
SOIL RESPIRATION

Soil respiration–driven CO2 pulses dominate
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The Australian continent contributes substantially to the year-to-year variability of the global terrestrial carbon
dioxide (CO2) sink. However, the scarcity of in situ observations in remote areas prevents the deciphering of
processes that force the CO2 flux variability. In this study, by examining atmospheric CO2 measurements from
satellites in the period 2009–2018, we find recurrent end-of-dry-season CO2 pulses over the Australian continent.
These pulses largely control the year-to-year variability of Australia’s CO2 balance. They cause two to three times
larger seasonal variations compared with previous top-down inversions and bottom-up estimates. The pulses
occur shortly after the onset of rainfall and are driven by enhanced soil respiration preceding photosynthetic
uptake in Australia’s semiarid regions. The suggested continental-scale relevance of soil-rewetting processes has
substantial implications for our understanding and modeling of global climate–carbon cycle feedbacks.

T
errestrial ecosystems drive the seasonal
and year-to-year variability of the global
carbon dioxide (CO2) sink (1). Previous
research has identified semiarid regions
as hotspots of global CO2 balance inter-

annual variability (2–5) because of the strong
sensitivity of photosynthetic carbon uptake to
fluctuations in water availability (6, 7). The
Australian continent is primarily covered with
semiarid ecosystems and experiences large
variations in rainfall. These conditions make
Australia particularly relevant for the varia-
bility in the global carbon cycle (8–13), contrib-
uting up to 60% of yearly anomalies in the
global terrestrial CO2 sink (2).
However, attribution of global CO2 sink var-

iations to certain regions and mechanisms is
highly uncertain, which limits our ability to
model climate–carbon cycle feedbacks and
project future climate (14, 15). Global process–
based ecosystem models underestimate ob-
served CO2 flux variability across semiarid
sites owing to the complexity of carbon–water
cycle interactions and the diversity of eco-
system responses towater fluctuations (16, 17).
The same holds true for machine learning–
based models trained on local carbon flux ob-
servations (18, 19) given the scarcity of available

flux measurements in low-latitude semiarid
regions (20) and the inability to represent po-
tentially important noninstantaneous carry-over
effects (21). Atmospheric transport inversions
based on in situ measurements of airborne CO2

also suffer from the scarcity of observations in
remote areas, and therefore the inversions cannot
reliably attribute CO2 flux variability to specific
regions, despite growing monitoring capacities
(22, 23). However, recent satellite observations
of atmospheric column CO2 deliver data where
ground-based in situ concentration measure-
ments and carbon flux networks are sparse,
and thus, satellite CO2 data can fill important
gaps and provide new constraints on regional-
scale patterns and processes (8, 24–28).
In this study, using satellite observations

of atmospheric CO2 concentrations from the
Greenhouse Gases Observing Satellite (GOSAT)
for the period 2009–2018, we identify a net
CO2 pulse to the atmosphere of variable mag-
nitude that occurs over Australia at the end
of the dry season in most years. We show that
this pattern—which is not evident in tradi-
tional atmospheric inversions using in situ
measurements only, in the FLUXCOM ma-
chine learning–based extrapolations of in situ
flux measurements (18, 20), or in most process-

based ecosystem models of the TRENDY initia-
tive (29)—appears to dominate the seasonal
and year-to-year variations of Australia’s CO2

balance for that period. The few process-based
TRENDYmodels that reproduce the CO2 pulse
pattern qualitatively suggest that it is caused
by rapid respiratory carbon release with the
onset of the rainy season while the increase in
photosynthetic carbon uptake lags behind.
This observed process is consistent with the
phenomenon of respiration pulses after re-
wetting events discussed in the context of the
“Birch effect” (30, 31). Such pulses have been
described extensively in local studies of water-
limited systems (32), but their large-scale rele-
vance has remained unknown.

Atmospheric CO2 peak over Australia

The GOSAT has been delivering global mea-
surements of the column-average dry-air mole
fractions (“concentrations”) of atmospheric
CO2 since its launch in 2009 (33). After sub-
tracting the secular trend (34), the record of
GOSAT concentrations for the period 2009–
2018 (Fig. 1) reveals a seasonal pattern above
Australia with CO2 drawdown inMarch, April,
and May (MAM) and a CO2 peak of variable
magnitude at the end of the dry season in
October, November, andDecember (OND). These
patterns are consistent among two retrievals
independently applied to GOSAT [GOSAT/
RemoTeC (35) and GOSAT/ACOS (36); table S1],
and they are present in CO2 concentrations
measured by theOrbiting CarbonObservatory-2
[OCO-2 (37, 38), period 2015–2018; table S1)
as well as in ground-based data of the Total
Carbon Column Observing Network (TCCON)
(39) (figs. S1 and S2).
In contrast, the atmospheric column CO2

concentrations simulated by three inverse at-
mospheric transport models—CarbonTracker
CT2019B (40), CAMS (41), and TM5-4DVAR
(42)—underestimate the CO2 drawdown in
MAM and lack the CO2 pulses in OND (Fig. 1).
Driven by atmospheric wind data, these trans-
port models deliver concentration fields that
are optimally compatible with in situ–measured
CO2 concentrations and the a priori biogenic,
oceanic, fire, and fossil CO2 surface-atmosphere
fluxes (34). However, given their sparsity in
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and around Australia (compare fig. S3 and fig.
S4), the in situ measurements provide onlymar-
ginal constraints on the regional flux balance.
Thus, the discrepancy between CO2 concentra-
tions fromGOSAT and traditional in situ–based
atmospheric inversions hints at the existence
of a carbon release mechanism in Australian
ecosystems that has remained undetected by
the existing in situ CO2 monitoring system.

Australian top-down and bottom-up fluxes

To improve upon the surface flux estimates for
Australia, we fed the GOSAT CO2 concentra-
tions into one of the atmospheric inversemod-
els (TM5-4DVAR) together with the in situ
CO2measurements.We find that the recurring
end-of-dry-season CO2 concentration peaks are
indeed attributed to a carbon release pattern
originating from land ecosystems, which is not
present in the inversions when assimilating in
situ CO2 data alone (Fig. 2A and fig. S5).
Our new estimates of Australia’s carbon ba-

lance variability based on assimilating GOSAT
together with in situ data show a nearly dou-
bled peak-to-peak amplitude of the seasonal
cycle (175 ± 40 TgC/month, mean ± standard
deviation over the 2009–2018 period, July-to-
June peak-to-peak amplitude) compared with
the in situ–only inversions (88 ± 13 TgC/month).
Moreover, the end-of-dry-season CO2 pulses
found by the GOSAT inversions imply a more
than fourfold greater year-to-year variability
of the annual CO2 fluxes (0.207 PgC/year, stan-
dard deviation over the 2010–2018 period) than
for the in situ–only inversions (0.039 PgC/year)
(fig. S6 and table S2). Fluxes obtained by as-
similating OCO-2 together with in situ data
for the period 2015–2018 show the same end-
of-dry-season pulses and agree well with the
fluxes of the GOSAT inversion (fig. S7).
To understand the origin of the CO2 pulses,

we compared the top-down inversions with
bottom-up estimates from machine learning
[FLUXCOM (18, 20)] and 18 process-based
dynamic global vegetation models (DGVMs)
from the TRENDY (v9) ensemble (42). The
DGVMs also provide the component fluxes of
gross primary productivity (GPP) and terrestrial
ecosystem respiration (TER) enabling the at-
tribution to variations in photosynthetic car-
bon uptake and respiratory carbon release. We
further included fire emissions (FIRE) from
the Global Fire Emission Database (GFED) as
a potential factor for explaining the pattern.
To compare with the top-down inversions, we
calculated net biome production (NBP = TER +
FIRE − GPP) by adding fire emissions from
GFED to net ecosystem exchange (NEE = TER –
GPP) from FLUXCOM. With this sign conven-
tion, positive fluxes correspond to carbon
emissions into the atmosphere. For TRENDY,
NBP was taken directly from the simulations
of the DGVMs. We find that FLUXCOM+GFED–
derived NBP lacks the end-of-dry-season CO2

pulses (Fig. 2A), and its seasonal amplitude
(64 ± 16 TgC/month) underestimates the one
found by the GOSAT inversions by a factor of
three. This could be explained by the sparsity
of Australian flux tower data in the training of
the FLUXCOMmachine learning models (only
4 of 224 sites are located in Australia; see fig.

S3), causing extrapolation errors (18), and by
known weaknesses in representing certain fluc-
tuations in response to water availability (19) or
“memory” effects due to unaccounted carbon
pool dynamics (43). Our analysis further sug-
gests that local and transported fire emis-
sions might contribute at the beginning of the
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Fig. 1. Detrended CO2 concentrations over Australia from satellite and models. (A) Detrended column-average
dry-air mole fractions of CO2 measured by GOSAT (red) and simulated by inverse models assimilating in situ ground-
based measurements (blue). Data are monthly averages for Australia. Red shading indicates the range of the GOSAT/
RemoTeC and GOSAT/ACOS algorithms. Blue shading indicates the range of the CarbonTracker, CAMS, and TM5-
4DVAR inverse models. ppm, parts per million. (B) Mean and standard deviation (shading) over the period 2009–2018.
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Fig. 2. Australian net CO2 fluxes. (A) Top-down estimates of the net monthly Australian CO2 fluxes
inferred by in situ CO2 measurement–based inverse models (blue) and by TM5-4DVAR assimilating in situ
measurements together with GOSAT observations (red), compared with bottom-up FLUXCOM+GFED NBP (yellow)
and the TRENDY ensemble mean NBP (gray). Shading indicates the range among the various top-down data
streams (in situ–based CarbonTracker, CAMS, and TM5-4DVAR in blue, TM5-4DVAR+GOSAT/RemoTeC and TM5-
4DVAR+GOSAT/ACOS in red) and the standard deviation among the TRENDY ensemble (gray). (C) NBP
of a subgroup of TRENDY models (black) compared with the other models (gray), with the GOSAT inversions
[red, same as in (A)], and with GFED fire emissions (orange). Shading as in (A). (B and D) Mean and standard
deviation (shading) over the period 2009–2018 and the mean peak-to-peak seasonal cycle amplitudes (bars).
Positive fluxes correspond to carbon emissions into the atmosphere.
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carbon pulses but cannot explain their magni-
tude and duration (Fig. 2B and fig. S8).
The ensemble of TRENDY NBP simulations

shows a large intermodel spread and also no
end-of-dry-season CO2 pulses on average (Fig.
2A) causing a seasonal amplitude (85 ± 20 TgC/
month) that is about half of that of the GOSAT
inversions. However, the dry season pulses are
present in a subset of five of the TRENDY
DGVMs [Fig. 2B and table S1; “Characteristics
of TRENDYselection” in (34)]. For this subset, the
timing, duration, and magnitude (except for the
year 2009) of the pulses and their seasonal am-
plitude (123 ± 31 TgC/month) are closer to the
pulses found by the GOSAT inversions. This
finding suggests that the CO2 pulses can be
explained by ecosystem processes shaping the
phasing of photosynthesis and respiration.

Phasing of respiration and photosynthesis

We find that the subset of DGVMs that are in
good agreement with the GOSAT inversions
reveal a distinctly different seasonal timing of
GPP and TER than the other DGVMs. For the
selected subset, the CO2 pulses are driven by
TER, which increases rapidly at the onset of
the rainy season, whereas GPP picks up only a
few weeks later (Fig. 3A). The pulses originate
mainly from an early increase of soil respira-
tion in semiarid regions (figs. S9 and S10A).
For the other DGMVs, TER and GPP show a

mostly synchronous phasing throughout the
year, yielding no CO2 pulses (Fig. 3B and fig.
S10B). The precipitation records for the semi-
arid regions of Australia (Fig. 3C and fig. S3)
suggest that the soil respiration–driven pulses
shown by the GOSAT inversions and the se-
lected TRENDY models are weaker or do not
occur in years with anomalously strong pre-
cipitation during the dry period (Austral win-
ter), such as in the La Niña years 2010 and
2016. This implies that the observed pulses are
conditional on rewetting of dry soils and that
it is through the strength of the pulses that
climatic conditions exert control over Austra-
lia’s annual CO2 balance (fig. S6).
The detected continental-scale CO2 pulses

are consistent with site-level observations of
dryland ecosystems that show an asynchro-
nous response of respiration and photosyn-
thesis to precipitation pulses (44). The rapid
response of microbial respiration to rewetting
events is known as the “Birch effect” and has
been described in the literature of specific sites
in some semiarid regions for many decades
(30–32). After being dormant in the dry period,
soil microbes are activated by themoisture sup-
ply fromrainfall.Underwarmsoil temperatures,
the microbes quickly respire accumulated and
readily available substrate and their populations
grow rapidly. These dynamics of soil microbial
processes cause respiration CO2 pulses with

rewetting of dry soils that are evident in
Australian flux tower data (figs. S11 and S12).
Photodegradation of surface litter (45) and
the death of microorganisms during the dry
period (46, 47) may lead to the accumulation
of easily decomposable substrate available to
microorganisms at the onset of rain. It remains
anopenquestionwhether the respiration pulses
are mainly driven by substrates accumulated
during the dry period and to what extent they
are fueled by mobilization and decomposition
of physically protected carbon (47). These pro-
cesses are not represented explicitly or in detail
in the TRENDYDGVMs, and thus the DGVMs
cannot resolve how the site-level mechanisms
scale up to the continental-scale effect observed
here. Nonetheless, a selection of models effec-
tively captures the continental-scale CO2 pulses
by a fast response of respiration and a delayed
response of photosynthesis to the onset of the
rainy season. This highlights the importance of
subtle differences in effective parameterizations
of respiration and photosynthesis to moisture
fluctuations. Associated uncertainties affect the
ability of the models to accurately represent the
carbon cycle of semiarid ecosystems.
Our study demonstrates that the soil

respiration–driven CO2 pulses over Australia
after the end of the dry season are of large-
scale relevance and appear to dominate the
variability of the continent’s carbon balance.
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Fig. 3. Seasonal timing of gross
CO2 fluxes among TRENDY
models. (A) Gross primary produc-
tion (GPP, green) and total respira-
tion (TER, purple) for Australia for
the selection of TRENDY DGVMs that
replicate the end-of-dry-season CO2

pulses. The difference of TER and
GPP is given in black in the lower
part together with GOSAT-based
inversion where GFED fire emissions
are subtracted (dashed red line).
(B) Same as (A), but for the other
TRENDY models that do not replicate
the end-of-dry-season CO2 pulses.
(C) Mean monthly precipitation over
the entire Australian region (black)
and the semiarid part (fig. S3)
of Australia (blue).
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The GOSAT inversions have shed light on a
blind spot of previous top-down and bottom-
up approaches for quantifying and attributing
CO2 flux variability. This is important because
Australia’s semiarid regions contribute sub-
stantially to the interannual variability of the
global terrestrial carbon sink and because it
is the ecosystem response to the phasing of
dry and wet periods that drives the seasonal
mechanism behind the large interannual var-
iability. Thus, our study calls for revisiting the
contributions of global semiarid systems to
CO2 balance variations and for assessing im-
plications for our ability to model climate-
carbon feedbacks in semiarid regions. Only a
few of the global vegetation models are able
to reproduce the observed CO2 pulses, which
suggests that only their respective parame-
terizations are able to represent the sensitiv-
ity of the underlying mechanism to changes
in climatic conditions and, thus, to accurately
project semiarid CO2 flux variability under a
changing climate. Considering the large un-
certainties associated with modeling climate-
carbon feedbacks (14, 15, 48), our findings may
contribute continental-scalemechanistic under-
standing that can help reduce these uncer-
tainties for dryland ecosystems that are found to
be particularly sensitive to climate change (49).
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The exhalation of drylands
Semi-arid regions cause much of the interannual variability in global atmospheric carbon dioxide concentration
because of seasonal fluctuations in water availability. Metz et al. found that recurrent carbon dioxide pulses occur
at the end of the dry season over Australia, an effect that they attribute to enhanced soil respiration preceding
photosynthetic uptake in semi-arid regions. The magnitudes of these pulses are two to three times larger than previous
studies have inferred based on in situ measurements. —HJS
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