Scaling the ISAM Land Surface Model Through
Parallelization of Inter-Component Data Transfer

Phil Miller*, Michael Robson*, Bassil El-Masrif, Rahul Barman', Gengbin Zhengi, Atul Jain®, Laxmikant Kalé*

*Department of Computer Science JrDepartment of Atmospheric Sciences National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
{mille121,mprobson,belmasri,barman2,gzheng,jain1 kale} @illinois.edu

Abstract—We present the progression of developments neces-
sary to scale the ISAM land surface model from single nodes
and small clusters with unusually large per-node memory to
much larger systems with more common configurations. These
efforts include load balancing, conventional library-based output
parallelization to reduce memory load, and parallel-in-time data
input. On Hopper, a Cray XE6 machine, the result was strong
scaling from 256 cores to 16k cores with an efficiency of 32.9%.
On Edison, a Cray XC30 machine, the code strong scales from
256 cores to 16k cores with an efficiency of 51.4%. These large-
scale gains, and the associated performance increases at smaller
scale, enable greater scientific productivity for the users of ISAM
and open the possibilities of increased resolution in time and
space and greater physical fidelity for the simulated processes
while remaining computationally feasible.

I. INTRODUCTION

Computational climate modeling is a key problem for con-
temporary high-performance computing. The numerous cou-
pled phenomena that comprise the climate present a uniquely
demanding challenge. Various elements have time scales that
range from seconds and minutes to years and millennia, and
space scales ranging from individual rows of farm fields to
the entire globe. Given the limits of interest and expertise,
models focusing on just a few effects are typically developed
in isolation by researchers specialized in each particular sub-
area.

The interactions between different model components are
handled either via on-line coupling [1] or consumption of
saved model output and processed sensor data from ‘upstream’
components as input to ‘downstream’ components. The former
can create substantial computational challenges, while the
latter can require storage of and access to massive data sets.
In this paper, we explore some elements of the off-line case
in the Integrated Science Assessment Model (ISAM).

ISAM is a land surface model code used to study biogeo-
physical and biogeochemical phenomena and their interaction
with the larger climate and ecosystem. It couples fluxes of
carbon, nitrogen, water, and energy between the near-surface
atmosphere, plant growth, and material accumulation above
and below ground. ISAM has been used extensively in various
modeling and synthesis studies, as described in section II-A,
including studies coupled with the Community Earth System

Model (CESM). The ISAM code presents two different points
for data transfer between components.

The first inter-component data dependence in ISAM arises
from the time-dependent climatic variables that serve as
boundary conditions for its computations. In an online coupled
simulation, such as with other components of CESM [2], these
variables become available as they are computed, and may be
dependent on results of previous land-surface time steps. In a
stand-alone off-line simulation, these are provided in NetCDF
files [3], [4] generated and distributed by external groups.
Their treatment is discussed in section V.

The second point of inter-component data transfer occurs
between separate runs performing different stages of model
spin-up. Section II describes the distinct biogeophysics and
biogeochemistry model components that make up ISAM. Dur-
ing model ‘spin-up’, these components are run independently
for different lengths of simulated time before coupling them
to conserve computational resources. In order to set initial
conditions for each of these runs, large portions of model state
from the preceding run must be preserved. The optimization
of that storage operation is discussed in section I'V.

This paper also describes the other changes necessary to en-
able ISAM to scale to large supercomputer systems. Section III
discusses the load balancing issues in distributing model grid
points among processors in the parallel system. Section VI
discusses remaining impediments to large-scale execution. The
end result of this effort is that the model is able to strong-scale
a whole-Earth land surface simulation from 256 to 16k cores
of NERSC’s Edison Cray XC30 system with over 50% parallel
efficiency, and with a clear path to further improvement.

II. BACKGROUND
A. ISAM: Integrated Science Assessment Model

The Integrated Science Assessment Model ISAM) is a land
surface model which is a fully coupled carbon-nitrogen model
that simulates carbon, nitrogen, water, and energy fluxes at
0.5° x 0.5° spatial resolution at multiple temporal resolutions,
ranging from half hourly to yearly [5]. Each grid is occupied
by combination of plant functional types (PFTs), bare ground,
and glaciers for a total of 28 different PFTs types [6]. The
model is driven by half hourly or hourly climatic variables:

mean surface air temperature, precipitation, pressure, incoming
shortwave and long-wave radiation, wind speed, and specific
humidity. In ISAM, there are 10 hydrological and thermal
active layers, 5 hydrologically inactive and thermally active
bedrock layers, 5 snow layers, 7 vegetation carbon pools and
8 litter and soil organic matters pools.

ISAM has two main components: (1) a biogeophysical
module representing sunlit-shaded photosynthesis schemes [7],
energy, and soil/snow hydrology [8], [9], [7] and (2) a biogeo-
chemical module, where assimilated carbon is allocated to veg-
etation, litter, and soil carbon pools [5], [7], [10]. The carbon
cycle and nitrogen cycle are coupled together. The nitrogen
cycle accounts for the dominant physical processes, including
fixation, deposition, mineralization, leaching, immobilization,
and nitrification and denitrification [11], [10].

ISAM is applied to examine the impacts of changing CO4
in the atmosphere, fire, and land use change on terrestrial
ecosystems functions [12], [13], [14]. ISAM has also been
used to describe the dynamic of the terrestrial biosphere carbon
and nitrogen [11], [10] and was a part of all five IPCC
Working Group I assessment reports on science of climate
change. ISAM has also participated in the Modeling and
Synthesis Thematic Data Center (MAST-DC) study as part
of the North American Carbon Program (NACP) and the
Multi-scale Synthesis and Terrestrial Model Intercomparison
Project (MSTMIP) to quantify and understand spatial and
temporal distributions of carbon sources, sinks, and inven-
tories by synthesizing NACP data and models, from sites
to regional/continental scales [15], [16], [17], [18]. Also,
ISAM was used to study the impact of elevated CO2 on
ecosystem carbon and nitrogen cycles part of the Free-Air
CO4 Enrichment (FACE) experiment [19].

In order to better understand how the interactions among the
climate, the land-surface, and human activity can amplify or
mitigate the pace of climate change, we coupled the current
version of ISAM with the Community Earth System Model
(CESM1), to develop an Earth System Modeling framework:
CESM-ISAM. The CESM-ISAM retains the existing land sur-
face model in CESM, i.e., the Community Land Surface Model
4 (CLM4), and allows both the ISAM and CLM to choose
from all of the existing configurations available in CESM.
Additionally, the resulting framework has been designed to
incorporate multiple land surface models into the CESM, by
adopting a flexible approach to coupling through the flux
coupler. The purpose of this general modeling framework
is to carry out equivalent climate simulations using multiple
land surface models with the rest of the component models
being the same, allowing a direct comparison of the effects
of different land surface representations on corresponding
feedbacks to climate change. Such a modeling framework
establishes multiple opportunities to investigate the role of
varying representation of land surface processes (such as
from biogeophysics and biogeochemistry) on coupled land-
atmosphere interactions.

B. Model Spin-Up

ISAM requires the use of long spin up times of over 20,000
simulated years to reach the desired steady state conditions,
especially in the soil biogeochemical cycles. For such long
model integration periods, the spinning up of fully coupled
biogeophysics-biogeochemistry often requires extensive (and
prohibitive) computational resources, and provides a major
challenge in the modeling of cold region biogeochemistry
using current land surface models. Thus, ISAM uses an
innovative method of model spin up, where (1) first only the
model biogeophysics is spun up using prescribed nitrogen-
limitation, typically for approximately 150 years to achieve
steady state in canopy carbon fluxes, (2) subsequently only
the soil biogeochemistry is spun up for 20,000 model years,
using the steady state conditions achieved in the first stage,
and (3) finally, the coupled biogeophysics-biogeochemistry are
spun-up for 150 years, using steady state conditions from the
first and second steps. ISAM’s capability to allow sequential
spin-up of physical and biogeochemical cycles tremendously
reduces the computational expense, allowing for equivalent
model integration of greater than 10,000 years. Such a decou-
pled method of model spin up is effective, because the spin up
time scales of soil biogeophysics are much shorter than that of
biogeochemistry: typically in the order of 100s of years, and
hence only the latter need to be spun up for long timescales.

C. Computational Structure

ISAM operates over a grid of points overlaid on the portions
of the Earth’s surface that lie over land. The computation at
each point has no interaction with the computation at any
other point. Thus, its execution should ideally benefit from
the ‘pleasantly parallel’ nature of the problem [20]. The lack
of inherent communication and the freedom to assign the work
of any point to any processor eases parallelization of the core
elements of the model, and indeed the work described in
sections III and V exploit these traits heavily.

As the rest of this paper shows, after optimization, the
computational work of the model at each point dominates
the runtime up to a few thousand processors. However, at
larger scales, other necessary elements of the code exert a
stronger influence. Serial bottlenecks, in the sense described
by Amdahl’s law, become noticeable. Global operations that
are not so trivially parallelized encounter scaling limitations
that overwhelm the achieved speedup in the main computation.

D. Coupling to Atmospheric Conditions

At each of ISAM’s timesteps, the code uses the correspond-
ing atmospheric state just above the surface as a boundary
condition at each simulated grid point. We focus on the offline
case, where these conditions are provided from data sets
generated from observations and separate atmospheric models.
Currently, the model supports NCEP [21], CRU-NCEP [22],
and NLDAS [23] climate data sources. These data sources
provides climate variable information for temperature, specific
humidity, wind speed, precipitation rate, surface pressure,
incident radiation, and CO5 concentration.

Because the atmospheric data does not necessarily match
the land surface model in spatial resolution or alignment, it
must be interpolated from the points at which it is provided
to the points at which the simulation runs. This interpolation
is done online to allow ISAM to be configured at runtime,
without requiring a long pre-processing step. The interpolation
represents a small fraction of the overall computation.

E. Synchronization Cost of Imperfect Load Balance

The various points at which a processor must wait for
other processors to coordinate a synchronous global operation
present opportunities for load imbalance to negatively impact
performance. At these points, the waiting time is determined
by the execution time of the most heavily loaded processor.
The consequent loss of performance can be mitigated by a
combinations of improving load balance and removing the
need for synchronization. We can measure the overall cost to
performance using the imbalance time metric [24]. All ‘Idle’
time displayed in our figures is attributable to imbalance time,
since there is no operation-dependent communication latency
or other source of underutilization.

There are several distinct sources of potential load imbal-
ance in ISAM. The different sets of points assigned to different
processors may generate different cumulative loads over var-
ious time scales (§ III). Some operations may be performed
serially on a single processor while others wait (§ V-B,VI-A).
Contention for shared resources may induce imbalance where
it is not otherwise inherent in the operation being per-
formed (§ VI-C).

There are also synchronous operations that can be reduced.
They can be made less frequent directly (§ V-A) and by having
the code do more with each one (§ V-C).

F. Experimental Setup

Our scaling experiments reported in sections IV-VI were
run on the Cray supercomputers hosted at NERSC, Hopper
and Edison. Hopper is a Cray XE6 with 6,384 nodes each
containing a pair of 12-core AMD ‘Magny Cours’ processors
running at 2.1 GHz. Edison is a Cray XC30 with 5,576
nodes each containing a pair of 12-core Intel ‘Ivy Bridge’
processors running at 2.4 GHz. Edison’s cores support 2-
way HyperThreading SMT, but our experiments were run
with a single thread per core. Both systems are served by
Lustre parallel filesystems, on which all files relevant to our
experiments were stored. On both machines, we used the
Intel Fortran Compiler. Binaries for runs on Hopper were
compiled with version 13.1 and binaries for runs on Edison
were compiled with version 14.0.

All of our figures show the best results on each scale
on each machine. Due to run-to-run variability (from node
placement and contention with other jobs for network and
filesystem resources [25]), some experimental runs were up
to 16% slower than the speeds displayed.

III. COMPUTATIONAL LOAD BALANCE

The phenomena modeled by ISAM present many opportu-
nities for load imbalance between individual grid points. The

load of each point can vary on predictable temporal cycles
with diurnal and seasonal effects, such as solar irradiance and
growth periods. They can also vary somewhat predictably by
geography. Persistent deserts present minimal plant activity
and thus require little work to compute their effect. High
latitude points closer to the poles must account for the
development and step-by-step evolution of snow layers that
are less prevalent in more tropical regions. These temporal
and geographical variations are mediated by less-predictable
climatic effects that determine the precise degree to which the
relevant phenomena occur at fine time scales.

In initial versions of ISAM, land surface points were
mapped to MPI ranks in a uniform blocked fashion: the total
number of points being simulated was divided by the number
of ranks in the job, and each rank took responsibility for a
consecutive chunk of points. As generated from the data set
representing which points on Earth’s surface were land (rather
than open water), the points were ordered along successive
lines of latitude. Each core was thus likely to receive points
that were geographically nearby and thus both similar in
systematic spatial work characteristics and closely correlated
in temporal cycles and climate variations.

The result of this structure was that entire regions of the
planet presenting high workload would be assigned to one set
of cores, while regions presenting much less work would be as-
signed to others. The consequent aggregate utilization of each
processor was highly varied. This can be seen in figure 1a,
generated from traces of a 24-core run in the Projections
tool [26]. Since the code incurs regular global synchronization,
even short-term dynamic load variation causes performance to
suffer (§ II-E). Otherwise, each run’s time to solution would
be determined simply by the maximum cumulative load on
any core.

A. Round Robin

To address this issue, the code was adapted to distribute the
points cyclically, in a round-robin fashion. The new mapping
is illustrated in figure 2. This ensures that the points of any
given region are spread across many cores, and that each core
hosts points from distinct regions. This results in mixing high-
load points with low-load points, such that they tend to average
out. The core utilization after switching to this mapping can
be seen in figure 1b.

Applying this optimization enabled strong scaling from a
single node to a few dozen nodes as in a small cluster.
Benchmark results at this stage are presented in figure 3. These
measurements were taken on the Jaguar Cray XTS5 system at
Oak Ridge National Laboratory. The model was run for 1
simulated year.

IV. PARALLEL OUTPUT TO REDUCE MEMORY FOOTPRINT

As described in section II-B, the biogeochemistry spinup
is parameterized by preliminary steady-state values of the
biogeophysics portion of the model. This requires saving the
values of the coupling variables at every simulated point over
a sufficient span of time steps to provide accurate results. A

Profile of Usage for Processors 0-23
{Time 0.0 ~ 1.3182114E7 ms)

Usage Percent %

Avg0 1 2 3 4 5 6 7 8 9 1011121314151617 13 19 20 21 22 23

(a) Before: block mapping
Fig. 1.

LATITUDE

o 100°E 1607 BO"W
LONGITUDE

Fig. 2. Round-robin mapping of land surface grid points across 72 cores.
Process rank is represented by color of each point.

Cores Time (minutes)
128 76
256 46
512 34

1024 35
2048 33

Fig. 3. Preliminary parallel performance: execution time of ISAM for 1
simulated year on Jaguar XTS5 with round-robin mapping of points to cores

similar data set is also necessary to checkpoint the biogeo-
physics component’s state, so that it can be restarted after
system failures or job length expiration.

The largest of these elements are a set of 10 variables that
are recorded for each of the 28 PFTs at every point with a
weekly resolution over the course of a simulated year. At a
resolution of 360 x 720 (i.e. 0.5°) and recorded in double
precision, each variable occupies 2.8 gigabytes.

The initial implementation and usage of ISAM was on a
cluster of large-memory nodes, which could gather the entire
data for a given variable in a single processor’s memory and
write it serially. In tested implementations, the gather and write

Profile of Usage for Processors 0-23
{Time 0.0 ~ 9636418.0 ms)

Usage Percent %

Avg0 1 2 3 4 5 6 7 8 9 10111213141516 1718 19 20 21 22 23

(b) After: round-robin mapping

Processor utilization of each rank visualized in the Projections tool

operations could each transiently consume up to double the
final buffer size, requiring over 5 gigabytes of free memory
available to a single process beyond the normal per-processor
model state. On systems built from nodes with less memory,
this process would exhaust available memory entirely and
cause job failure.

This demand for large-memory nodes is problematic for two
reasons. The first is that most larger clusters and supercom-
puters are built from nodes with relatively modest amounts
of memory per node, since a large proportion of applications
make lighter demands and the cost of additional memory
in each node is preferentially spent to obtain additional
nodes. The second is that even where large memory nodes
are available, they are a more heavily subscribed resource,
prospectively delaying job start and thus extending the time-
to-completion of each job. For instance, Hopper offers 6,000
nodes with 32 GiB of RAM, but only 384 nodes with 64 GiB.

By parallelizing the output of these variables across multiple
nodes, we reduce the maximum per-node memory footprint
of the output operation. A reduced footprint thus enables
execution on more plentiful computational resources and more
rapid scheduling of jobs on those resources.

To implement parallel output of these variables, we adapted
the code to use the Parallel netCDF library [27]. We maintain
the same netCDF file format as the serial implementation to
allow easy verification of the new code and compatibility with
other existing tools that are used to operate on the resulting
intermediate files. However, for the sake of providing the
library with contiguous blocks of output from each process
instead of single strided points, we transposed the dimension
order of the arrays as written.

On Hopper, using version 1.2.0 of Parallel netCDF, we
were able to write the 25 GB making up a complete set
of these largest variables to the Lustre ‘scratch’ filesystem
in 17 seconds, for an overall bandwidth of 1.46 GB/s.
While this is only a small proportion of the filesystem’s peak
35 GB/s bandwidth, it is sufficiently fast to avoid this phase
of execution becoming a substantial bottleneck.

Baseline li V-A li
Read Read
Interpolate Interpolate

¢ ¢ 1
Distribute Distribute
' Vv
Calculate Calculate
— |

V-B li V-C l——
Read Read
Interpolate Interpolate
T ¥ ; 1/rP ; 1/rP
Distribute Distribute
vy 3 v
Calculate Calculate

Fig. 4. An illustration of the process by which various versions of ISAM acquire and consume atmospheric input data. Each flow chart represents one
version of the code, with various optimizations implemented. The optimizations are described in the section corresponding to the label on each flow chart.
In the baseline version, input is read, interpolated, and distributed in each step (shown by ‘*’ loops). Later versions reduce redundant work by a factor of
3 < r < 12, the ratio of model time steps to atmospheric input time resolution (1/7 loops). Finally, non-computational work is parallelized in two stages

(1/rP loops).

V. INPUT OPTIMIZATION

The basic structure of the climate forcing data input process
involves three steps. A process reads the appropriate point in
the time series provided by the input files, using the NetCDF
library [3], [4]. It then computes the spatial interpolation to the
simulated land surface points. Finally, the interpolated data are
distributed to the processes according to which grid points they
are responsible for, as described in section III. This structure,
and the changes to it described in this section, are illustrated
in figure 4.

The initial design of this input presented many impediments
to scalability. In the remainder of this section, we discuss
how these limitations have been largely eliminated. All data
are shown in figures 5 and 6. The individual curves and
bars are keyed by the following subsection headings whose
optimizations they depict, and ‘R’ is used for the round-robin
mapping described in section III.

A. Matching Atmospheric Timestep with Model Timestep

The ISAM model is typically run with a timestep of 30-60
minutes. The atmospheric data are provided at time intervals
of 3-6 hours. In the initial implementation of ISAM, the
input process read the most recent atmospheric data from the
source files, interpolated it, and distributed it, for every model
timestep. Thus, the latency of filesystem access, interpolation,
and MPI_Scatterv was on the critical path of successive
model timesteps. Given that the same data would be provided
for 3—12 steps in a row, this repetition was both redundant and
created excess synchronization.

By modifying ISAM to reuse already-prepared data, we
improved performance by a factor of 1.7x on 1024 ranks of
Hopper and 1.2x on 1024 ranks of Edison. This improvement
comes from both reduced time spent performing collectives,
and reduced imbalance time waiting on heavily-loaded cores
to reach each collective.

On 1024 cores of Hopper, where the round-robin and
present optimized versions of the code obtain their best
performance, the optimized code spends 88% less CPU time
performing collectives and 24% less CPU time idling. The
decline in collective time accounts for 62% of the 1.7x
speedup and the decline in idle time accounts for a further
34% of the speedup.

On 1024 cores of Edison, where the round-robin and
present optimized versions of the code also obtain their best
performance, the optimized code spends 30% less CPU time
performing collectives and 18% less CPU time idling. The
decline in collective time accounts for 64% of the 1.2x
speedup and the decline in idle time accounts for a further
33% of the speedup.

B. Parallel-In-Time Reading and Interpolation

With input data read from the filesystem every few steps, the
time per step scales poorly due to an Amdahl’s law bottleneck
on the time to access the filesystem and interpolate the
data. Additionally, contemporary supercomputers offer high-
bandwidth parallel filesystems to support their computational
capabilities. By reading input data using only a single rank,
ISAM was limited to the bandwidth of a single node.

Thus, our next optimization to ISAM’s input process is to
read and interpolate many steps worth of input data in parallel.
At model timesteps where data must be read, each process
reads and interpolates data for a step computed by increment-
ing the current timestep by its rank. At each subsequent step,
the responsibility for distributing data cycles across the ranks
until every rank has served as the root once.

In theory, this can reduce the elapsed wall time spent on
reading and interpolation by O(P), since P such steps are
performed in parallel. This is potentially limited by available
bandwidth both in accessing the file data from the filesystem
and in interpolating it in memory. At larger scales, we observe

1000

1000
186.8 y/h
31%
b
5 75.0 y/h 5 | i 156.0 y/h
2 100 5%, 2 100 105.9yh 51%
I} I} 70 %
> A > 62.4 y/h
g " gg-;/y/h H 82 %
B a o B
- 283ym 22YN -
2 7% 2
o A o
El 16.1 y/h El
E 10 | 88 % E 10 |
2] 2}
— Ideal — Ideal
a—a C ' oA C
—a B ma B
—e A —e A
4— Round Robin 4— Round Robin
1 1

256 512 1024 2048 4096

Cores

8192 16384 32768

(a) Hopper XE6

Fig. 5. Overall scaling of ISAM as successive optimizations are applied to the input process for the climate forcing data. The graphs show years of simulated
time per hour of execution wall time. Higher is better. Runs were for 5 years of simulated time. The legend for each curve refers to the subsections of
section V describing the corresponding optimizations. Labeled points show precise performance values and parallel efficiency relative to the most optimized

code version ‘C’ on 256 cores.

512 1024 2048 4096

Cores

(b) Edison XC30

8192 16384 32768

2048-R
2048-A
2048-B
2048-C
1024-R
1024-A
1024-B]
1024-C
512-R
512-A
512-B
512-C
256-R
256-A
256-B
256-C

0.

2048-R
2048-A

2048-Bz======

2048-C
1024-R

AVAVAVAD AVAVAVAVAVAVAVAVAVATASAVAVAVAVAVATAVAAS
7 7 7 T IRRRARR R IRRX]
77 7 7TIR*X XX X X X
7777
VACAVASOAGASN

== Work
Collective
mm |dle

=m Read

0.5 1.0 1.5 2.0

0 2.5

Core Seconds le7

(a) Hopper XE6

1024-A
1024-B|
1024-C
512-R
512-A
512-B
512-C
256-R
256-A
256-B
256-C

Fig. 6. Breakdown

vz Work

@ Collective
mm |dle

=m Read

8

Core Seconds le6

(b) Edison XC30

of core-seconds spent by ISAM on different activities, as a function of scale and applied optimizations of the climate forcing data input

process. Runs were for 5 years of simulated time. Lower is better.

this effect, as described in section VI-C.

The improvement provided by this optimization over that
described in section V-A is 2.76x on 1024 cores of Hopper
and 1.3x on 1024 cores of Edison. In both cases, the reduction
in idle time accounts for the bulk of the improvement. On both
systems, this optimization allows the code to continue to gain
performance at scales up to 2k cores, with efficiencies of 39%
and 34% respectively, relative to the 256 core baseline.

Note that the memory load imposed by this adaptation scales
with the number of ranks per node, rather than the number of
ranks in the entire job. The code does not distinguish between
rank O and all other ranks; thus they all have the capacity
to read and interpolate input. In a setting where the total
memory on a node is insufficient to buffer a step’s input per
rank, we could adjust the scheme to only read and interpolate
on every kth rank instead. This simply adjusts the above
theoretical impacts by a constant factor of k, without changing
the conclusion of improved scalability.

C. Simultaneous Distribution of Multiple Steps

Having minimized idle time by fully parallelizing the read-
ing and interpolation steps, the largest non-work portion of the
execution time at the scaling limit of the code from section V-B
is spent in collectives. On 2048 cores, these consume 46% of
CPU seconds on Hopper and 57% of CPU seconds on Edison.
On both systems, the increases in collective times account for
the bulk of increased time relative to runs on 1024 cores.

To overcome this impediment, we observe that at the
first scatter operation after climate forcing data is read and
interpolated, the P processors each have data available for
an upcoming timestep. However, in each scatter, only the
cyclically selected root processor actually provides it. This
misses a substantial opportunity for increased parallelism in
usage of network resources.

We take advantage of this opportunity by converting the
per-step MPI_Scatterv operation to an MPI_Alltoallv
operation performed every P time steps. Rather than spatially
scattering data representing the climate forcing at a single
point in time, we now transpose the data from its provided
temporal distribution (each core sends a distinct timestep
for every point) to a spatial distribution (each core receives
the time series for the points it owns). Once this is done,
each core can independently execute P time steps with no
communication.

At first glance, this pre-distribution of input data may
seem to dramatically increase memory usage on every node.
However, this is not the case. To see why, we first observe that
the additional memory consumption is a constant, independent
of P. Suppose there are n points in total, and each one requires
b bytes of memory for a single time step’s climate data. Each
core is responsible for n/ P of those points. The data each core
reads from disk as in section V-B is bn. In the transposition,
each core receives the bn/P bytes for one future time step
from each of the P cores. Thus, the total received data is just
bn — exactly as much as every core read from disk. For the
NCEPQ climate data set, b = 24 and n = 192 x 94 = 18, 048,

totaling 423 kilobytes. For the CRU_NCEP data set, b = 32
and n = 720 x 360 = 259, 200, totaling 8 megabytes.

The effects of this optimization are striking. Where previ-
ously roughly half the execution time was spent in collectives
at just 2k cores, this optimization reduces that time to less
than 1% on both systems. Additionally, idle times also fell by
over 50% on both systems, due to the longer period between
synchronization points and greater opportunity for dynamic
load variation to average out. Moreover, read times (though
representing only a small proportion of execution) also fell
substantially because of this optimization. We conjecture that
this decrease is due to reduced contention when accessing the
filesystem, since different cores can reach this phase across a
wider timespan, as opposed to nearly simultaneously. Overall,
this provides a 2.4x speedup on 2k cores of Hopper, and a
2.9x speedup on 2k cores of Edison. It also allows us to scale
with continued speedups to 32k cores.

D. Summary

From our baseline code, we have obtained speedups of
6.58x on 1024 cores of Hopper and 2.78x on Edison. With
all of the optimizations applied, we strong scale from 256
cores to 2048 process with an efficiency of 88% on Hopper
and 91% on Edison.

VI. SCALING DISCUSSION

As we reach scales larger than 2k cores with the code from
section V-C, we can see substantial increases in the work,
collective, and idle times, and smaller increases in read time
as shown in figure 7. In this section, we characterize why
these remaining impediments occur and how the code may be
changed to address them.

A. Per-Year Serial Work

At larger scales, the observed increase in work and idle time
is apparently proportional to the number of cores in the job.
Finer-grained timing instrumentation in the code indicates that
this additional time must occur at the end of one simulated year
and the beginning of the next, since mid-year months and days
scale near-perfectly. A linear fit to the work time as a function
of core count (including runs spanning different numbers of
simulated years, not shown) indicates serial or replicated work
of approximately 6 seconds of wall time per simulated year,
with R? = 0.98. Several portions of the code test for whether
they are operating on the first or last day or timestep of a
year, and adjust their behavior accordingly. To scale further,
and particularly to obtain speedups approaching or beyond the
theoretical limit of 3600/6 = 600 simulated years per hour,
these pieces of the code will have to be improved.

B. Collectives

At 16k cores the code spends just 5% of its time in
collectives on Hopper and 8% on Edison. At 32k cores, we
see the time spent in collectives increase dramatically. These
increases account for almost the entire difference in utilization
from 16k to 32k cores. There are several potential causes

32768 R R
16384/ ///// /7 I
8192777777777
40961/ /A
2048\ /////
102477777773 zz Work
512777777771 e Collective
mm |dle
256|777/ M mm Read
0 1 2 3 4 5 6 7 8
Core Seconds le6

(a) Hopper XE6

Fig. 7.
input process. Runs were for 5 years of simulated time. Lower is better.

Cores Points Read Max Time (s) Bandwidth (GiB/s)
32,768 14,600 9.89 11.40
16,384 14,600 9.49 11.89

8,192 8,192 5.92 10.70

4,096 4,096 3.68 8.60

2,048 2,048 2.74 5.78

1,024 1,024 2.51 3.15

512 512 247 1.60
256 256 1.53 1.29
Fig. 8. Effective read bandwidth at various scales for the five year sample

run. The ‘Project” GPFS filesystem from which this data was read has a peak
bandwidth of 40 GB/s [30].

of this slowdown. In general, the all-to-all algorithms in use
may incur contention for message injection at the network
interfaces and for links within the network. In particular,
the slowdown on Edison may be explained by forced usage
of slower ‘rank-3’ links between groups of nodes in the
Cray XC30 ‘Dragonfly’ network topology [28]. This may be
mitigated by improved general all-to-all algorithms for such
topologies [29] or by implementation of a more specialized
transpose operation suited to the needs of ISAM.

C. File System Contention

In order to analyze the effects of a small number of cores
with long read times on the scalability of the application we
performed a series of small experiments on Edison by modi-
fying our original timing infrastructure to measure each MPI
process’s individual read time. The results are summarized in
figure 8, and presented in histograms in figure 9.

As we scale the code, we see a greater spread in the
read time length, whose maximum increases sub-linearly. The
improved bandwidth with larger scale is evidence that the
reads can effectively use the parallel filesystem. We can see
that a large fraction of the cores finish rapidly at larger scales.
However, they are forced to wait on the slower cores before
finishing the collective that distributes the data. This increases
our observed idle time.

32768 R

16384 % |
8192777777777 K

409627777777/ M

204877777777

1024(77777777/ 8 zzn Work
S177T R e Collective

mm |dle

256)77777777 M mm Read

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Core Seconds le6

(b) Edison XC30

Breakdown of core-seconds spent by ISAM on different activities, as a function of scale for the most optimized version of the climate forcing data

Some of this variability can be attributed to the increased
sample size (since we are increasing the numbers of cores
measured as we scale). However, as we scale our application,
more cores are trying to access the shared file system simul-
taneously. This in turn greatly increases contention which is
another contributing factor in the measured idle time increase.

Thus, it may be desirable to limit the number of cores
reading simultaneously in order to mitigate contention. As a
modification of the technique described in section V-B, the
simple use of a subset of) cores for parallel reading and
interpolation would reduce the CPU time spent waiting for
read data by O(Q) relative to the code in section V-A. The
associated collectives would occur more frequently by a factor
of P/Q, but would each convey proportionally less data. The
more frequent synchronization that they impose may present
a larger cost (§ II-E). Thus, with this technique an appropriate
tradeoff would have to be made for the machine, job size, and
system conditions.

A more involved approach would overlap different subsets
of cores reading and conveying data simultaneously. This
design could take many possible shapes, but would likely
benefit from the asynchronous MPI_Talltoallv collective
specified in the MPI-3 standard [31].

VII. CONCLUSION

We have presented the progression of developments neces-
sary to scale the ISAM land surface model from single nodes
and small clusters with unusually large per-node memory to
much larger systems with more common configurations. These
efforts included load balancing, conventional library-based
output parallelization to reduce memory load, and parallel-
in-time data input. On Hopper, the result was strong scaling
from 256 cores to 16k cores for a speedup of 21x, giving an
efficiency of 32.9%. On Edison, the code exhibits a strong-
scaling speedup from 256 cores to 16k cores of 32.9x,
for an efficiency of 51.4%. These large-scale gains, and the
associated performance increases at smaller scale, will enable
greater scientific productivity for the users of ISAM and open
the possibilities of increased resolution in time and space

Distribution of Per-Process Read Times

T T T T T T T T T

32768

16384

8192

4096

2048

1024

512

256

T

[R —
*—
— e . N e
B N | Ee—

T T T T T T T T T

Fig. 9.

The distribution of individual rank read times as a function of scale on Edison for the most optimized version of the climate forcing data input

process. At each scale, we performed three runs within the same job partition, and selected the run with the highest maximum time. From the selected run,
the histogram bin size was calculated as (max — min)/10. For our five year sample run there are only 14,600 steps to be read and distributed. Thus, we
have adjusted percentages of the remaining bins accordingly (i.e. out of 14,600).

and greater physical fidelity for the simulated processes while
remaining computationally feasible.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Nikhil Jain for advice,
support, and some helpful literature references. This work
was supported by funding under U.S. Department of En-
ergy grant DE-SC0006706. This research used resources of
the National Energy Research Scientific Computing Center
(NERSC), which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-ACO02-
05CH11231. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-ACO05-
000R22725.

REFERENCES

[1] A. P. Craig, M. Vertenstein, and R. Jacob, “A new flexible coupler for
earth system modeling developed for CCSM4 and CESM1,” Interna-
tional Journal of High Performance Computing Applications, vol. 26,
no. 1, pp. 31-42, February 2012.

[2] R. Barman, F. M. Hoffman, D. M. Lawrence, Y. Song, P. Meiyappan,
A. K. Jain, R. L. Jacob, and M. Vertenstein, “Studying uncertainties
in climate-terrestrial biogeochemical feedbacks in the northern high
latitudes using a flexible earth system modeling framework,” in AGU
Fall Meeting Abstracts, vol. 1, 2011, p. 04.

[3] R. Rew and G. Davis, “NetCDF: an interface for scientific data access,”
Computer Graphics and Applications, IEEE, vol. 10, no. 4, pp. 76-82,
1990.

[4] S. A.Brown, M. Folk, G. Goucher, R. Rew, P. F. Dubois et al., “Software
for portable scientific data management,” Computers in Physics, vol. 7,
no. 3, pp. 304-308, 1993.

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

B. El-Masri, R. Barman, P. Meiyappan, Y. Song, M. Liang,
and A. K. Jain, “Carbon dynamics in the Amazonian Basin:
Integration of eddy covariance and ecophysiological data with a
land surface model,” Agricultural and Forest Meteorology, vol.
182183, no. 0, pp. 156-167, 2013. [Online]. Available: http:
/lwww.sciencedirect.com/science/article/pii/S0168192313000658

P. Meiyappan and A. Jain, “Three distinct global estimates of historical
land-cover change and land-use conversions for over 200 years,”
Frontiers of Earth Science, vol. 6, no. 2, pp. 122-139, 2012. [Online].
Available: http://dx.doi.org/10.1007/s11707-012-0314-2

Y. Song, A. K. Jain, and G. F. Mclsaac, “Implementation of
dynamic crop growth processes into a land surface model: evaluation
of energy, water and carbon fluxes under corn and soybean
rotation,” Biogeosciences Discussions, vol. 10, no. 6, pp. 9897-9945,
2013. [Online]. Available: http://www.biogeosciences-discuss.net/10/
9897/2013/

R. Barman, A. K. Jain, and M. Liang, “Climate-driven uncertainties
in modeling terrestrial gross primary production: a site-level to global
scale analysis,” Global Change Biology, 2013. [Online]. Available:
http://dx.doi.org/10.1111/gcb.12474

——, “Climate-driven uncertainties in modeling terrestrial energy and
water fluxes: a site-level to global scale analysis,” Global Change
Biology, 2013. [Online]. Available: http://dx.doi.org/10.1111/gcb.12473
X. Yang, V. Wittig, A. K. Jain, and W. Post, “Integration of nitrogen
cycle dynamics into the Integrated Science Assessment Model for the
study of terrestrial ecosystem responses to global change,” Global
Biogeochemical Cycles, vol. 23, no. 4, 2009. [Online]. Available:
http://dx.doi.org/10.1029/2009GB003474

A. Jain, X. Yang, H. Kheshgi, A. D. McGuire, W. Post, and
D. Kicklighter, “Nitrogen attenuation of terrestrial carbon cycle
response to global environmental factors,” Global Biogeochemical
Cycles, vol. 23, no. 4, 2009. [Online]. Available: http://dx.doi.org/10.
1029/2009GB003519

A. K. Jain, H. S. Kheshgi, and D. J. Wuebbles, “A globally
aggregated reconstruction of cycles of carbon and its isotopes,”
Tellus B, vol. 48, no. 4, pp. 583-600, 1996. [Online]. Available:
http://dx.doi.org/10.1034/j.1600-0889.1996.t01-1-00012.x

A. K. Jain and X. Yang, “Modeling the effects of two different
land cover change data sets on the carbon stocks of plants
and soils in concert with COg2 and climate change,” Global
Biogeochemical Cycles, vol. 19, no. 2, 2005. [Online]. Available:
http://dx.doi.org/10.1029/2004GB002349

[14]

[15]

[16]

(17]

[18]

(19]

[20]

A. K. Jain, Z. Tao, X. Yang, and C. Gillespie, “Estimates of
global biomass burning emissions for reactive greenhouse gases
(CO, NMHCs, and NOx) and COsz,” Journal of Geophysical
Research: Atmospheres, vol. 111, no. D6, 2006. [Online]. Available:
http://dx.doi.org/10.1029/2005JD006237

D. Huntzinger, W. M. Post, Y. Wei, A. Michalak, T. O. West, A. Jacob-
son, I. Baker, J. M. Chen, K. Davis, D. Hayes et al., “North Amer-
ican Carbon Program (NACP) regional interim synthesis: Terrestrial
biospheric model intercomparison,” Ecological Modelling, vol. 232, pp.
144-157, 2012.

T. Keenan, 1. Baker, A. Barr, P. Ciais, K. Davis, M. Dietze,
D. Dragoni, C. M. Gough, R. Grant, D. Hollinger, K. Hufkens,
B. Poulter, H. McCaughey, B. Raczka, Y. Ryu, K. Schaefer, H. Tian,
H. Verbeeck, M. Zhao, and A. D. Richardson, “Terrestrial biosphere
model performance for inter-annual variability of land-atmosphere CO2
exchange,” Global Change Biology, vol. 18, no. 6, pp. 1971-1987, 2012.
[Online]. Available: http://dx.doi.org/10.1111/j.1365-2486.2012.02678.x
A. D. Richardson, R. S. Anderson, M. A. Arain, A. G. Barr, G. Bohrer,
G. Chen, J. M. Chen, P. Ciais, K. J. Davis, A. R. Desai, M. C. Dietze,
D. Dragoni, S. R. Garrity, C. M. Gough, R. Grant, D. Y. Hollinger,
H. A. Margolis, H. McCaughey, M. Migliavacca, R. K. Monson, J. W.
Munger, B. Poulter, B. M. Raczka, D. M. Ricciuto, A. K. Sahoo,
K. Schaefer, H. Tian, R. Vargas, H. Verbeeck, J. Xiao, and Y. Xue,
“Terrestrial biosphere models need better representation of vegetation
phenology: results from the North American Carbon Program site
synthesis,” Global Change Biology, vol. 18, no. 2, pp. 566-584, 2012.
[Online]. Available: http://dx.doi.org/10.1111/j.1365-2486.2011.02562.x
K. Schaefer, C. R. Schwalm, C. Williams, M. A. Arain, A. Barr,
J. M. Chen, K. J. Davis, D. Dimitrov, T. W. Hilton, D. Y. Hollinger,
E. Humphreys, B. Poulter, B. M. Raczka, A. D. Richardson, A. Sahoo,
P. Thornton, R. Vargas, H. Verbeeck, R. Anderson, 1. Baker, T. A.
Black, P. Bolstad, J. Chen, P. S. Curtis, A. R. Desai, M. Dietze,
D. Dragoni, C. Gough, R. F. Grant, L. Gu, A. Jain, C. Kucharik, B. Law,
S. Liu, E. Lokipitiya, H. A. Margolis, R. Matamala, J. H. McCaughey,
R. Monson, J. W. Munger, W. Oechel, C. Peng, D. T. Price, D. Ricciuto,
W. J. Riley, N. Roulet, H. Tian, C. Tonitto, M. Torn, E. Weng, and
X. Zhou, “A model-data comparison of gross primary productivity:
Results from the North American Carbon Program site synthesis,”
Journal of Geophysical Research: Biogeosciences, vol. 117, no. G3,
2012. [Online]. Available: http://dx.doi.org/10.1029/2012JG001960

S. Zaehle, B. E. Medlyn, M. G. De Kauwe, A. P. Walker, M. C.
Dietze, T. Hickler, Y. Luo, Y.-P. Wang, B. El-Masri, P. Thornton,
A. Jain, S. Wang, D. Warlind, E. Weng, W. Parton, C. M. Iversen,
A. Gallet-Budynek, H. McCarthy, A. Finzi, P. J. Hanson, I. C.
Prentice, R. Oren, and R. J. Norby, “Evaluation of 11 terrestrial
carbon-nitrogen cycle models against observations from two temperate
Free-Air CO2 Enrichment studies,” New Phytologist, 2014. [Online].
Available: http://dx.doi.org/10.1111/nph.12697

B. Parhami, “SIMD machines: Do they have a significant future?”
SIGARCH Comput. Archit. News, vol. 23, no. 4, pp. 19-22, Sep. 1995.
[Online]. Available: http://doi.acm.org/10.1145/218864.218868

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

(30]

[31]

T. Qian, A. Dai, K. E. Trenberth, and K. W. Oleson, “Simulation of
global land surface conditions from 1948 to 2004. Part I: Forcing data
and evaluations.” Journal of Hydrometeorology, vol. 7, no. 5, pp. 953—
975, 2006.

Y. Wei, S. Liu, D. N. Huntzinger, A. M. Michalak, N. Viovy, W. M.
Post, C. R. Schwalm, K. Schaefer, A. R. Jacobson, C. Lu, H. Tian, D. M.
Ricciuto, R. B. Cook, J. Mao, and X. Shi, “The North American Carbon
Program Multi-scale Synthesis and Terrestrial Model Intercomparison
Project part 2: Environmental driver data,” Geoscientific Model
Development Discussions, vol. 6, no. 4, pp. 5375-5422, 2013. [Online].
Available: http://www.geosci-model-dev-discuss.net/6/5375/2013/

K. E. Mitchell, D. Lohmann, P. R. Houser, E. F. Wood, J. C. Schaake,
A. Robock, B. A. Cosgrove, J. Sheffield, Q. Duan, L. Luo, R. W.
Higgins, R. T. Pinker, J. D. Tarpley, D. P. Lettenmaier, C. H. Marshall,
J. K. Entin, M. Pan, W. Shi, V. Koren, J. Meng, B. H. Ramsay,
and A. A. Bailey, “The multi-institution North American Land Data
Assimilation System (NLDAS): Utilizing multiple GCIP products and
partners in a continental distributed hydrological modeling system,”
Journal of Geophysical Research: Atmospheres, vol. 109, no. D7, 2004.
[Online]. Available: http://dx.doi.org/10.1029/2003JD003823

L. DeRose, B. Homer, and D. Johnson, “Detecting application load
imbalance on high end massively parallel systems,” in Euro-Par
2007 Parallel Processing, ser. Lecture Notes in Computer Science,
A.-M. Kermarrec, L. Boug, and T. Priol, Eds. Springer Berlin
Heidelberg, 2007, vol. 4641, pp. 150-159. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74466-5_17

A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: performance degradation due to nearby jobs,” in
Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 41.

L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar, “Scaling applications
to massively parallel machines using projections performance analysis
tool,” in Future Generation Computer Systems Special Issue on: Large-
Scale System Performance Modeling and Analysis, vol. 22, no. 3,
February 2006, pp. 347-358.

J. Li, W. K. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF: A
high-performance scientific I/O interface,” SC Conference, vol. 0, p. 39,
2003.

B. Austin, M. J. Cordery, H. J. Wasserman, and N. J. Wright,
“Performance measurements of the NERSC Cray Cascade system,”
in Cray User Group, 2013. [Online]. Available: https://cug.org/
proceedings/cug2013_proceedings/includes/files/pap156.pdf

E. Totoni and L. V. Kale, “ACM SRC poster: optimizing all-to-all
algorithm for PERCS network using simulation,” in Proceedings of the
2011 companion on High Performance Computing Networking, Storage
and Analysis Companion, ser. SC 11 Companion. ACM, 2011, pp.
123-124.

NERSC. Edison file storage and I/O. [Online]. Available: http://www.
nersc.gov/users/computational-systems/edison/file- storage-and-i-o/
Message Passing Interface Forum, “MPI: A message-passing interface
standard version 3.0,” Tech. Rep., September 2012.

