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Human activities have profoundly altered the global carbon 
cycle1. About 600 PgC was emitted as CO2 to the atmosphere 
during 1750–2015 due to the burning of fossil fuel, cement 

production and land-use change2. It is estimated that terrestrial 
ecosystems responded to this perturbation by absorbing about 32% 
of the cumulative anthropogenic emissions2 and therefore played 
a key role in mitigating climate change3–5. The terrestrial CO2 sink 
(excluding emissions from land-use change) estimate doubled 
between the 1960s (period 1960–1969) and the current decade 
(2007–2016)2 (Fig. 1a). Terrestrial ecosystem model simulations 
have indicated that increasing CO2 (eCO2) is the main driver of the 
increase in the terrestrial carbon sink5–8. However, the magnitude 
of this eCO2 fertilization differs strongly between models (Fig. 1b). 

Reducing this uncertainty is critical for refining understanding of 
the role of land in the future evolution of the coupled terrestrial car-
bon cycle/climate system, one of the Grand Challenges acknowl-
edged by the World Climate Research Programme9.

Free-air CO2-enrichment (FACE) experiments have been 
conducted at the ecosystem scale since the 1980s to measure the 
response of carbon fluxes and stocks to eCO2 (ref. 10). These com-
prehensive experiments and data sets provide insights into local 
nutrient limitations and physiological mechanisms controlling the 
effect of eCO2 on net primary productivity (NPP) and ecosystem 
carbon storage10,11. However, the implications of their findings 
have not been scaled up to estimate large-scale effects of eCO2 on 
carbon sinks. Overall, meta-analyses of FACE experiment results  
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find that eCO2 generally stimulates plant growth and increases 
ecosystem carbon storage12,13. The FACE experiments have been 
mainly in temperate ecosystems and generally lasted for only a 
few years10. The effects of eCO2 differ with environmental condi-
tions and local biotic factors14. They also change over the duration 
of experiments, in relation to the ability of plants to take up more 
nutrients15, for example by increased below-ground allocation to 
roots16 and mycorhizae symbiosis17. New approaches are needed  
to link these effects, which are implicit in the FACE experiments, to 
large-scale model simulations of the CO2 fertilization effect on the 
terrestrial carbon sink.

We quantify the sensitivity of terrestrial CO2 sink to eCO2 
(parameter Β) in the Northern Hemisphere temperate zone  
(23–50° N) by combining the results of terrestrial ecosystem 
models with FACE experiments using an emergent-constraint 
approach18 (Methods). Emergent-constraint approaches have been 
successfully applied to constrain the effects of climatic warming 
on tropical carbon storage18, the sensitivity of gross primary pro-
ductivity (GPP) to eCO2 (ref. 19), the projections of future global 
carbon sinks20, the sensitivity of global rice yield to long-term cli-
mate change21 and the ratio of plant transpiration to land evapo-
transpiration22. We use the output of 12 terrestrial models from 
the Multi-scale Synthesis and Terrestrial Model Intercomparison 
Project (MsTMIP)23 (Supplementary Table 1) and the observed 
site-scale sensitivity of the net ecosystem production (NEP) to 
eCO2 (Methods) from seven FACE experiments. All seven FACE 
experiments have a duration longer than one growing season 
(Supplementary Tables 2 and 3). They additionally include both 
nitrogen (N)-limited and N-rich sites and both arbuscular-mycor-
rhizae- and ectomycorrhizae-dominated ecosystems. The emergent 
constraint used here is a heuristic relationship between modelled Β 
at different spatial scales. That is, it links the sensitivity ΒNH for all 
northern temperate ecosystems and the modelled mean sensitivity 
from the experiment site locations, ΒSite (Methods). This relation-
ship can then be used with FACE data-based knowledge of ΒSite to 
constrain the value of ΒNH.

Comparison of observed and modelled sensitivities
The FACE experimental configuration is the introduction of a step 
increase of atmospheric CO2. After this, NPP generally increases, 
but this stimulation often slows down after a few years, which 
many attribute to nutrient limitations (for example, Norby et al.24). 
Following the initial step increase of NPP, heterotrophic respira-
tion (HR) also increases. This lag between HR and NPP leads to 
a transient sink (NEP), which integrates the direct effects of eCO2 
on NPP and delayed effects on respiration. The latter is a function 
of carbon allocation25 and the turnover times of excess carbon in 
biomass, litter and soil organic matter. By contrast, in the histori-
cal simulations of the global terrestrial ecosystem models, the forc-
ing of atmospheric CO2 on different terrestrial components can be 
isolated through separate factorial simulations. However, in those 
simulations, CO2 does not increase abruptly but follows the histori-
cal atmospheric CO2 trend (roughly corresponding to an increase 
of 1.4 ppm yr−1 for 1959–2010). In response to such a gradual 
increase of CO2, NPP simulated by models increases slowly, and HR 
follows this increase with a lag. The resulting historical response 
of NEP to eCO2 in models is thus not directly comparable to the 
short-term response to a step change in the FACE experiments. 
To link the two responses (FACE-based short-term step increase 
of CO2 versus land model–based gradual rise of CO2), we develop 
substitute pulse–response models (Methods). These can infer the 
step-response of NEP to eCO2 in each MsTMIP model to mimic  
the conditions of the FACE experiment sites (Supplementary  
Fig. 1). The parameters of substitute models are the NPP sensitivity 
to eCO2 and the turnover rates of excess carbon in total biomass and 
soil carbon pools. As an initial test, the substitute models generally 
emulate successfully the eCO2-induced historical total biomass and 
soil carbon evolution from the original complex process-oriented 
MsTMIP models (generally R2 > 0.95, P < 0.0001, Supplementary 
Figs. 2–13). Nevertheless, the substitute models do not work well to 
reproduce the biomass carbon pool evolution at grassland sites for 
5 of 12 MsTMIP models (5 models at Duolun and 3 models at prai-
rie heating and CO2 enrichment (PHACE)), particularly when NPP 
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Fig. 1 | Effect of eCO2 on the change in the global residual terrestrial sink during the past five decades. a, Changes in the residual terrestrial sink 
(excluding emissions from land-use changes) from global budget2 and the effect of eCO2 on the residual terrestrial sink changes from 12 MsTMIP models 
(shown as multi-model mean ± s.d., shaded green area) relative to 1959. The dashed lines indicate unconstrained linear regressions. The P-values indicate 
the statistical significance of the linear regressions. b, The eCO2-induced change in global residual terrestrial sink during the 1960s (1960–1969) and the 
2000s (2000–2009) in the MsTMIP models. The grey rectangle spans the first to the third quartiles. The red and green segments inside the rectangle 
indicate the mean and median, respectively. The whiskers above and below the rectangle indicate the maximum and minimum, respectively. The triangles 
indicate the models with dynamic nitrogen cycles.
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monotonically increases but biomass carbon pool suddenly declines 
(Supplementary Figs. 2, 5, 7–9). This, therefore, may further result 
in uncertainty in the estimates of both Northern Hemisphere tem-
perate and global terrestrial Β.

A second issue needs to be addressed to enable comparison of 
MsTMIP estimates with FACE data. Atmospheric CO2 was increased 
abruptly at the FACE sites from recent amounts (~381 ppm) to about 
twice pre-industrial CO2 levels. That is a step increase (∆CO2) of 
about 200 ppm (Supplementary Table 2). However, ∆CO2 at FACE 
sites is significantly larger than ∆CO2 in models during the recent 
historical period (that is, about 60 ppm between 1959–1968 and 
2001–2010). Because the response of photosynthesis to eCO2 is non-
linear and convex26, we extrapolate the observed FACE-based NEP 
sensitivity to ∆CO2 = 200 ppm to ∆CO2 = 60 ppm on a background 
of 320 ppm as observed during the past 50 years. This is performed 
using (1) a theoretical model of photosynthesis (Pmodel), which is 
extensively supported by eddy-covariance measurements of CO2 
exchange and FACE observations27, and (2) a logarithmic function 
of photosynthetic response to eCO2 (refs. 3,28). These algorithms 
provide us with observation-based estimates of ΒSite consistent with 
historical CO2 levels, that is, BHist

Site
I

 (Methods). Nevertheless, such 
scaling is based on theoretical response curves of photosynthesis to 
rising CO2 and thus subject to an unknown level of uncertainty due 
to incomplete knowledge on acclimation and the shape of the true 
response of ecosystem photosynthesis to eCO2.

Northern Hemisphere temperate terrestrial Β constrained 
by FACE observations
The sensitivity of the Northern Hemisphere temperate ecosys-
tems carbon sink to yearly changing CO2, BMod

NH
I

 corresponding 
to the period 1959–2010, is found to be linearly correlated across 
the 12 terrestrial ecosystem models, with the modelled short-term 
response to a CO2 step-increase (of 60 ppm) at each FACE loca-
tion (R2 = 0.86, P < 0.0001; Fig. 2a). The latter is diagnosed from 
the emulator of each model, as outlined above. Critically, this 
emergent constraint result indicates that a correspondence can be 
found between expected response to slowing changing CO2 levels 
and a step change. That is, models with a large step-response to an 
abrupt increase in CO2 at site-scale generally also produce a large 
BMod
NH
I

. The linear emergent relationship across the models in Fig. 2a 
therefore provides a mechanism to constrain the impact of eCO2 on 
Northern Hemisphere temperate ecosystems’ NEP using the sensi-
tivities inferred from FACE experiments, BHist

Site
I

 = 75 ± 28 g C m−2 yr−1 
[100 ppm]−1 (mean ± s.d., indicated by the light grey area in Fig. 2a). 
This BHist

Site
I

 quantity is extrapolation of FACE observations to smaller 
jumps in CO2 (∆CO2 = 60 ppm) added to a background value of 
320 ppm on the basis of the Pmodel27, again as outlined above.

The relationship shown in Fig. 2a produces a probability density 
function of BMod

NH
I

 constrained by the eCO2 experiment-based prob-
ability density function of BHist

Site
I

 (Fig. 2b). The unconstrained BMod
NH
I

 of 
0.58 ± 0.33 PgC yr−1 [100 ppm]−1 (mean ± s.d.) is found to be lower 
than the observation-constrained value of 0.64 ± 0.28 PgC yr−1 [100 
ppm]−1 (indicated by the red line in Fig. 2b and the light red area in 
Fig. 2a). Multiplying the constrained ΒNH by the historical increase 
in atmospheric CO2 (57 ppm) provides an estimate of the contri-
bution of historical CO2 fertilization to the Northern Hemisphere 
terrestrial carbon sink change as 0.36 ± 0.16 PgC yr−1 between the 
1960s (1960–1969) and the 2000s (2000–2009). Despite the small  
quantity of FACE data, our estimate of constrained ΒNH is robust 
when calculated using six, five and four eCO2 experiment sites  
separately (Supplementary Fig. 14). The constrained ΒNH is also 
robust using either the Pmodel (Methods equation [5])27 at FACE 
sites or the alternative logarithmic function for the non-linear 
response of photosynthesis to rising CO2 (Methods equation 
[14])3,28 with all other conditions unchanged (Supplementary  
Fig. 15 and Methods).

Six of the twelve MsTMIP models incorporated processes control-
ling carbon–nitrogen (C–N) interactions (Supplementary Table 1),  
so we constrained ΒNH values from carbon-only models and from 
C–N models separately. The Northern Hemisphere temperate eco-
systems and site-level Β are correlated for both the carbon-only 
models (R2 = 0.90, P = 0.004; Fig. 2c) and the C–N models (R2 = 0.82, 
P = 0.013; Fig. 2e). The constrained value of ΒNH is 0.67 ± 0.24 PgC 
yr−1 [100 ppm]−1 for the carbon-only models (Fig. 2c,d) and 0.71 ± 
0.39 PgC yr−1 [100 ppm]−1 for the C–N models (Fig. 2e,f); thus, we 
find no notable difference of constrained sensitivity depending on 
whether N cycling is included in models. Nevertheless, the slope of 
the linear relationship between ΒNH and ΒSite across the C–N models 
(slope = 0.013; Fig. 2e) is higher than that across the carbon-only 
models (slope = 0.008; Fig. 2c). This indicates that the emergent 
relationship across models can change when most models consider 
a new process, such as here for the N cycle. The relationship may 
be refined further when, for example, models routinely model the 
phosphorus cycle29. In addition, the temperate sites in our study 
mainly reflect forest ecosystems, with only two grassland sites and 
no site in shrublands or other ecosystems. Therefore, the relation-
ship between Northern Hemisphere temperate ecosystems and 
site-level Β across models, and the data-constrained ΒNH value, may 
adjust when new FACE sites become available and are included.

Compared to the constrained ΒNH from the 12 models (0.64 ±  
0.28 PgC yr−1 [100 ppm]−1), ΒNH is slightly overestimated by carbon-
only models (0.74 ± 0.33 PgC yr−1 [100 ppm]−1), but is generally 
underestimated by C–N models (0.41 ± 0.26 PgC yr−1 [100 ppm]−1)  
(Supplementary Table 4). Specifically, for the C–N models, the 
observation-constrained ΒNH is comparable with three of the six 
C–N models (ISAM, TEM6 and TRIPLEX-GHG) but is under-
estimated by the others (CLM4, CLMVIC and DLEM) (Fig. 2a). 
This is consistent with the site-scale comparison between the 
observed and the modelled NEP sensitivity to eCO2 (BHist

Site
I

 and BMod
Site
I

,  
Fig. 2a, Supplementary Fig. 16). In FACE experiments, N limi-
tation regulated the eCO2-induced increase in NPP at the Oak  
Ridge forest24 and at the moderately fertile Duke forest30, and 
regulated the decade-long eCO2-stimulation on plant biomass in 
a temperate grassland31. A large influence of mycorrhizal associa-
tion across sites regulated the biomass increase in response to eCO2 
through mycorrhizal-N uptake17. The observed plant N uptake 
increase by eCO2 is generally underestimated by C–N models at 
Duke-FACE and ORNL-FACE sites11, but the eCO2 effects on plant 
N uptake remain fully characterized in the other experiments used 
in this study. The evaluation of N limitation on ΒNH in the C–N 
models in this study must be considered with caution because we 
do not know whether our set of eCO2 experiments is representa-
tive of the real-world extent of N limitation in northern temper-
ate ecosystems due to the limited number of eCO2 experiments. 
Nevertheless, there is the suggestion that some models may have an 
overly strong N response.

Global terrestrial Β constrained by FACE observations
We can also expand our findings to the global scale. Across the ter-
restrial ecosystem models, ΒNH was linearly correlated with the sen-
sitivity of the global terrestrial carbon sink to eCO2, ΒGlobe (R2 = 0.79, 
P = 0.0001; Fig. 2g). This means that models with a large ΒNH also 
simulate a large ΒGlobe. Using the linear relationship between temper-
ate ΒSite and ΒGlobe across the terrestrial ecosystem models, we esti-
mated a constrained value for ΒGlobe of 3.5 ± 1.9 PgC yr−1 [100 ppm]−1 
(Supplementary Fig. 17a,b and Methods), similar to carbon-only 
and C–N models (Supplementary Fig. 17c–f). The simple yet 
powerful emerging relationship in the MsTMIP model ensemble 
between temperate and global ecosystem responses to eCO2 does 
have caveats. It may be due to terrestrial ecosystem models hav-
ing similar structures and thus possibly common biases spatially 
coherent over the globe. For example, they do not include specific 
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Fig. 2 | Emergent constraints on the sensitivity of the Northern Hemisphere temperate terrestrial carbon sink to eCO2. a, Relationship between the 
Northern Hemisphere temperate zone and the site-scale responses of the terrestrial carbon sink to eCO2 (ΒNH and ΒSite) for 1959–2010 across the MsTMIP 
models. ΒSite is based on MsTMIP model simulation to be appropriate for a jump from 320 ppm to 380 ppm and extrapolation of FACE experiments also 
to a jump from 320 ppm to 380 ppm. The light grey area shows the observed ΒSite in the FACE experiments (BHistSite

I
, shown as mean ± s.d.). The light red 

area shows FACE data-constrained ΒNH (BConstrainedNH
I

, shown as mean ± s.d.). b, Probability density function for ΒNH. The histogram indicates the probability 
density function of unconstrained ΒNH in the MsTMIP models (BMod

NH
I

), assuming they are Gaussian distributed. The red line indicates the probability density 
function of BConstrainedNH

I
. c,d, Same as a and b but using the carbon-only models. e,f, Same as a and b but using only the C–N models. g, Relationship between 

the Northern Hemisphere temperate zone and global responses of the terrestrial carbon sink to eCO2 (ΒNH and ΒGlobe) for 1959–2010 across the MsTMIP 
models. In a,c,e and g, the solid lines indicate unconstrained linear regressions and the triangles indicate the models with dynamic nitrogen cycles.
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response processes that could limit the NEP response to eCO2 in 
tropical ecosystems, such as phosphorus limitation29, and do not 
distinguish between the responses of arbuscular-mycorrhizae-  
and ectomycorrhizae-dominated ecosystems, which was recently 
found to be a first-order explanation of increased biomass under 
eCO2 (ref. 17). The biases in modelling the eCO2 effect across spa-
tial scales (from site to globe) cannot be verified by FACE experi-
ments only, due to the lack of FACE-based B data in boreal and 
tropical ecosystems. The planned extension of FACE experiments 
in tropical (for example, AmazonFACE) and boreal (for example, 
SwedFACE) ecosystems32, particularly designed with a gradual rise 
of CO2 (ref. 33), will improve the understanding of the mechanisms 
underlying the terrestrial carbon sink responses to eCO2 away  
from mid-latitudes. Such additional FACE experiments would  
confirm or disconfirm our model-based extrapolation to estimate 
the global fertilization effect.

Combining the constrained ΒGlobe from the 12 models with the 
historical increase in atmospheric CO2 (57 ppm) estimates the 
contribution of CO2 fertilization to the global terrestrial carbon 
sink change of 2.01 ± 1.06 PgC yr−1 between the 1960s and the 
2000s (Supplementary Fig. 18). This constrained value is compa-
rable with the multi-model-mean of the carbon-only models but 
is underestimated by three of six C–N models (Supplementary 
Fig. 18). Subtracting the estimated eCO2 effect and multi-model-
mean of N deposition effect (0.23 ± 0.14 PgC yr−1) (Supplementary 
Fig. 19) from the observed increase in residual land sink between 
the 1960s and the 2000s (1.2 PgC yr−1)2, the effect of long-term 
warming (~0.9 °C) on the residual land sink change between 
the 1960s and the 2000s is roughly estimated as −1.04 PgC yr−1. 
This indicates a temperature sensitivity of global terrestrial car-
bon sink of ΓLong = −1.16 PgC yr−1 K−1. This value falls within 
the range of the Global Carbon Budget data-constrained ΓLong 
(−1.57 ± 0.51 PgC yr−1 K−1) on the basis of the linear relationship 
between long-term and interannual temperature sensitivities of 
the land net carbon sink across MsTMIP models (Supplementary 
Fig. 20 and Methods). Hence, the findings from the ‘top-down’ 
closure of the global carbon cycle2 are comparable with our 
FACE-based ‘bottom-up’ emergent constraint value for ΒGlobe of 
3.5 ± 1.9 PgC yr−1 [100 ppm]−1.

In summary, our results provide a constrained estimate of the 
sensitivity of the terrestrial carbon sink to eCO2 for a transient 
climate responding to anthropogenic forcing. This is inferred by 
combining pulse–response functions implicit in terrestrial car-
bon-cycle models with FACE experiment observations, which 
can then be scaled to the CO2 increase observed during the past 
five decades. We find a robust emergent constraint between these 
model estimates, mimicking FACE conditions via our inferred 
pulse-response of models, and their estimates of evolving temper-
ate ecosystems NEP response to rising atmospheric CO2 concen-
trations due to fossil-fuel burning. This allows us to extrapolate the 
direct FACE measurements to estimate an Northern Hemisphere 
temperate ecosystems NEP fertilization response of 0.64 ± 0.28 Pg
C yr−1 [100 ppm]−1 for the evolving conditions over recent decades. 
The consistency between model temperate regions and elsewhere 
allows us to make a unique data-based constraint on global veg-
etation direct physiological NEP response to rising CO2 concen-
trations of 3.5 ± 1.9 PgC yr−1 [100 ppm]−1. Further verification is 
required, potentially through longer-term FACE experiments. 
These FACE experiments would enable a more comprehensive 
investigation of slowly evolving processes such as vegetation and 
soil carbon turnover rates, including their relationship to nutri-
ents that may change for long-term eCO2 exposure. To clarify the 
mechanisms underlying elevated CO2 effects on terrestrial NEP, 
continued collaboration between experimentalists and modellers, 
for example, the FACE Model–Data Synthesis project32,34, remains 
necessary.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41561-019-0436-1.
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Methods
Observed site-scale sensitivity of NEP to eCO2 (ΒSite) from CO2 enrichment 
experiments. We collected the data at the eCO2 experiments for the effect of eCO2 
on NEP from the publications (Supplementary Table 2). Experimental sites with 
observational periods shorter than one growing season in each measurement year 
were excluded. A total of seven eCO2 experimental sites were used in our study 
(Supplementary Table 2). The ΒSite observed at each site (BObs

Site
I

) was calculated as:

BObs
Site ¼ ΔNEP

ΔCO2
ð1Þ

where ΔNEP was calculated as the difference in NEP between the eCO2 and 
control treatments, and ΔCO2 is the atmospheric CO2 concentrations in the eCO2 
treatment minus the control ambient concentration during the experiment; ΔCO2 
differs between experiments. For the FACE experiments at Oak Ridge National 
Laboratory (ORNL-FACE), Duke-FACE, Rhinelander (Aspen-FACE) and Merritt 
Island, ΔNEP caused by eCO2 was calculated as the eCO2-induced change in 
ecosystem carbon storage divided by the experimental period.

MsTMIP simulations used to analyse eCO2 impact on terrestrial carbon sink. 
We used net ecosystem CO2 exchange (NEE, variable ‘NEE’ in the MsTMIP 
product) from the simulations of 12 terrestrial carbon-cycle models from the 
MsTMIP (Supplementary Table 1). The outputs of all models were downloaded 
from https://doi.org/10.3334/ORNLDAAC/1225 (ref. 35). Driver data of MsTMIP 
were downloaded from https://doi.org/10.3334/ORNLDAAC/1220 (ref. 36). 
The outputs and driver data cover all land surface areas excluding Antarctica 
with a 0.5° × 0.5° spatial resolution. The models simulated four sensitivities to 
test the influence of climate, land-use and land-cover change (LULCC), CO2 
concentrations and nitrogen (N) deposition on the terrestrial carbon cycle: (1) the 
models were forced by time-varying climate (scenario SG1), (2) the models were 
forced by time-varying climate and LULCC (scenario SG2), (3) the models were 
forced by time-varying climate, LULCC and CO2 concentration (scenario SG3), 
and (4) the models with C–N interactions were forced by time-varying climate, 
LULCC, CO2 concentration and N deposition (scenario BG1). The effect of 
rising CO2 was isolated as the differences between SG3 and SG2. To analyse eCO2 
impact on terrestrial carbon sink, we used a total of 12 models (CLM4, CLM4VIC, 
DLEM, GTEC, ISAM, LPJ-wsl, ORCHIDEE-LSCE, SiBCASA, TEM6, TRIPLEX-
GHG, VEGAS2.1 and VISIT) with both SG2 and SG3 simulations, complying 
with the following conditions: they provided variables for NEE (variable ‘NEE’), 
NPP (variable ‘NPP’), total biomass carbon pool (variable ‘TotLivBiom’, except 
‘CarbPools’ for TRIPLEX-GHG SG2 simulations) and soil carbon pool (variable 
‘TotSoilCarb’, except ‘CarbPools’ for CLM4VIC and VISIT), and we could apply 
the two-box model (see below) for calibrating the outputs. Here, soil carbon pool 
includes soil carbon and litter carbon.

Calculation of the changes in the global residual terrestrial carbon sink relative 
to 1959 and its drivers. The residual terrestrial sink (SLAND) in MsTMIP was 
calculated as the integrated effect of time-varying climate, CO2 concentrations 
and N deposition on global terrestrial carbon sink (Fig. 1a). The effect of climate 
change on SLAND was given by the SG1 scenario. The effects of the other forcing 
factors on SLAND were calculated using differences between the simulations: 
differences between SG3 and SG2 for the effect of rising CO2 (Fig. 1b and 
Supplementary Fig. 18) and differences between BG1 and SG3 for the effect 
of variations in N deposition (Supplementary Fig. 19). The SLAND from Global 
Carbon Budget (GCB) 2017 (refs. 2,37) was estimated by subtracting the growth 
rate in atmospheric CO2 concentration (GATM) and ocean CO2 sink (SOCEAN) from 
global emissions from fossil fuels and industry (EFF) and land-use change (ELUC): 
SLAND = EFF + ELUC – (GATM + SOCEAN) (Fig. 1a).

Sensitivity of Northern Hemisphere temperate (23–50° N) terrestrial carbon 
sink to eCO2 (ΒNH) in MsTMIP. The sensitivity of the Northern Hemisphere 
temperate terrestrial carbon sink to eCO2 (BMod

NH
I

) for 1959–2010 was calculated as 
BMod
NH ¼ ΔNEP=ΔCO2

I
, where ΔNEP is the difference in the CO2-caused Northern 

Hemisphere temperate terrestrial NEP (variable ‘NEE’ in the MsTMIP product, 
SG3-SG2) between 2001–2010 and 1959–1968, and ΔCO2 is the difference in the 
global atmospheric CO2 concentration between 2001–2010 and 1959–1968.

Sensitivity of the modelled site-scale NEP to eCO2 (BMod
Site
I

) for the seven eCO2 
experimental sites in MsTMIP. We established a two-box model for each 
model and each site to obtain the effects of short-term pulses of eCO2 on NEP 
from the MsTMIP models. We then used these two-box models to replicate the 
eCO2 experiments with the form of changing CO2 identical to that in the eCO2 
experiments.

First, we extracted the NPP, total biomass carbon and soil carbon variables of 
each MsTMIP model for each eCO2 experimental site by averaging the values in 
the grid cells with the same dominant vegetation type as in the field experiment 
within a 4.5° × 4.5° window around the eCO2 experimental site. We use a 4.5° × 4.5° 
window in this study partly because it is the minimum spatial scale for which  
the same vegetation type that, corresponding to the FACE sites, is represented in 

all the MsTMIP models. The LULCC data set driving the MsTMIP simulations 
contained 47 classes of synergetic land-cover product (SYNMAP)38,39. We 
reclassified this data set (‘biome_frac’ variable) into the major life forms (SIMPLE 
legend) categories defined by Jung et al.38 to obtain the spatial distributions of 
the forest and grassland fractions (‘Trees’ and ‘Grasses’ in the SIMPLE legend). 
Grid cells with mean fractions of trees or grasses during 1959–2010 not less than 
50% were tagged ‘forest’ or ‘grassland’, respectively. Moreover, we analysed the 
relationship between the climate conditions in the 4.5° × 4.5° window and central 
0.5° × 0.5° grid across the seven eCO2 experiment sites (Supplementary Fig. 21). 
Results show that, as expected, there are large variations in climate conditions 
(temperature and precipitation) among the seven sites, but for each individual  
site the climate conditions (temperature and precipitation) in the 4.5° × 4.5° 
window are very close to those at the central 0.5°×0.5° grid (Supplementary 
Fig. 21). The 4.5° × 4.5° window also generally captures the spatial variability of 
soil texture (clay, sand and silt fraction) across the seven eCO2 experiment sites 
(Supplementary Fig. 22).

Second, we assumed that the total biomass-carbon pool (CB) had a  
constant rate of decay (μ) and that the soil-carbon pool (CS) also had a  
constant rate of decay (ρ). The decaying carbon from the total biomass  
pool (B2S) enters the soil pool, and the decaying carbon from the soil pool is 
emitted to the atmosphere as HR. This simple system was represented by a  
linear two-box model:

dΔCB
dt ¼ ΔNPP tð Þ � μ ´ΔCB tð Þ

dΔCS
dt ¼ μ ´ΔCB tð Þ � ρ ´ΔCS tð Þ

(
ð2Þ

The analytical solution was:

ΔCBðtÞ ¼
R t
0 exp �μt0ð Þ ´ΔNPP t � t0ð Þ½ dt0

ΔB2SðtÞ ¼ μ ´ΔCBðtÞ
ΔCSðtÞ ¼

R t
0 exp �ρt0ð Þ ´ΔB2S t � t0ð Þ½ dt0

ΔHRðtÞ ¼ ρ ´ΔCSðtÞ

8
>>><
>>>:

ð3Þ

Where ΔNPP(t) is the CO2-induced NPP (SG3 – SG2) in year t, ΔCB(t) is the 
change in CO2-induced total biomass-carbon storage (SG3 – SG2) in year t 
relative to the first year, ΔCS(t) is the change in CO2-induced soil-carbon storage 
(SG3 – SG2) in year t relative to the first year, μ is the constant decay rate of ΔCB 
(0 ≤ μ ≤ 1), ΔB2S(t) is the carbon flux from ΔCB to ΔCS in year t, ρ is the constant 
decay rate of ΔCS (0 ≤ ρ ≤ 1), ΔHR(t) is the CO2-induced heterotrophic respiration 
in year t.

The parameters μ and ρ for each eCO2 experimental site in each model were 
fitted with equation (3) using NPP, total biomass-carbon pool and soil-carbon 
pool for 1901–2010 from the MsTMIP outputs using Matlab (R2018a) software. 
The codes are shown in Supplementary Information. The two-box models 
generally emulated successfully the eCO2-induced historical biomass and soil 
carbon evolution at the seven eCO2 sites from the original complex process-
oriented MsTMIP models (Supplementary Figs. 2–13). Nevertheless, the substitute 
models do not work well at reproducing the biomass-carbon pool evolution at 
grassland sites for 5 of 12 MsTMIP models (CLM4, GTEC, LPJ-wsl, ORCHIDEE-
LSCE and SiBCASA at Duolun, and CLM4, LPJ-wsl and SiBCASA models 
at PHACE). This model underperformance is particularly when net primary 
productivity monotonically increases but biomass-carbon pool suddenly declines 
(Supplementary Figs. 2, 5, 7–9).

Third, we reproduced the eCO2 experiment using the two-box model for each 
eCO2 experimental site in each MsTMIP model, assuming that CO2 abruptly 
increased by 60 ppm (from 320 ppm to 380 ppm) and was then held fixed. This 
analysis was performed with the following steps. (1) Calculate eCO2-induced 
NPP in the reproduced eCO2 experiment (ΔNPPsite_FACE_M). We assumed that 
ΔNPPsite_FACE_M was a constant and the same as the long-term response of NPP to 
eCO2 in the MsTMIP simulations. Therefore, ΔNPPsite FACE M ¼ ΔNPP

ΔCO2
´ 60

I
, where 

ΔNPP is the modelled difference in CO2-induced NPP in the same months as the 
corresponding eCO2 experiment between 2001–2010 and 1959–1968 and ΔCO2 
is the difference in the atmospheric CO2 concentration between 2001–2010 and 
1959–1968. (2) Calculate eCO2-induced HR in the reproduced eCO2 experiment 
(ΔHRsite_FACE_M). We calculated ΔHRsite_FACE_M using equation (3) for each  
MsTMIP model on the basis of its fitted parameters (μ and ρ) and ΔNPPsite_FACE_M. 
(3) Calculate eCO2-induced NEP in the reproduced FACE experiment  
(ΔNEPsite_FACE_M) as ΔNEPsite FACE M ¼ ΔNPPsite FACE M � ΔHRsite FACE M

I
. (4) 

Calculate the sensitivity of NEP to eCO2 in the reproduced eCO2 experiment  
(BMod

Site
I

) as BMod
Site ¼ ΔNEPsite FACE M=60
I

 (Supplementary Fig. 1). (5) When 
comparing with FACE observations, the duration for the calculation of BMod

Site
I

 is 
site specific and is the same as the duration in the real FACE experiment at each 
site. For example, the duration of Duke-FACE is nine years, from 1997 to 2005 
(Supplementary Table 2). When comparing with FACE observations, we used the 
mean of BMod

Site
I

 in the nine years from the first to the ninth experimental years in the 
two-box-model-based FACE experiment at Duke-FACE site (Supplementary  
Fig. 16). The simulated ΒSite in Fig. 2a,c,e is the mean BMod

Site
I

 for the seven eCO2 sites 
for each model.

Nature Geoscience | www.nature.com/naturegeoscience

https://doi.org/10.3334/ORNLDAAC/1225
https://doi.org/10.3334/ORNLDAAC/1220
http://www.nature.com/naturegeoscience


Articles Nature Geoscience

Transform observed site-scale NEP sensitivity to elevated atmospheric CO2 in 
eCO2 experiments (BObs

Site
I

) to the NEP sensitivity at a lower CO2 concentration 
level (BHist

Site
I

). In the eCO2 experiments, atmospheric CO2 concentration (ca) was 
increased from ambient (average ~381 ppm) to a very high concentration roughly 
representative of two times pre-industrial values (average ~588 ppm, indicated 
as ≈ 2 × CO2). This change in ca is much larger than that used in MsTMIP model 
simulations (from ~320 ppm during 1959–1968 to ~380 ppm during 2001–2010). 
To convert NEP responses at ≈ 2 × CO2 ca in eCO2 experiments to responses at 
historical ca values, for each eCO2 experiment, we extrapolated the observed NEP 
sensitivity with CO2 increasing from control ca (ca2) to treatment ca (ca2p) to the NEP 
sensitivity with CO2 increasing from 320 ppm (ca1) to 380 ppm (ca1p).

Assuming that carbon use efficiency (CUE = NPP/GPP) and turnover rates 
of carbon pools in short-term eCO2 experiments are unchanged when CO2 varies 
from ca1 to ca1p compared to from ca2 to ca2p (Supplementary Figs. 23 and 24), 
eCO2-induced NEP changes proportionally with eCO2-induced GPP according to 
Supplementary equation (5), equivalent to the following equation:

BNEP1

BNEP2
¼ BGPP1

BGPP2
ð4Þ

where ΒNEP1 and ΒGPP1 are the CO2 fertilization effects on NEP and GPP over ca 
ranging from ca1 to ca1p and ΒNEP2 and ΒGPP2 are the CO2 fertilization effects on NEP 
and GPP over ca ranging from ca2 to ca2p.

The response of GPP to rising ca can be estimated with a first-principles-based 
universal model of photosynthesis (Pmodel), which is extensively supported by flux 
observations and FACE experiment27. The form of Pmodel is a ‘light-use efficiency’ 
(LUE) model that predicted GPP is proportional to absorbed photosynthetically 
active radiation (PAR), where the LUE is predicted from first principles27. The 
standard biochemical model of photosynthesis proposed by Farquhar et al.40 
predicts the instantaneous rates of photosynthesis limited by Rubisco (Ac) and 
electron-transport (AJ), respectively. The coordination or colimitation hypothesis 
states that the maximum capacity of carboxylation acclimates to the prevailing 
environmental conditions at weekly or longer time scales, allowing the two 
photosynthetic processes of Ac and AJ to be coordinated with each other  
(AJ = Ac) under typical daytime conditions27,41,42. The LUE model descriptions are 
in the methods of ref. 27 and more detailed information can be found in section 5 
of “A light-use efficiency model for GPP” in the supplementary information. The 
calculation of GPP is shown as following equations (5) and (6) (equations [2] and 
[3] in ref. 27).

GPP ¼ φ0Iabsm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c?=mð Þ2=3
h ir

ð5Þ

where

m ¼ ca � Γ?ð Þ= ca þ 2Γ? þ 3Γ?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6η?D0β

�1 K þ Γ?ð Þ�1 q 
ð6Þ

Here, ca is atmospheric CO2 concentration (ppm), φ0 is the intrinsic quantum 
yield (g C mol–1), m is a component of light-use efficiency, Iabs is the absorbed 
photosynthetic photon flux density (mol m–2 s–1), Γ⋆ is the photorespiratory 
compensation point (Pa), K is the effective Michaelis–Menten coefficient of 
Rubisco (Pa), η⋆ is the viscosity of water relative to its value at 25 °C, D0 is vapour 
pressure deficit (Pa), and c⋆ and β represent the cost factor of the maintaining 
electron transport capacity (~0.41) and the ratio of carboxylation to transpiration 
cost factors (~240). Both are estimated from independent observational data.

According to this model, the ratio between GPP sensitivities to elevated CO2 
from ca1 to ca1p and from ca2 to ca2p (Supplementary Fig. 25) is estimated as:

BGPP1

BGPP2
¼

m1p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c?=m1p

� 2=3h ir
�m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c?=m1ð Þ2=3
h ir

m2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c?=m2p

� 2=3h ir
�m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c?=m2ð Þ2=3
h ir ´

ca2p�ca2
� 

ca1p�ca1
�  ð7Þ

Here, m1, m1p, m2 and m2p are m calculated at ca1, ca1p, ca2 and ca2p, respectively, 
using equation (6). We estimated m from growing-season mean temperature 
(tmp), diurnal temperature range (dtr), relative humidity (reh) and elevation (elv) 
extracted from CRU climatology (CRU CL v. 2.0) at 10-minute resolution43.

The observed NEP sensitivity measured at ≈ 2 × CO2 in eCO2 experiments 
(BObs

Site
I

) was extrapolated to the sensitivity at CO2 ranging from 320 to 380 ppm in 
the simulations (BHist

Site
I

):

BHist
Site ¼ BObs

Site ´
BGPP1

BGPP2
ð8Þ

Probability density function of BHist
Site
I

 from eCO2 experiments. The average BHist
Site
I

 
from the eCO2 experiments and its uncertainty were estimated using a bootstrap 
approach with the following steps. (1) One BHist

Site
I

 was randomly drawn for each 
eCO2 experiment site, and the selected BHist

Site
I

 from all eCO2 experiment sites were 
then averaged to obtain BHist

Site
I

. (2) Step (1) was performed 1,000 times to obtain 

1,000 BHist
Site
I

. (3) The mean and standard deviation of the 1,000 BHist
Site
I

 from step (2) 
were calculated to obtain mean BHist

Site
I

 (BHist
Site
I

) and its uncertainty [σ BHist
Site

� �

I
] from 

the eCO2 experiments. This uncertainty represented the site-scale uncertainty 
due to experimental procedures, such as uneven measurements and sample time, 
rather than to spatial heterogeneity across sites. The uncertainty could therefore be 
comparable to the mean of simulated ΒSite (BMod

Site
I

) for the seven eCO2 experiment 
sites for each model (Fig. 2a,c,e). We assumed that all observations could be 
represented by a Gaussian distribution, with mean and standard deviation obtained 
using this bootstrap approach.

Least-squares linear regression between BMod
NH
I

 and BMod
Site
I

 across the MsTMIP 
models. This study used an emergent-constraint approach proposed by Cox et al.18. 
We identified a linear least-squares regression between BMod

NH
I

 and BMod
Site
I

 across the 
MsTMIP models:

BMod
NH ið Þ ¼ a ´BMod

Site ið Þ þ b ð9Þ

where BMod
NH ið Þ
I

 is BMod
NH
I

 of model i, and BMod
Site ið Þ
I

 is BMod
Site
I

 of model i.
The least-squares error of the regression model was calculated as:

s2 ¼ 1
N � 2

XN

i¼1
BMod
NH ið Þ � ~B

Mod
NH ið Þ

h i2
ð10Þ

where N is the number of models used in the regression model, BMod
NH ið Þ
I

 is BMod
NH
I

 of 
model i, and ~BMod

NH ið Þ
I

 is the predicted BMod
NH
I

 using the regression model at BMod
Site
I

 of 
model i.

The ‘prediction error’ of ~BMod
NH
I

 based on the regression model for a given x was:

σ ~B
Mod
NH jx

 
¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

N
þ x � xð Þ2

Nσ2x

s
ð11Þ

where �x
I

 is the mean of x1, x2 … xN and σx is the standard deviation of x1, x2 … xN.
The probability density function of BMod

NH
I

 for a given x was:

Preg BMod
NH jx

� 
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ ~B
Mod
NH jx

 2
r e

�
BMod
NH

� ~BMod
NH jxð Þ½ 2

2σ ~BMod
NH jxð Þ2 ð12Þ

Constraint on ΒNH. The probability density function for ΒNH derived from 
observations (BConstrained

NH
I

), the red lines in Fig. 2b,d,f, was calculated as:

P BConstrained
NH

� 
¼

Z þ1

�1
Preg BMod

NH jx
� 

´
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ BHist
Site

� 2q e
�

x�BHist
Site

� 2

2σ BHist
Siteð Þ2 dx ð13Þ

Analysis of the robustness of BConstrained
NH
I

 when using fewer than seven eCO2 
experiment sites. We performed the following steps. (1) We randomly selected N 
eCO2 experiment sites to calculate the constrained ΒNH using all 12 models. (2) Step 
(1) was performed 1,000 times to obtain 1,000 constrained ΒNH. (3) All constrained 
ΒNH in step (2) were averaged to obtain the mean constrained ΒNH. We took N = 6, 
5 and 4 (Supplementary Fig. 14).

Analysis of the robustness of BConstrained
NH
I

 when using a logarithmic function. 
The responses of GPP to rising ca can be estimated with a logarithmic function 
(equation 15 in ref. 3) that was first introduced by Bacastow et al.28:

Pt ¼ P0 1þ Blogln
Ct

C0

� �� �
ð14Þ

Here, Pt and P0 are ecosystem carbon fluxes (GPP, NPP or NEP) for ct and c0 
CO2 concentration, Βlog is a constant factor. Thus, ΒGPP1/ΒGPP2 in equation (8) is 
expressed in this case as:

BGPP1

BGPP2
¼ GPP0 1þBlogln ca1p=ca0

� �� �
�GPP0 1þBlogln ca1=ca0ð Þ

� �� �
= ca1p�ca1
� �

GPP0 1þBlogln ca2p=ca0
� �� �

�GPP0 1þBlogln ca2=ca0ð Þ
� �� �

= ca2p�ca2
� �

¼ ln ca1p
� �

�ln ca1ð Þ
� �

= ca1p�ca1
� �

ln ca2p
� �

�ln ca2ð Þ
� �

= ca2p�ca2
� �

ð15Þ

We analysed the emergent constraints on the sensitivity of the Northern 
Hemisphere terrestrial carbon sink to elevated atmospheric CO2 concentration 
using equation (15), rather than equation (7), with the other conditions unchanged 
(Supplementary Fig. 15).

Constraining the sensitivity of global terrestrial carbon sink to eCO2. Using  
all 12 MsTMIP models and the observations at the seven eCO2 experiment sites, 
we analysed the constrained sensitivity of global terrestrial carbon sink to eCO2 
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during 1959–2010 (BConstrained
Globe
I

). The approach was the same as for the calculation 
of BConstrained

NH
I

 but using the sensitivity of global terrestrial carbon sink to eCO2 
(ΒGlobe) (Supplementary Fig. 17).

Constraining the sensitivity of global terrestrial carbon sink to long-term 
climate change (ΓLong). We identified an emergent relationship between ΓLong and 
the sensitivity of global terrestrial carbon sink to interannual variability in climate 
(ΓIAV) across 13 MsTMIP models (BIOME-BGC, CLM4, CLM4VIC, DLEM, 
GTEC, ISAM, LPJ-wsl, ORCHIDEE-LSCE, SiB3, SiBCASA, TEM6, VEGAS2.1 
and VISIT) with SG1 and SG3/BG1 (SG3 for carbon-only models and BG1 for 
C–N models) outputs (Supplementary Fig. 20), similar to Huntzinger et al.6 but 
focusing on the ΓLong during 1959–2010. CLASS-CTEM-N was not used following 
Ito et al.44 because its net CO2 exchange was always negative. TRIPLEX-GHG was 
not used because SG1 simulation is not available from https://doi.org/10.3334/
ORNLDAAC/1225 (ref. 35).

ΓLong and ΓIAV were calculated using the approach from Huntzinger et al.6. 
ΓLong was calculated by regressing the land annual NEE given by the SG1  
scenario against temperature and precipitation during 1959–2010 from the 
MsTMIP driver data set. The regression coefficient on temperature was  
used to determine ΓLong. ΓIAV was calculated by regressing the detrended  
land annual NEE given by the SG3 (for carbon-only models) or BG1 (for C–N 
models) scenario against detrended temperature during 1959–2010 from the 
MsTMIP driver data set. The detrended NEE and the detrended temperature 
were calculated by subtracting 11-year running means. The 11-year running 
means were calculated using ‘runmean’ function (https://www.mathworks.com/
matlabcentral/fileexchange/10113-runmean, last accessed June 25, 2018) with  
its parameters ‘M’ and ‘MODESTR’ set as ‘5’ and ‘edge’, respectively. The  
post-volcano years (1963, 1964, 1982, 1983, 1991 and 1992) were removed  
before calculating both ΓLong and ΓIAV.

The ΓIAV from GCB 2017 (refs. 2,37) was used as an observational constraint 
on the ΓLong (Supplementary Fig. 20). The GCB ΓIAV was calculated by regressing 
the detrended GCB net land sink (NLS) against detrended temperature from the 
MsTMIP driver data set, using the same approach as the calculation of ΓIAV in 
MsTMIP models. The GCB NLS was estimated by subtracting the growth rate in 
atmospheric CO2 concentration and ocean CO2 sink from global emissions from 
fossil fuels and industry: NLS = EFF – GATM – SOCEAN. The GCB ΓIAV is estimated as 
−2.36 ± 0.77 PgC yr−1 K−1 (mean ± 1 standard error). Using this as an observational 
constraint, the constrained ΓLong is estimated as −1.57 ± 0.51 PgC yr−1 K−1 on the 
basis of the linear relationship between ΓLong and ΓIAV across MsTMIP models 
(Supplementary Fig. 20).

Data availability
Driver data of MsTMIP models are available from https://doi.org/10.3334/
ORNLDAAC/1220. The outputs of MsTMIP models are available from https://
doi.org/10.3334/ORNLDAAC/1225. Global Carbon Budget 2017 data (Global_
Carbon_Budget_2017v1.3.xlsx) are available from https://doi.org/10.18160/GCP-
2017. CRU climatology data (CRU CL v. 2.0) are available from https://crudata.uea.
ac.uk/cru/data/hrg/.

Code availability
The code for fitting the two-box model, as given in equation (3), is shown in 
Supplementary Information.
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