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Process-oriented analysis of dominant sour-
ces of uncertainty in the land carbon sink
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The observed global net land carbon sink is captured by current land models.
Allmodels agree that atmospheric CO2 and nitrogendeposition driven gains in
carbon stocks are partially offset by climate and land-use and land-cover
change (LULCC) losses. However, there is a lack of consensus in the parti-
tioning of the sink between vegetation and soil, where models do not even
agree on the direction of change in carbon stocks over the past 60 years. This
uncertainty is driven by plant productivity, allocation, and turnover response
to atmospheric CO2 (and to a smaller extent to LULCC), and the response of
soil to LULCC (and to a lesser extent climate). Overall, differences in turnover
explain ~70% of model spread in both vegetation and soil carbon changes.
Further analysis of internal plant and soil (individual pools) cycling is needed
to reduce uncertainty in the controlling processes behind the global land
carbon sink.
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Over the last 60 years, there has been a continuous rise in anthro-
pogenic CO2 emissions. Around the equivalent of a quarter of these
emissions have been taken up by the land biosphere (known as the
natural land sink), acting as a strong negative feedback to mitigate
climate change1. To be able to project the global carbon cycle (and
hence the climate response) in the future, we need to understand the
underlying processes and their timescales that drive the contemporary
land sink. There are many distinct but interdependent mechanisms
that regulate the flowof carbon into, through, and out of the land. The
timescales at which these processes (e.g. photosynthesis, allocation,
plant growth, litterfall, plant mortality and soil turnover) act on the
carbon cycle range from days to centuries, and the interplay between
these determines the changes in land carbon storage2.

Recent work suggests the global net land sink is located in
northern latitudes3. The attribution of drivers is highly uncertain, but a
combination of increasing atmospheric CO2 concentrations

4, reactive
nitrogen (N) deposition5 and atmospheric warming6 are likely
responsible. Tropical lands are probably nearer net zero carbon sinks
due to large land-use and land cover changes (LULCC) carbon losses
counteracting the ‘natural’ sink7,8. Atmospheric observations also show
that the Amazon forest is currently carbon neutral (‘natural’ sink =
LULCC-driven source)9, and this provides further evidence of a limited
net tropical sink. Yet, the largest gross fluxes between the land and
atmosphere are often found in tropical regions10, and so changes in
tropical ecosystem functioning can have significant global impacts.

Process-based dynamic global vegetation models (DGVMs) that
simulate processes of carbon uptake and release can help to elucidate
the roles of individual drivers (rising atmospheric CO2, changes in
climate, nutrient deposition, and LULCC), attribute the change to
processes, and quantify regional sinks over timescales needed given
the multitude of timescales over which terrestrial processes act (i.e.
beyond the period of reliable empirical and remote-sensed data).

DGVMs are used to estimate the natural land sink (hereafter
simply land sink) as part of the global carbon budget (GCB8). Globally,
the DGVM multi-model mean estimate of the global land sink is con-
sistent with the global carbon budget residual land sink (the difference
between fossil and land-use emissions and atmospheric and ocean
sinks, see Table 5 in ref. 8), however, there is a significant spread across
models, and here we show the spread widens at regional scales, when
quantifying changes in vegetation and soil carbon, or attributing
changes in internal processes to external drivers. Therefore, while
model ensembles are helpful in analysing global-scale processes, they
must be interpreted in the context of their process representation and
unique and collective biases2,4.

These deficiencies are of high significance when trying to under-
standpast changes but alsowhenDGVMs are used tomakepredictions
of future carbon cycling11, as limited trust can be placed in projections
when certain fundamental processes and carbon-climate feedbacks

are not fully captured2. Therefore, it is of high priority to identify the
leading sources of uncertainty in DGVMs and understand the rela-
tionship between drivers and processes on varying spatial scales. In
this study, we use a triple (3D-matrix) approach to identify where
models agree and, just as importantly, disagree, and thus guide future
modelling efforts:

• What are the (1) external drivers (concurrent rises in atmo-
spheric CO2 and N deposition, climate and LULCC), (2) main
regions (tropics andextra tropics) and (3) processes (production
vs turnover) primarily responsible for the changes in the global
net land carbon sink?

Weuse the suite of 18DGVMs from theGCB2021 (TRENDYv10; ref.
8) to quantify changes in net carbon exchange and carbon stocks over
the period 1959–2020. TRENDYv10 provides a set of simulations to
attribute these changes to drivers, and we use a process attribution
framework to decompose changes in carbon stocks into those driven
by productivity and turnover separately. This framework enables us to
express productivity and turnover-induced changes in carbon stocks
in units of PgC, which allows for a direct comparison between both
processes, which have units of carbon per unit time and time,
respectively (see Methods).

Results
Drivers of global and regional land sinks
The global net land sink is derived from the difference between the
fossil fuel emissions (EFOS) and the CO2 accumulation in the atmo-
sphere (GATM) and uptake by the oceans (SOCEAN). We refer to this
estimate of thenet land sink as the ‘observed’GCBbudget constraint (=
EFOS-GATM-SOCEAN; see methods and ref. 8) which grew from 0.2 ± 0.4
(mean± std. dev) PgC yr−1 in the 1960s to 1.7 ± 0.6 PgC yr−1 in the
decade 2011–2020, with DGVMs (S3 simulation; see Methods) cap-
turing the increase (−0.1 ± 0.6 to 1.6 ± 0.5 PgC yr−1; Fig. 1). DGVMs
suggest the enhanced net sink over the past 60 years has mainly been
driven by rising atmospheric CO2 concentrations and nitrogen
deposition (1.2 ± 0.2 PgC yr-1 over 1960–1969 rising to 3.5 ± 0.8 PgC yr-
1 over 2011–2020) (Fig. 1b), with the sink partially offset by relatively
constant net LULCC emissions of 1.3 ± 0.5 PgC yr−1 (predominantly
arising from tropical deforestation and shifting cultivation12; Fig. 2 and
Supplementary Fig. 1). DGVMs indicate that climatic variability drives
the large year-to-year changes (±2 PgC yr−1) in the land sink (Fig. 1),with
long-term (multi-decadal) climate trends reducing the land sink since
the 1980s (−0.4 ±0.5 PgC yr−1 over 1980–2020) (Fig. 1b).

The CO2 and N deposition-driven land carbon sink is located in
northern and tropical forests (Fig. 2). LULCC-induced carbon losses
occur across the globe but are most apparent in tropical latitudes and
certain hotspot regions across the northern hemisphere (China, USA
andWest Eurasia), which recently have been (within our study period)

Fig. 1 | Global net land sink and attribution to drivers. a Net annual land carbon
sink (PgC yr−1) as estimated by dynamic global vegetationmodels (DGVMs) with all
drivers varying (red) and the top-down Global Carbon Budget (GCB) constraint
(black) and b the decomposition of the DGVM net sink into contributions from

rising atmospheric CO2 concentrations and N deposition (blue), changes in climate
(yellow), and land-use and land cover change (grey). Thick lines showa locally fitted
regression. Shading around DGVM estimates corresponds to 1σ, and the uncer-
tainty on the GCB constraint is taken from ref. 8.
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densely forested (Fig. 2 and Supplementary Fig. 1). There are signs of
European carbon sink in part driven by a/reforestation or natural land
(re)establishment. The impact of changes in climate can also be
detected across the globe, with vegetation and soil carbon losses in the
Amazon, the Sahel and South Africa, and climate-induced carbon gains
in east Brazil, Australia, and across the high northern latitudes (Fig. 2
and Supplementary Fig. 1). In summary, the DGVMensemble agrees on
the large sink located in the world’s forests. However, the models are
not in full agreement in the direction of change in ecosystem carbon
across much of the globe, in particular in regions with competing CO2

and LULCC effects (Fig. 2a).

Key processes and uncertainties behind the sink
The top-down global GCB budget constraint combined with the
bottom-up DGVM estimates give high confidence the land has been a
net sink of carbon over the last 60 years, however, the relative con-
tribution of each driver (e.g. CO2, N deposition, climate, LULCC), and
ecological attribution (vegetation, soil) of the sink remains elusive.

The DGVM multi-model mean suggests a net global increase in
both vegetation (ΔCv = 28 ± 26 (mean± std. dev) PgC) and soil (ΔCs =
21 ± 32 PgC) carbon stocks, although the uncertainty is large (Fig. 3a,
b), with two models (LPX-Bern and YIBs) simulating a net loss of
vegetation carbon and threemodels (CLASSIC-N, ISAMandLPJ-GUESS)
simulating a net loss of soil carbon (Fig. 3c).

This relatively high uncertainty is in part due to large opposing
fluxes (Fig. 3a) driven by increasing atmospheric CO2 andNdeposition
(carbon increase) vs LULCC (carbon decrease at global scale), with soil
carbon gains (from rising CO2) also counteracted by negative fluxes
driven by climate change (Fig. 3b). In general, there are no observa-
tional constraints on long-term (pre-satellite era) changes in global
vegetation or soil carbon, and so reducing model uncertainty is chal-
lenging. Therefore, although the DGVMs generally capture the global
net carbon sink, the attribution to vegetation or soil stocks is

completely unconstrained (Fig. 3c) and is driven by alternate model
structures and parameterisations between DGVMs.

DGVMshave inherentlydifferent baselineproductivity, allocation,
and turnover rates aswell as varying degrees of sensitivity of processes
to environmental change. To gain a deeper understanding of the
processes driving carbon sink changes, we use our attribution frame-
work (see Methods) to associate the modelled changes in vegetation
and soil carbon to changes in inputs (NPP for vegetation and litterfall
for soil) and outputs (turnover rates for vegetation and soil). For each
of these processes, we identify their changes due to CO2, climate
change or LULCC, according to the models.

The ensemble-simulated increase in global vegetation carbon
over the last 60 years (ΔCv = 28 ± 26 PgC; Fig. 4a) was driven by
enhanced plant productivity in response to rising CO2 concentrations
and N deposition, with small (but highly uncertain) losses due to
changes in vegetation turnover (ΔĈv,input,CO2 = 87 ± 26 PgC,
ΔĈv,output,CO2 = −3 ± 21 PgC; Fig. 4a). Although the central estimate of
the net CO2 and nitrogen deposition biomass response appears rela-
tively well constrained at global scale (ΔCv,CO2 = 84 ± 31 PgC), model
estimates range from a gain of 30 PgC (YIBs) to a gain of 150 PgC (LPJ)
in biomass due to rising atmospheric CO2 (Supplementary Fig. 2).

Model spread is driven by a combination of uncertainty in the
response of both NPP (e.g. driven by uncertainty in leaf-level photo-
synthetic response, scaling to canopy and landscape scales, carbon
allocation and nutrient limitation) and vegetation turnover (τv) (e.g.
driven by the treatment of nutrient limitation coupledwith differences
in allocation and in some cases forest-stand packing constraints13) to
rising atmospheric CO2 and N deposition (Fig. 5 and Supplementary
Fig. 3). There is some confidence in the direction of change in global
and regional NPP, albeit not in the magnitude, whereas models dis-
agree on the direction of Δτv due to rising CO2 (Fig. 4). CO2 and N
deposition-driven Δτv depends on changes in stand dynamics (in some
models) and plant allocation. For example, an increase in short-lived

Fig. 2 | Driver attribution to spatial changes in total ecosystem carbon. Maps
show themulti-modelmeananet change in ecosystem (vegetation and soil) carbon
(kgCm−2) from 1959–2020 and b the contribution of each driver to overall change;
CO2 and N deposition (green), climate (red), and land-use and land cover change

(blue). Stippling in panel a indicates <80% of models agree on the direction of
change. The colours in panel b are calculated by assigning a red-green-blue (RGB)
value to each grid depending on the relative magnitude of change due to each
driver. Transparency is determined by the magnitude of the net change in panel a.
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root production, at the expense of wood growth, to alleviate nutrient
limitations on plant growth can reduce τv. This increase in root allo-
cation also changes vegetation nitrogen demand (because of the
substantially higher C:N inwood compared to roots), which feeds back
onto the whole-plant productivity response to rising CO2. Conversely,
some models increase their wood allocation fraction when NPP (or
production) increases, which will increase τv

14.
This increase in vegetation stocks has been partially offset by

emissions associatedwith LULCC from vegetation (ΔCv,LULCC = −58 ± 21
PgC; Fig. 4a), predominantly in the tropics (Supplementary Fig. 1),
which increases vegetation turnover (loss of biomass to the atmo-
sphere or wood products). About half (ΔĈv,input,LULCC = −23 ± 22 PgC,
~40%; Fig. 4a) of the net LULCC-driven global vegetation carbon losses
are from a reduction in inputs (NPP) to the land, as crops or pastures
often have lower productivity than the forests that they replace. The
other half (ΔĈv,output,LULCC = −29 ± 18 PgC; Fig. 4a) is attributable to
changes in turnover related to forests containing woody biomass,
which has a slower turnover than leaves and fine roots. The turnover
effect is further aggravated through the phenomenon that due to their
longer-lived biomass, forests take up more carbon under rising CO2
levels, but this sink is lost by clearing for agricultural use. This is known
as the “loss of additional sink capacity” (LASC)15,16 and accounts for the
impact of environmental (CO2 and climate) changes on carbon uptake
of deforested land (found in S3 simulation) compared to potential
vegetation (found in S2 simulation). Ref. 16 attributes ~40% of DGVM
estimated LULCC vegetation and soil carbon losses to the LASC, albeit
with a different methodology and study period.

All models simulate a net loss of global biomass following LULCC,
although themagnitude is notwell constrained.Model spread isdriven

by differences in LULCC process representation in models7. We find
that models that include wood harvest (routine harvest of established
managed forests), grazing harvest, or shifting cultivation simulate
larger Cv losses than models without these land management pro-
cesses (Supplementary Fig. 4), in line with earlier studies showing the
high importance of land management on vegetation carbon stocks17.
Further, in northern ecosystems, models do not agree on the direction
of ΔNPP or Δτv following LULCC (Supplementary Fig. 5a). In addition
to the land management processes mentioned above, uncertainty in
large-scale regional changes in Cv is in part driven by smaller-scale
regional compensations,where losses in Russia andUSA are somewhat
countered by a forest regrowth sink in Eurasia (Supplementary Fig. 1).
Therefore, the balance between these two opposing fluxes determines
net northern changes in Cv from LULCC, with uncertainties in both
carbon lossfluxes and regrowthuptake18,19. In addition, spatial patterns
of northern LULCC losses and gains are not entirely consistent
between models (Supplementary Fig. 6), which adds to uncertainty in
local, regional, and hemispheric net LULCC-driven changes in vegeta-
tion carbon.

Changes in climate have a much smaller but similarly uncertain
influence on vegetation processes at a global scale, with no agreement
amongmodelson thedirectionof change inbiomassdrivenby shifts in
NPP (ΔĈv,input,CLIM = −1 ± 14 PgC over 1959–2020) or vegetation turn-
over (ΔĈv,output,CLIM = 3 ± 9 PgC) at global scale (Fig. 4a). However,
models align closer at regional scales, where northern warming has
stimulated productivity (ΔĈv,input,CLIM,North = 11 ± 6 PgC; Supplementary
Fig. 5a), and in the tropics, reductions in productivity (due to warming
and/or changes in precipitation) lead to losses of vegetation
(ΔĈv,input,CLIM,Tropics = −12 ± 12 PgC; Supplementary Fig. 5b). Overall,

Fig. 3 | Temporal changes in global vegetation and soil carbon stocks. Time-
series show the change in global a vegetation (ΔCv) and b soil (ΔCs) carbon stocks
from 1959–2020 due to each of the three external drivers (CO2 and N deposition,
climate, land-use, and land cover change). Lines represent themeanof the dynamic
global vegetation models (DGVMs) and shading the ±1σ of the DGVMs. The DGVM

output is first smoothed using a fourth-order spline. The cumulative net (sum of
three drivers) change in global carbon stocks by 2020 is shown (red crosses show
each model and red circle shows the model mean). c Shows the change in vege-
tation and soil stocks for each of the 18 models and the grey region is the Global
Carbon Budget net land sink constraint (see Methods).
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these opposing regional trends cancel and explain the small global
signal and the model uncertainty at the global scale.

Increased production and loss of biomass enhance soil inputs
(ΔĈs,input,ALL PgC) and drives the growth in global soil carbon stocks
(ΔCs PgC), albeit with low confidence in the magnitude (Fig. 4b). Our
analysis also indicates that enhanced CO2 concentrations increase soil
turnover, which is a direct result of enhanced inputs to the fast-
turnover litter and surface soil pools. Our methodology simplifies the
TRENDYmodel structures into a single soil pool to represent the entire
soil system, and so a relative increase in the faster pools moves the
aggregate soil pool turnover (τs) towards that of the litter and surface

soil pools—a phenomenon known as false-priming20. In addition,
changes to soil conditions (e.g. increased soil moisture13) following
increased atmospheric CO2 can impact τs, although it is difficult to
separate the false-priming and actual changes in τS with the set of
simulations used in this study. This simplification leads to low con-
fidence in the partition of net soil carbon changes into the input and
turnover-driven changes, whereas the net change is well con-
strained (ΔCs,CO2PgC).

Reduced litterfall (input to soil) due to the conversion of
forests to agricultural land is the predominant pathway of soil carbon
loss, in line with previous studies21 (ΔĈs,input,LULCC = −36 ± 76 PgC,
ΔCs,LULCC = −25 ± 29 PgC). This is particularly evident in the tropics
(Supplementary Fig. 7b) with large-scale deforestation over the last
several decades, while deforestation and reforestation are more in
balance in the extra tropics. However, there is relatively high uncer-
tainty in the magnitude of LULCC impacts on soil carbon inputs
(ΔĈs,input,LULCC) (Fig. 4b), with models ranging from losses of over 100
PgC to gains of 45 PgC over the period 1959–2020. Landmanagement
processes such as crop and wood harvesting (in particular, the fre-
quency of harvest and fraction of biomass removed and respired
elsewhere) are leading uncertainties in simulating LULCC impacts on
soil carbon (Supplementary Fig. 4)22,23. Turnover-driven changes play
less of a role in soil C changes in our models. This could be due to
offsetting effects such as a decrease in soil C due to the altered quality
of the litter input (a higher fraction of faster decomposingmaterial for
agriculture as compared to forests) or a reduction in fire-related losses
with the transformation of natural ecosystems21.

Increased heterotrophic respiration rates and subsequent reduc-
tions in the turnover time of the soil pool due to global warming
entirely offset the increase in soil carbon from climate-enhanced NPP
and litterfall (Fig. 4b). Overall, changes in climate caused a net loss
(ΔCs,CLIM = −13 ± 12 PgC) of global soil carbon. We find the impact of
climate change on carbon storage is accelerating, in particular for
northern soil and tropical biomass, where carbon stock changes from
increased/decreased productivity (for northern soil and tropical

Fig. 4 | Process and driver attribution of changes in global vegetation and soil
carbon stocks. Change in global a vegetation (ΔCv) and b soil (ΔCs) carbon stocks
over 1959–2020 (PgC). The contribution to net changes in carbon stocks (green
bars) from changes in inputs (net primary productivity for vegetation (ΔNPPτv,1959)
and vegetation to soil flux for soil (Δf vsτs,1959), red bars), outputs/turnover
(NPP1959Δτv for vegetation and f vs,1959Δτs for soil, orange bars), and the interaction

term (ΔNPPΔτv for vegetation and Δf vsΔτs for soil, blue bars) are shown. The bars
depict themulti-model meanwith the range as ±1σ of themodels. The arrows show
the direction of change in carbon stocks due to each process. The panels from left
to right show the changes due to all drivers varying (ALL), changes in atmospheric
CO2 and N deposition, climate (CLIM), and land-use and land cover
change (LULCC).

Fig. 5 | Attribution of uncertainty to processes in modelled changes in carbon
stocks. The relative uncertainty (defined as the standard deviation among model
estimates) in the change in global vegetation (ΔCv) and soil (ΔCs) carbon stocks
resulting from each of the driving terms (Eqs. 9 and 10 inMethods). The four terms
are baseline input (baseline productivity NPP1959) for vegetation and baseline lit-
terfall/mortality (f vs,1959) for soil), change in inputs (change in productivity ΔNPP)
for vegetation and change in litterfall/mortality (Δf vs) for soil), baseline turnover
(τv,1959 for vegetation and τs,1959 for soil), and change in turnover (Δτv for vegetation
and Δτs for soil). For each of these terms in Eqs. 9 and 10, we calculate the standard
deviation inΔCvandΔCsusing themulti-modelmean values of all other terms in the
equations and the individual model values for that term.
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biomass, respectively) have accelerated by 19 TgC yr−2 and 9 TgC yr−2,
since the turn of this century (Supplementary Fig. 8). This equates to
annual mean carbon gain/losses due to changes in productivity of 1.6
PgC yr−1 and −0.3 PgC yr−1 over 2001–2020 compared to 0.6 PgC yr−1

and −0.2 PgC yr−1 over 1961–2000, for northern soil and tropical bio-
mass, respectively (Supplementary Fig. 8b, e). This acceleration is
likely driven by warming in the north (2001–2020 April-August mean
0.9 °C warmer than 1961–2000) and the tropics (2001–2020 annual
mean 0.6 °C warmer than 1961–2000)24,25, as well as potential changes
in sensitivity of the biosphere to warming26.

Discussion
The ‘observed’GCB global net land sink is captured by the TRENDYv10
DGVM ensemble. We find a robust agreement that rising atmospheric
CO2 concentrations and N deposition drive the land carbon sink, and
changes in climate along with LULCC lead to a source of carbon in the
atmosphere. Further, the DGVMs corroborate that the net land sink is
located in northern latitudes, with the tropics more carbon neutral, in
line with recent independent top-down estimates3,8.

However, the models do not entirely agree on the partition of the
net land sink between vegetation and soil. Thirteen of 18 models
indicate an increase in global vegetation and soil carbon stocks,
although the magnitude of change is highly unconstrained (ranging
from ~0 to +80 PgC over the past 60 years). The remaining fivemodels
simulate a reduction in either vegetation or soil stocks, highlighting
the disparity between models regarding internal carbon cycling
processes.

There are no observations of global carbon stocks covering the
entire study period, but a recent synthesis of observation-based bio-
mass change estimates in global forests suggests a net biomass sink of
0.3–2.1 PgC yr−1 since 200027, giving confidence to the models that
simulate net gains. However, these observational studies do not con-
strain the magnitude of the vegetation sink any more than the DGVM
mean biomass sink of −0.1 to 1.7 PgC yr−1 (averaged over 2001–2020).
Furthermore, we cannot even be certain in the direction of change in
global soil carbon as direct observations of large-scale changes in soil
carbon stocks do not exist2,4.

Our analysis indicates that baseline vegetation turnover rates and
the turnover response to rising atmospheric CO2 and N deposition are
the key uncertainties in modelled ΔCv, with a smaller but still sig-
nificant contribution from changes in NPP. Differences in modelled
vegetation turnover are driven by variations in whole-plant mortality
rates, simulated tissue lifespan, and the allocation of NPP to plant
components with inherently different turnover rates and their
responses to changing environmental conditions14,28. For example,
somemodelsmay reduce plantmortality and turnover as atmospheric
CO2 concentrations rise. Increased carbon stores could supply main-
tenance respiration in periods of photosynthetic stress29,30, and
increases in water-use efficiency may alleviate the impact of
drought31,32. In contrast, shifts in plant community composition or self-
thinning dynamics may increase stand-level mortality33. These struc-
tural differences lead to no agreement on the direction of Δτv in the
models presented here.

In addition to turnover-related uncertainties, the increase in NPP
and biomass due to rising CO2 is not well constrained. The choice of
photosynthesis and stomatal model determines the leaf-level
response, with a wide range of implementations and outcomes in
DGVMs34. Scaling from leaf to canopy level causes further dis-
crepancies due to different structural assumptions betweenmodels as
to the vertical distribution of light, nitrogen, photosynthetic capacity,
and the treatment of sunlit and shaded leaves34. Further, NPP and
biomass production is constrained by stoichiometric nutrient
requirements. Nitrogen availability mediates the biomass response to
rising CO2

35, and therefore it is likely that differences in the inclusion
and representation of carbon-nitrogen coupling between models

contribute to uncertainty in ΔCv
36,37. Overall, these structural uncer-

tainties manifest as a four-fold range in estimates of the CO2 effect on
NPP and biomass (gains of 41 PgC (CLASSIC-N) up to 157 PgC (ISAM)
over the previous 60 years).

Furthermore, LULCC-driven reductions in NPP and woody carbon
stocks have removed a substantial portionof global vegetation carbon.
However, the exactmagnitudeof carbon loss is notwell constrainedby
the DGVMs. Biases in the carbon density of deforested land38 and
model-specific choices of whether to replace forest or grassland for
agricultural expansion are leading sources of error when calculating
LULCC losses39. Our results highlight that, firstly, variation in the
representation of relevant processes, in particular, forestmanagement
(e.g. treatment of wood harvest) and shifting cultivation, leads to
systematic differences between modelled ΔCv

7,40. Second, DGVMs are
missing carbon losses associated with degraded forests, which can
exceed deforestation losses, indicating simulated LULCC losses could
be underestimated40–42. Finally, uncertainty exists with LULCC maps
used to drive DGVMs as historical land-use is not perfectly known and
products differ in the land cover types and transitions included40.

The models suggest that soil has been a net carbon sink globally
over the past six decades, although there is over 100% uncertainty on
the magnitude (21 ± 32 PgC). This relatively large range is due to the
opposing impacts of rising CO2 and climate/LULCC effects which
partly cancel out. Further, the impact of LULCC on soil carbon is also
difficult to quantify robustly with the suite of DGVMs used here, as
models do not agree on the sign of Δf vs or Δτs following LULCC. In
general, changes in soil carbon stocks are difficult to constrain due to a
lack of large-scale observations. It is likely historical LULCC caused
additional carbon fluxes as a result of land erosion43,44, degradation of
agricultural soils45,46, and losses from drained peatlands47. These
management processes are not included in models and most do not
simulate peatlands at all, potentially causing errors in simulated soil
carbon fluxes.

Overall, the soil carbon sink is caused by increased litter inputs
fromCO2-driven vegetationgrowth. There is someevidence additional
litter and root exudates enhance soil carbon stocks when nitrogen
availability is high48. It is important to stress that themodel simulations
include widespread nitrogen deposition, which may have helped to
sustain a strong CO2 response of biomass and soil carbon sinks5,49.

However, additional soil inputs can accelerate organic matter
decomposition to release plant-available nitrogen (via priming
effects50), which reduces soil carbon storage51–53. DGVMs do not
simulate priming effects or explicitly account for microbial activity,
mineral association, aggregation, or mycorrhizal fungi interactions, all
of which regulate soil carbon turnover and accumulation rates54.
DGVMs represent soil carbon with a set of cascading pools, where
decomposition losses are determined by first-order decay rates
(although this is an active area of model development55). Therefore,
the modelled soil sink has to be interpreted in the context of model
structure and the limited ability of DGVMs to capture governing soil
processes.

In general, it is difficult to attribute processes (soil inputs vs
turnover) to changes in soil carbon for two main reasons. First, soil
model structure leads to false-priming effects20. The apparent reduc-
tion in soil turnover is a consequence of increased surface soil carbon
relative to deep soil, as opposed to a change in actual turnover rates.
Second, our process attributionmethodology treats the soil as a single
pool. Therefore, the calculation of τs (

Cs
Rh
) may include deep, inactive

(on decadal timescales) soil carbon, and underestimate the turnover
rate of the active soil. Hence, our process attribution of soil carbon
changes is not well constrained. For example, we estimate a 300 PgC
increase in soil carbon from increased inputs for CLM5.0, a result
which is in part driven by the large carbon stocks in high northern
latitudes leading to a large estimate of τs

56. We do account for this bias
by scaling output to actual changes in modelled carbon stocks (see
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methodology), but our results highlight the urgent need for evaluation
of individual carbon pools and fluxes (leaf, root, wood and each soil
pool) separately, and not bulk terms.

In addition to theCO2-driven sink, evidenceexists for a substantial
impact of forest regrowth on the northern sink over the previous 60
years18,19. DGVMs have some capacity to capture regrowth effects
(predominantly following land abandonment), however, most do not
simulate forest demography or detailed forest management (e.g.
enhanced stock densities57) and so could underestimate the actual
regrowth carbon sink58. Further, not all DGVMs simulate disturbance in
unmanaged land (e.g. wind and pests), and therefore, natural dis-
turbances beyond fire and the subsequent regrowth will not be cap-
tured by the DGVMs here18. Moreover, not all models simulate fire
mortality, and fire models do not always capture observed spatio-
temporal patterns and associated carbon emissions59, as well as large
uncertainties due to issues with forcing data60.

In addition to direct human-caused carbon losses, alternative
drivers of mortality can reduce carbon stocks. For example, climate-
induced mortality, combined with a shorter tree lifespan resulting
from faster growth61,62, currently weaken the Amazon forest sink63.
However, DGVMs show no sign of increased carbon turnover due to
changes in climate or faster growth, although this discrepancy is not
unexpected as DGVMs do not include detailed mortality processes,
e.g. drought-mortality64, although this is an area of current model
development65,66. The DGVMs do indicate a decline in tropical pro-
ductivity due to climate change, in line with remote-sensing and
upscaled in-situ observations67, indicating current temperatures may
exceed tropical plant thresholds24.

Herewe have shown that the long-termevolution of the global net
land sink is well estimated by an ensemble of state-of-the-art DGVMs.
However, a complete process-based understanding is still lacking due
to several model shortcomings. Specifically, above/below-ground
partitioning of the sink is highly uncertain due to too simplistic
representation of internal carbon cycling. Model improvement into
plant allocation, tissue lifespan and mortality, as well as the inclusion
of process-based soil carbon and nutrient cycling, should be a high
priority moving forward.

Methods
TRENDYv10 models
We analyse output from 18 DGVMs that are part of a recent model
intercomparison project, TRENDYv10 and the Global Carbon Budget
2021 (GCB2021)8. Themodels included in the analysis here are CABLE-
POP, CLASSIC, CLASSIC-N, CLM5.0, DLEM, IBIS, ISAM, ISBA-CTRIP,
JSBACH, LPJ-GUESS, LPJ, LPX-Bern, OCN, ORCHIDEE, ORCHIDEEv3,
SDGVM, VISIT, and YIBs (see ref. 8 for model descriptions and setup).
One model (JULES-ES-1.1) from TRENDYv10 is not included due to
incomplete data. Note, CLASSIC-N68 and ORCHIDEE69 were not part of
GCB2021 due to the inclusion of alternate model versions (CLASSIC
and ORCHIDEEv3) but are included in TRENDYv10 and this study.

The models are forced with a merged monthly Climate Research
Unit (CRU)70 and 6-hourly Japanese 55-year Reanalysis (JRA-55)71 data
set. The models are also forced with atmospheric CO2

72, gridded
nitrogen deposition73 and nitrogen fertiliser74. DGVMs use the HYDE
(v3.3) land-use change data set75,76, which provides annual pasture and
cropland areas at a global scale, and includes improvements in the
spatial distribution of agricultural regions77. Several models (CABLE-
POP, CLM5.0, JSBACH, LPJ-GUESS, LPJ, and VISIT) also use harmonised
land-use change data (LUH2-GCB20218), which provides information
on sub-grid-scale land-use transitions.

To isolate the response of the land to each driver (CO2, climate,
LULCC), each model performs four simulations: S0 (fixed pre-
industrial atmospheric CO2 and land-use, recycled 1901–1920 cli-
mate), S1 (transient atmospheric CO2, recycled 1901–1920 climate, and
fixed pre-industrial land-use), S2 (transient atmospheric CO2, transient

climate, and fixed pre-industrial land-use), and S3 (transient atmo-
spheric CO2, transient climate, and transient industrial land-use).
Nitrogen deposition varies temporally in simulations S1–S3. Therefore,
the transient CO2 (+N deposition) effect on the ‘natural’ land sink is
calculated by S1−S0, S2−S1+S0 is the climate effect on the ‘natural’ land
sink, S3−S2 is the LULCC effect, and S3 is the net effect. There exists an
artefact in the HYDE3.3 data causing a large land-use transition and
emission peak around 1960. To correct this, we replace the LULCC
estimates for 1959–1961 with the average of 1958 and 1962 in
each DGVM.

Net Biome Productivity (NBP) from the S3 simulation represents
the net land sink and can therefore be compared to the ‘observed’
Global Carbon Budget land constraint, which is calculated in the GCB
as fossil fuel emissions—atmospheric carbon growth rate—ocean car-
bon sink (see Fig. 1 in themain text and Table 5 in ref. 8 and data taken
from https://doi.org/10.18160/gcp-2021). Atmospheric CO2 con-
centration measurements began in 195978, and so this independent
constraint on the land sink covers the period 1959–2020, which
defines the study period used throughout our analysis.

Data processing
First, we calculate for eachmodel the global and regional (two regions:
north of 30°N and south of 30°N) annual mean values for NBP, net
primary productivity (NPP), heterotrophic respiration (Rh), vegetation
carbon (Cv) and soil carbon (Cs), which includes litter (Clitter) and
coarse woody debris (CCWD) for 1959–2020. We exclude the product
pool from our analysis as we do not have carbon emission data from
wood products available.

Process attribution framework
To attribute changes in C pools to different processes, we quantify C
pool changes attributable to changes in productivity and changes in
turnover time. We do this using an analytical approximation of C pool
dynamics corrected for non-steady state and more complicated
behaviour of themodels. First, we approximate the steady-state Cpool
size given the inputs and turnover time of a given pool in a given year.
We then quantify the change in the steady-state pool sizes estimated
for 1959 and the year in question and partition this change pro-
portionally among inputs and turnover time. Finally, to adjust to non-
steady state conditions and more complicated model structures (i.e.
multiple pool dynamics, not a single pool as in this approximation), we
adjust the attributed proportions by adding the difference in actual
modelled change in carbon stock and the steady-state approximation,
scaled by the relative magnitude of productivity and turnover-driven
changes.

The change in carbon pools can be expressed as:

dC
dt

= INPUT�OUTPUT, ð1Þ

where we define dC
dt as the change in carbon pool per year. To quantify

the internal processes impacting the output flux, we can define
OUTPUT= C

τ , where τ is the mean turnover time (the inverse of the
mean turnover rate) of the carbon pool, C. Therefore, we can rewrite
Eq. 1 as:

dC
dt

= INPUT� C
τ

ð2Þ

We separate the land into twomain pools, vegetation (Cv) and soil
(Cs). Cv is a direct model output and includes leaf, root and wood
biomass. Similarly, Cs ,Clitter,CCWD are direct model outputs, which we
sum together for our analysis. The rest of themethodology,Csrefers to
the sum of these three pools. Not all models simulate litter and CWD
pools. ISAM does not simulate litter and only CABLE-POP, CLM5.0,
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DLEM and LPJ-GUESS simulate CWD. Further, for CLM5.0, the litter
pool is incorporated in the soil pool output, and so is also excluded
from the sum to avoid double counting.

We can now specify Eq. 2 for vegetation and soil as:

dCv

dt
= NPP� Cv

τv
ð3Þ

dCs

dt
= f vs �

Cs

τs
, ð4Þ

where f vs is the carbon flux from vegetation to soil, from either lit-
terfall, mortality or direct transfer from roots to soil.

We calculate annual τv (using Eq. 3), τs and f vs usingmodel output
as follows:

τv =
Cv

NPP� ΔCv
,

τs =
Cs

Rh
,

f vs = ΔCs +Rh,

where ΔCv and ΔCs are the annual changes in vegetation and soil
carbon. We want to be able to define ΔC in terms of input fluxes and
turnover times only, as these are the two aggregated mechanisms
driving changes in the pools. To do this, we use the fact that the pools
and the input and output fluxes are generally much larger than the
change in carbonpools each year tomake the assumption thatΔC ’ 0.
Rearranging Eqs. 3 and 4, we can estimate the steady-state carbon
pools in any particular year as:

Cv ’ Ĉv = NPPτv ð5Þ

Cs ’ Ĉs = f vsτs, ð6Þ

where Ĉv and Ĉs are steady-state approximations of the actual carbon
pools Cv and Cs. We can now define the change in carbon pools over
our 60-year study period, 1959–2020, in terms of inputs and turnover
time:

ΔCv ’ ΔĈv = NPP2020τv,2020 � NPP1959τv,1959 ð7Þ

ΔCs ’ ΔĈs = f vs,2020τs,2020 � f vs,1959τs,1959: ð8Þ

In order to separate the impacts of changes in inputs and turnover
times, we next define NPP2020 =NPP1959 +ΔNPP, f vs,2020 = f vs,1959 +Δf vs,
and τ2020 = τ1959 +Δτ. We now substitute these into Eqs. 7 and 8:

ΔĈv = ΔNPPτv,1959 +NPP1959Δτv +ΔNPPΔτv ð9Þ

ΔĈs = Δf vsτs,1959 + f vs,1959Δτs +Δf vsΔτs ð10Þ

The right-hand side of the equation contains three terms corre-
sponding to the change in carbon storage due to changes in inputs
(NPP for vegetation and litterfall for soil), outputs (bulk turnover), and
an interaction term. Our approach, therefore, extends the factor
separation approach by ref. 21, which applied it to attribute simulated
soil carbon changes into input-driven, turnover-driven change and a
synergy term to also cover vegetation carbon changes.

The change in vegetation carbon due to each term can be written
as:ΔĈv,input =ΔNPPτv,1959,ΔĈv,output =NPP1959Δτv,ΔĈv,interaction =ΔNPPΔτ
and ΔĈv =ΔĈv,input +ΔĈv,output +ΔĈv,interaction, with equivalent terms for
soil carbon.

Finally, we adjust the one-pool steady-state estimates for the dif-
ference in the model simulations that arise due to the combination of
steady-state assumption (Eqs. 5–8), the grouping of all pools into sin-
gle vegetation and soil pools (as the distribution between component
pools changes over time), and the linearisation not capturing the full
dynamics of land carbon cycling (Eqs. 9 and 10). Therefore, the esti-
mates of changes in carbon pools (ΔĈv and ΔĈs) do not equal the
actual change in C pools (ΔCv and ΔCs), which are a direct model
output (see Supplementary Fig. 9).

To address this issue, we calculate for each model the difference
between the actual change in carbon stocks and our approximation
(δv =ΔCv � ΔĈv and δs =ΔCs � ΔĈs). We make the simple assumption
that productivity and turnover are proportionally responsible for the
mismatch between steady state and the actual carbon stock, and so
adjust each term on the right-hand side of Eqs. 9 and 10 by the relative
magnitude of each termmultiplied by δv or δs for vegetation and soil,
respectively. For example, ΔĈv,input is adjusted by adding:

∣ΔĈv,input∣

∣ΔĈv,input∣+ ∣ΔĈv,output∣+ ∣ΔĈv,interaction∣
*δv: ð11Þ

We calculate Eqs. 9 and 10 for each of the eighteen models, apply
the appropriate scaling and use them to produce Fig. 4.

Uncertainty analysis
The spread of model estimates of changes in carbon stocks and fluxes
is used to determine the uncertainty of our results. For land flux esti-
mates (NBP) and ΔCv and ΔCs, we show ‘mean ± std. dev.’. We
decompose the uncertainty (defined as the model spread) in ΔĈv and
ΔĈs into four components: baseline input (NPP1959 or f vs,1959), change
in inputs (ΔNPP or Δf vs), baseline turnover (τv,1959 or τs,1959), and
change in turnover (Δτv or Δτs). For each of these terms in Eqs. 9 and
10, we calculate the standard deviation in ΔĈv and ΔĈsusing the multi-
model mean values of all other terms in the equations and the indivi-
dual model values for that term.

Data availability
All code and post-processed data generated in this study are avail-
able at https://doi.org/10.5281/zenodo.6884342. The raw model
output is available at the following sftp site: trendy-v10@tren-
dy.ex.ac.uk. Access will be granted by first contacting Stephen Sitch
(S.A.Sitch@exeter.ac.uk).

References
1. Friedlingstein, P. et al. Climate–carbon cycle feedback analysis:

Results from the C4MIP model intercomparison. J. Clim. 19,
3337–3353 (2006).

2. Canadell, J. G., Monteiro, P. M. S., Costa, M. H. & Da Cunha, L. C.
Global carbon and other biogeochemical cycles and feed-
backs. (2021).

3. Ciais, P. et al. Five decades of northern land carbon uptake revealed
by the interhemispheric CO gradient. Nature 568, 221–225 (2019).

4. Walker, A. P. et al. Integrating the evidence for a terrestrial carbon
sink caused by increasing atmospheric CO2. N. Phytol. 229,
2413–2445 (2021).

5. O’Sullivan, M. et al. Have synergies between nitrogen deposition
and atmospheric CO2 driven the recent enhancement of the ter-
restrial carbon sink?Glob. Biogeochem. Cycles 33, 163–180 (2019).

6. Forkel, M. et al. Enhanced seasonal CO2 exchange caused by
amplified plant productivity in northern ecosystems. Science 351,
696–699 (2016).

Article https://doi.org/10.1038/s41467-022-32416-8

Nature Communications |         (2022) 13:4781 8

https://doi.org/10.5281/zenodo.6884342


7. Arneth, A. et al. Historical carbondioxide emissions causedby land-
use changes are possibly larger than assumed. Nat. Geosci. 10,
79–84 (2017).

8. Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci.
Data 14, 1917–2005 (2022).

9. Gatti, L. V. et al. Amazonia as a carbon source linked to deforesta-
tion and climate change. Nature 595, 388–393 (2021).

10. Pan, Y. et al. A large and persistent carbon sink in the world’s for-
ests. Science 333, 988–993 (2011).

11. Lovenduski, N. S. &Bonan,G. B. Reducinguncertainty inprojections
of terrestrial carbon uptake. Environ. Res. Lett. 12, 044020(2017).

12. Chini, L. et al. Land-use harmonization datasets for annual global
carbon budgets. Earth Syst. Sci. Data 13, 4175–4189 (2021).

13. Walker, A. P. et al. Predicting long‐term carbon sequestration in
response to CO 2 enrichment: how and why do current ecosystem
models differ? Glob. Biogeochem. Cycles 29, 476–495 (2015).

14. De Kauwe, M. G. et al. Where does the carbon go? A model-data
intercomparison of vegetation carbon allocation and turnover
processes at two temperate forest free-air CO2 enrichment sites.N.
Phytol. 203, 883–899 (2014).

15. Pongratz, J., Reick, C. H., Houghton, R. A. & House, J. I. Terminology
as a key uncertainty in net land use and land cover change carbon
flux estimates. Earth Syst. Dyn. 5, 177–195 (2014).

16. Obermeier, W. A. et al. Modelled land use and land cover change
emissions – a spatio-temporal comparison of different approaches.
Earth Syst. Dyn. 12, 635–670 (2021).

17. Erb, K.-H. et al. Unexpectedly large impact of forest management
and grazing on global vegetation biomass. Nature 553,
73–76 (2018).

18. Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink
dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).

19. Kondo,M. et al. Plant regrowth as adriver of recent enhancement of
terrestrial CO2 uptake. Geophys. Res. Lett. 45, 4820–4830 (2018).

20. Koven, C. D. et al. Controls on terrestrial carbon feedbacks by
productivity versus turnover in the CMIP5 Earth System Models.
Biogeosciences 12, 5211–5228 (2015).

21. Nyawira, S. S., Nabel, J. E. M., Brovkin, V. & Pongratz, J. Input-driven
versus turnover-driven controls of simulated changes in soil carbon
due to land-use change. Environ. Res. Lett. 12, 084015 (2017).

22. Nyawira, S. S., Nabel, J. E. M., Don, A., Brovkin, V. & Pongratz, J. Soil
carbon response to land-use change: evaluation of a global vege-
tation model using meta-data. Biogeosci. Discuss. https://doi.org/
10.5194/bg-2016-161 (2016).

23. Boysen, L. R. et al. Evaluation of soil carbon dynamics after forest
cover change in CMIP6 land models using chronosequences.
Environ. Res. Lett. 16, 074030 (2021).

24. Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tro-
pical forests. Science 368, 869–874 (2020).

25. Nemani, R. R. et al. Climate-driven increases in global terrestrial net
primary production from 1982 to 1999. Science 300,
1560–1563 (2003).

26. Wang, X. et al. A two-fold increase of carbon cycle sensitivity to
tropical temperature variations. Nature 506, 212–215 (2014).

27. Xu, L. et al. Changes in global terrestrial live biomass over the 21st
century. Sci. Adv. 7, eabe9829 (2021).

28. Friend, A. D. et al. Carbon residence time dominates uncertainty in
terrestrial vegetation responses to future climate and atmospheric
CO2. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

29. Signori-Müller, C. et al. Non-structural carbohydrates mediate
seasonal water stress across Amazon forests. Nat. Commun. 12,
2310 (2021).

30. Martínez-Vilalta, J. et al. Dynamics of non-structural carbohydrates
in terrestrial plants: a global synthesis. Ecol. Monogr. 86,
495–516 (2016).

31. De Kauwe, M. G. et al. Forest water use and water use efficiency at
elevated CO2 : a model-data intercomparison at two contrasting
temperate forest FACE sites. Glob. Chang. Biol. 19,
1759–1779 (2013).

32. Jiang, M., Kelly, J. W. G., Atwell, B. J., Tissue, D. T. & Medlyn, B. E.
Drought by CO2 interactions in trees: a test of the water savings
mechanism. N. Phytol. 230, 1421–1434 (2021).

33. Forrester,D. I. et al. Self-thinning treemortalitymodels that account
for vertical stand structure, species mixing and climate. Ecol.
Manag. 487, 118936 (2021).

34. Rogers, A. et al. A roadmap for improving the representation of
photosynthesis in Earth systemmodels.N. Phytol.213, 22–42 (2017).

35. Reich, P. B., Hungate, B. A. & Luo, Y. Carbon-nitrogen interactions in
terrestrial ecosystems in response to rising atmospheric carbon
dioxide. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/
annurev.ecolsys.37.091305.110039 (2006).

36. Zaehle, S. et al. Evaluation of 11 terrestrial carbon-nitrogen cycle
models against observations from two temperate free-air CO2

enrichment studies. N. Phytol. 202, 803–822 (2014).
37. Meyerholt, J., Sickel, K. & Zaehle, S. Ensemble projections elucidate

effects of uncertainty in terrestrial nitrogen limitation on future
carbon uptake. Glob. Chang. Biol. 26, 3978–3996 (2020).

38. Yang, H. et al. Comparison of forest above-ground biomass from
dynamic global vegetation models with spatially explicit remotely
sensed observation-based estimates. Glob. Chang. Biol. 26,
3997–4012 (2020).

39. Gasser, T. & Ciais, P. A theoretical framework for the net land-to-
atmosphere CO2 flux and its implications in the definition of
‘emissions from land-use change’. Earth Syst. Dyn.4, 171–186 (2013).

40. Pongratz, J. et al. Land use effects on climate: current state, recent
progress, and emerging topics.Curr. Clim.ChangeRep.https://doi.
org/10.1007/s40641-021-00178-y (2021).

41. Matricardi, E. A. T. et al. Long-term forest degradation surpasses
deforestation in the Brazilian Amazon. Science 369,
1378–1382 (2020).

42. Baccini, A. et al. Tropical forests are a net carbon source based on
aboveground measurements of gain and loss. Science 358,
230–234 (2017).

43. Doetterl, S. et al. Erosion, deposition and soil carbon: a review of
process-level controls, experimental tools andmodels to addressC
cycling in dynamic landscapes. Earth Sci. Rev. 154, 102–122 (2016).

44. Van Oost, K. et al. The impact of agricultural soil erosion on the
global carbon cycle. Science 318, 626–629 (2007).

45. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000
years of human land use. Proc. Natl Acad. Sci. USA 114,
9575–9580 (2017).

46. Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use
change on soil organic carbon stocks - a meta-analysis. Glob.
Chang. Biol. 17, 1658–1670 (2011).

47. Qiu, C. et al. Large historical carbon emissions from cultivated
northern peatlands. Sci. Adv. 7, eabf1332 (2021).

48. Hungate, B. A. et al. Assessing the effect of elevated carbon dioxide
on soil carbon: a comparison of four meta-analyses. Glob. Chang.
Biol. 15, 2020–2034 (2009).

49. Churkina, G. et al. Synergy of rising nitrogen depositions and
atmospheric CO2on land carbon uptake moderately offsets global
warming. Glob. Biogeochem. Cycles 23, (2009).

50. Cheng, W. et al. Synthesis and modeling perspectives of rhizo-
sphere priming. N. Phytol. 201, 31–44 (2014).

51. vanGroenigen, K. J.,Qi, X.,Osenberg,C.W., Luo, Y.&Hungate, B. A.
Faster decomposition under increased atmospheric CO2 limits soil
carbon storage. Science 344, 508–509 (2014).

52. Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E.
Review and synthesis of the effects of elevated atmospheric CO2

Article https://doi.org/10.1038/s41467-022-32416-8

Nature Communications |         (2022) 13:4781 9

https://doi.org/10.5194/bg-2016-161
https://doi.org/10.5194/bg-2016-161
https://doi.org/10.1146/annurev.ecolsys.37.091305.110039
https://doi.org/10.1146/annurev.ecolsys.37.091305.110039
https://doi.org/10.1007/s40641-021-00178-y
https://doi.org/10.1007/s40641-021-00178-y


on soil processes: no changes in pools, but increased fluxes and
accelerated cycles. Soil Biol. Biochem. 128, 66–78 (2019).

53. Fontaine, S., Bardoux, G., Abbadie, L. & Mariotti, A. Carbon input to
soilmaydecrease soil carboncontent.Ecol. Lett. 7, 314–320 (2004).

54. Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated compe-
tition between plants and decomposers drives soil carbon storage.
Nature 505, 543–545 (2014).

55. Abramoff, R. Z. et al. Improved global-scale predictions of soil
carbon stocks with Millennial Version 2. Soil Biol. Biochem. 164,
108466 (2022).

56. Lawrence, D. M. et al. The community land model version 5:
description of new features, benchmarking, and impact of forcing
uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

57. Kauppi, P. E. et al. Carbon benefits from Forest Transitions pro-
moting biomass expansions and thickening. Glob. Chang. Biol. 26,
5365–5370 (2020).

58. Zaehle, S. et al. The importance of age-related decline in forest NPP
for modeling regional carbon balances. Ecol. Appl. 16,
1555–1574 (2006).

59. Li, F. et al. Historical (1700-−2012) global multi-model estimates of
the fire emissions from the Fire Modeling Intercomparison Project
(FireMIP). Atmos. Chem. Phys. 19, 12545–12567 (2019).

60. Ramo, R. et al. African burned area and fire carbon emissions are
strongly impacted by small fires undetected by coarse resolution
satellite data. Proc. Natl. Acad. Sci. USA 118, e2011160118 (2021).

61. Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive
growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).

62. Bugmann, H. & Bigler, C.Will theCO2 fertilization effect in forests be
offset by reduced tree longevity? Oecologia 165, 533–544 (2011).

63. Brienen, R. J.W. et al. Long-termdecline of theAmazon carbon sink.
Nature 519, 344–348 (2015).

64. McDowell, N. et al. Drivers and mechanisms of tree mortality in
moist tropical forests. N. Phytol. 219, 851–869 (2018).

65. Anderegg, W. R. L. & Venturas, M. D. Plant hydraulics play a critical
role in Earth system fluxes. New Phytol. 226, 1535–1538 (2020).

66. Eller, C. B. et al. Stomatal optimization based on xylem hydraulics
(SOX) improves land surface model simulation of vegetation
responses to climate. New Phytol. 226, 1622–1637 (2020).

67. O’Sullivan, M. et al. Climate-driven variability and trends in plant
productivity over recent decades based on three global products.
Glob. Biogeochem. Cycles 34, e2020GB006613 (2020).

68. Asaadi, A. & Arora, V. K. Implementation of nitrogen cycle in the
CLASSIC land model. Biogeosciences 18, 669–706 (2021).

69. Lurton, T. et al. Implementation of the CMIP6 forcing data in the
IPSL‐CM6A‐LR model. J. Adv. Model. Earth Syst. 12,
e2019MS001940 (2020).

70. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS
monthly high-resolution gridded multivariate climate dataset. Sci.
Data 7, 109 (2020).

71. Kobayashi, S. et al. The JRA-55 reanalysis: general specifications
and basic characteristics. J. Meteorol. Soc. Japan 93, 5–48 (2015).

72. Dlugokencky, E. & Tans, P. Trends in atmospheric carbon dioxide,
National Oceanic and Atmospheric Administration, EarthSystem
Research Laboratory (NOAA/ESRL). http://www.esrl.noaa.gov/
gmd/ccgg/trends/global.html (2020).

73. Hegglin, M., Kinnison, D. & Lamarque, J. -F. CCMI nitrogen surface
fluxes in support of CMIP6 - version 2.0. https://doi.org/10.22033/
ESGF/INPUT4MIPS.1125 (2016).

74. Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for
agriculture production in the past half century: Shifted hot spots
and nutrient imbalance. Earth Syst. Sci. Data Discuss. 9,
181–192 (2017).

75. Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthro-
pogenic land use estimates for theHolocene –HYDE 3.2. EarthSyst.
Sci. Data 9, 927–953 (2017).

76. Klein Goldewijk, K., Dekker, S. C. & van Zanden, J. L. Per-capita
estimations of long-term historical land use and the con-
sequences for global change research. J. Land Use Sci. 12,
313–337 (2017).

77. Rosan, T. M. et al. A multi-data assessment of land use and land
cover emissions from Brazil during 2000–2019. Environ. Res. Lett.
16, 074004 (2021).

78. Keeling,C. D. et al. Atmospheric carbon dioxide variations atMauna
Loa Observatory, Hawaii. Tellus 28, 538–551 (1976).

Acknowledgements
M.O.S., P.F. and S.S. have received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant Agree-
ment No. 821003 (project 4 C).

Author contributions
M.O.S., P.F. and S.S. designed the study. M.O.S. conducted the analysis.
M.O.S.wrote themanuscriptwith input fromall authors. P.A,A.A., V.K.A.,
V.B., C.D., D.S.G., A.J., E.K., D.K., J.K., S.L., D.L., P.C.M., J.R.M., J.E.M.S.N.,
B.P., R.S., H.T., N.V.,A.P.W.,W.Y., X.Y. andS.Z. performed the landmodel
simulations.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-32416-8.

Correspondence and requests for materials should be addressed to
Michael O’Sullivan.

Peer review information Nature Communications thanks the other
anonymous reviewer(s) for their contribution to the peer review of
this work.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-32416-8

Nature Communications |         (2022) 13:4781 10

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
https://doi.org/10.22033/ESGF/INPUT4MIPS.1125
https://doi.org/10.22033/ESGF/INPUT4MIPS.1125
https://doi.org/10.1038/s41467-022-32416-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Process-oriented analysis of dominant sources of uncertainty in the land carbon sink
	Results
	Drivers of global and regional land sinks
	Key processes and uncertainties behind the sink

	Discussion
	Methods
	TRENDYv10 models
	Data processing
	Process attribution framework
	Uncertainty analysis

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




