a 
more negative impact on soybean than maize yield (Lombardozzi et al., 2018).

4.2.3. Heat Stress

ISAM estimated results show a higher global HS effect during the reproductive stages on maize yield (−2.4% 
and −5.9% under RCP4.5 and RCP8.5) than on soybean yield (−1.3% and −4.6% under RCP4.5 and RCP8.5) 
by the 2090s (Figure 5). While HS effect on yield is estimated in previous modeling studies using surface 
air temperature (e.g., Deryng et  al.,  2014; Teixeira et  al.,  2013), ISAM simulations are performed using 
canopy temperature rather than the surface air temperature because canopy temperature is warmer than 
the surface air temperature under drier and rainfed conditions. However, the canopy temperature is colder 
than the surface air temperature under irrigated conditions. So, the canopy temperature can ameliorate 
crop yield losses due to HS through irrigation. For example, the cooling effect of irrigation can decrease 
yield losses. The published global crop modeling studies, on the other hand, prescribed relatively warm air 
temperature (as opposed to canopy temperature while irrigating) for temperature and HS calculations. The 
model estimated heat stress-related agricultural hotspot regions are consistent with the published studies 
(Gourdji et al., 2013; Teixeira et al., 2013), which shows subtropical and temperate crop areas have large 
cropping areas under higher HS risk. ISAM results show that South Asia, Sahel, Eastern China, Spain, parts 
of Central Asia (e.g., Russian Federation), Central NA, Eastern Brazil, and Central SA are regions of high 
HS for maize yield (Figures 5a and 5c). A high HS effect on soybean yield is found in Central NA and SA, 
Northern India, Eastern CHN, and the Southwest region of Russia (Figures 5b and 5d).

To quantify crop yield risk level under HS due to projected climate change under two scenarios by the 
2090s, we also estimate the coefficient of variation (CV), which is defined as the ratio of standard deviation 
to mean values of crop yield (Song et al., 2015). Yield risks increase if the variance is larger or the average 
yield is lower, the CV of crop yield becomes larger (i.e., lower temporal yield stability). Overall, global CV 

Crop

ISAM CLMa AgMIPb

w/ 
CO2

w/o 
CO2

w/ 
CO2

w/o 
CO2 w/ CO2 w/o CO2

Maize −3.8 −10.1 0.7 −9.2 [–16.4; 1.0] [–28.2; −13.3]

Soybean 25.1 −12.9 18.6 −9.6 [–12.1; 33.3] [–40.5; −27.7]

Note. The results for reference w/ CO2 (ERef, Table  1) and w/o CO2 
(ECO2, Table  1) cases are compared. The nitrogen input is applied as 
per the ERef experiments. The ISAM yield results are weighted by fixed 
irrigated and rainfed areas based on the MIRCA2000 data set, which are 
the same as other model results.
aResults are taken from Ren et  al.  (2018). N fertilization application is 
set at North American crop-specific levels everywhere and fixed over 
time. Then, yield is adjusted with nitrogen fertilizer assumptions based 
on FAO data. bResults are the interquartile range across all six global 
gridded crop models run with climate data from five global climate 
models (Deryng et  al.,  2016). The EPIC, GEPIC, and pDSSAT models 
apply fertilizer dynamically through the crop growing season: application 
occurs at specific stages of the crop development to consider the role 
of both application quantity and timing. PEGASUS applies fertilizer as 
a daily stress function and thus does not simulate the effect of fertilizer 
directly. LPJmL and LPJ-GUESS do not represent fertilizer application. 
PEGASUS and GEPIC allow for adaptation for variation of planting 
window with time, whereas the other GGCMs assumed fixed planting 
window overtime.

Table 3 
Comparison of ISAM Estimated Global Maize and Soybean Yields Change 
to That of Other Model Results Available in the Literature: Percent Change 
in 2076–2085 (or 2080) Average Yield Relative to 1996–2005 (or 2000) 
Under the RCP8.5 Scenario
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is higher for soybean than that for maize and higher under RCP8.5 than under RCP4.5. The CV of maize 
and soybean yield for individual regions is greater in NA, EU, SSEA, and CHN than SA and AF (Table S8 in 
Supporting Information S1). Furthermore, CV becomes larger when considering HS (ERef) than without HS 
(Ew/o_HS) in the model (Table S8 in Supporting Information S1).

4.2.4. Irrigation

Irrigation enhances maize yield more than that of soybean over the last century and under the two future 
scenarios (Table S7 in Supporting Information S1 and Figure 4) because of a higher fraction of irrigated area 
for maize than that for soybean, which is also pointed out by Elliott et al. (2014) and Jägermeyr et al. (2015). 
The global maize yield with irrigation is estimated to increase by about 5%, whereas 3% for soybean over 
1996–2005 (Table S7 in Supporting Information S1), although regional differences exist. Overall, our global 
results are consistent with previous field measurement studies (Chen et al., 2018; Verma et al., 2005), show-
ing maize yield is more responsive to irrigation than for soybean because of the higher photosynthesis and 
productivity of maize. On a regional scale, the effects of irrigation over 1996–2005 are most obvious in arid 
and semiarid areas for both crops, including central and western parts of NA, northeastern CHN, Eastern 
Australia, Middle East, Central Asia, and western EU (Figure S12a in Supporting Information S1). Also, 
maize and soybean yields under the irrigated case do not change much in the tropical agriculture regions, 
that is, SA (Table S7 in Supporting Information S1), because of low irrigated areas and higher precipitation 
rates. In general, irrigation effect on crop yield becomes less under both scenarios and reduces more in 
RCP8.5 than RCP4.5. However, the magnitudes do not change much by the 2090s, except for soybean yield 
in the EU (Table S7 in Supporting Information S1 and Figure 4).

4.2.5. N Input

The effect of N input is stronger for maize than for soybean because soybean is an N-fixing crop (Figure 4, 
Table S7 and Figure S12 in Supporting Information S1). The stimulation of yield with N input is greater in 
N-limiting and high N-application regions, including NA, EU, and CHN. These regions are water-limiting 
regions too. Therefore, irrigation amplifies the N input effect by reducing the water stress effect and en-
hancing the root carbon that stimulates N uptake (Yang et al., 2009). The interactive N effect increases the 
yield for both crops in most regions by the 2090s. This is especially under the RCP4.5 scenario with a higher 
N input amount and improved N availability under favorable environmental conditions (Figure 4). The 
responses under RCP8.5 are lower because of lower nitrogen input rates per area (Figure S4 in Supporting 
Information S1) and warmer conditions, weakening the N input effect. The N fertilizer intensification can 
enhance crop yield in current low-productive regions, such as AF for maize and soybean (Figure 1). The 

Figure 5. Maps of the effect of heat stress on maize (a and c) and soybean (b and d) yield (%) for RCP4.5 (a and b) 
and RCP8.5 (c and d) in the 2090s. Values show [(yield w/ heat stress minus yield w/o heat stress)/(yield w/o heat 
stress)]*100%.
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model results show that agriculture practices in AF result in higher N losses than N added to the soils, 
which are consistent with other studies (e.g., Lassaletta et al., 2014; Liu et al., 2010; Vitousek et al., 2009). 
This can be because farmers in AF are considering N management practice, such as 85 percent residue re-
moval at the harvest time (Folberth et al., 2012), which we also simulate in ISAM for the AF region (Text S2 
in Supporting Information S1). The model result shows that yields for both crops are increased more under 
RCP4.5 than the RCP8.5 scenario due to intensified N application rates in the 2090s, especially in AF and 
SA (Figure 4, Figures S12b and S12c, and Table S7 in Supporting Information S1).

4.2.6. Synergistic Effects on Crop Yield

ISAM results confirm that management factors help offset some of the adverse effects of climate change 
and limitations of resources (e.g., water and N). However, the interaction between C, water, temperature, 
and N can be nonlinear; it is expected to produce combined effects than the sum of their individual effects 
on crop yields. An example here is that the combined effect of N input and irrigation on crop yield is not an 
additive response of individual forcings. Over the historical time, irrigation and N input offset the decrease 
in crop yields otherwise caused by drier and N-limitation conditions and increased yield from CO2 fertiliza-
tion (Table S7 in Supporting Information S1). When the N and irrigation forcings are combined, synergistic 
effects enhance crop yields such that the combined effect of N and irrigation on crop yield is more than their 
individual sum (Figure 4).

Moreover, ISAM results show that crop productivity is colimited by environmental factors, such as [CO2] 
and climate. Therefore, management factors under the higher [CO2] and warmer future climate scenario 
RCP8.5 may not be able to offset all the crop yield losses by the end of this century. This is the case, for ex-
ample, for global maize yield w/management case under the RCP8.5 scenario, where yield is estimated to be 
about 14% lower in the 2090s than in 1996–2005 (Figure 3). These results show that management practices 
through N and irrigation under socio-economic assumptions of the RCP8.5 scenario and dynamic planting 
time decisions do not fully compensate for the loss of crop yield from environmental drivers, suggesting the 
need for more climate change adaptation in the agriculture sector over this century.

4.2.7. Summary and Future Directions

This study aims to quantify the relative importance of two major environmental factors and their interactive 
effects with management factors and the effect of extreme heat stress on model-estimated productivity of 
maize and soybean. Our study also provides state-of-the-art estimates of spatial and temporal distributions 
of crop yield responses to critical high temperature in the reproductive period by identifying heat stress us-
ing canopy temperature. As a first step, we show that the model estimated effects of various environmental 
and management factors on crop yields and their variability in the twentieth century compare well with 
literature data sets on the global and regional scale.

Accounting for management factors’ effects, including those prescribed by the SSPs, model results show 
that, by 2090s, global maize yield declines by 14% under RCP8.5 and increases under RCP4.5, while soybean 
yield increases by 20% under RCP4.5 and by 13% under RCP8.5. Yet Kriegler et al. (2017) find that global 
cereal crop yield would need to increase by 60% between 2005 and 2100 under both scenarios to fulfill future 
food demand. These results suggest that the management practices considered in this study for maize and 
soybean will not be sufficient to satisfy the future food demand, implying that additional advanced technol-
ogies and management practices will be needed to intensify crop productivity in the future.

Looking beyond this study, we plan to improve the treatment of management practices so that observed 
yield and future trend projections can be improved (cf., Alexandratos & Bruinsma,  2012). For instance, 
ISAM does not consider different irrigation sources (such as irrigated water from groundwater pumping) 
and pathways (flood irrigation, drip irrigation, and sprinkler irrigation), which may affect hydrological cy-
cles (Jägermeyr et al., 2015; Leng et al., 2017). Thus, improving water use processes for each crop type in 
the model can improve the estimation of global human water usage, crop yield, and irrigation demand 
for crops (Webber et al., 2016). Additionally, it should be noted that the input data such as climate and N 
inputs are primary but inevitable sources of uncertainties in the estimated future crop yields. In the future 
analysis, we plan to study the crop yields using the ensemble of multimodel results rather than single model 
results. We also plan to correct model simulated precipitation fields, including variability and other higher 
moments, using different bias correction approaches (e.g., Cannon, 2016; Li et al., 2010). Although we use 
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state-of-the-art N input data under SSPs from Coupled Model Intercomparison Project Phase 6 (CMIP6) 
(Lawrence et al., 2016), future studies should consider different N application methods, forms, timing, and 
levels. These advancements and additional model analyses with other crops are needed to mitigate the ef-
fects of climate change and extremes on the agriculture system.
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