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Abstract 1 

Multi-model ensembles (MME) are commonplace in Earth system modeling. Here we perform 2 

MME integration using a 10-member ensemble of terrestrial biosphere models (TBMs) from the 3 

Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP). We contrast 4 

optimal (skill-based for present-day carbon cycling) versus naïve (“one model – one vote”) 5 

integration. MsTMIP optimal and naïve mean land sink strength estimates (−1.16 vs. −1.15 Pg C 6 

per annum respectively) are statistically indistinguishable. This holds also for grid cell values 7 

and extends to gross uptake, biomass, and net ecosystem productivity. TBM skill is similarly 8 

indistinguishable. The added complexity of skill-based integration does not materially change 9 

MME values. This suggests that carbon metabolism has predictability limits and/or that all 10 

models and references are misspecified. Resolving this issue requires addressing specific 11 

uncertainty types (initial conditions, structure, references) and a change in model development 12 

paradigms currently dominant in the TBM community. 13 

1. Introduction 14 

Multi-model ensembles (MME) are common in Earth system modeling and are routinely 15 

generated for model intercomparison projects (MIPs), e.g., CMIP3 [Meehl et al., 2007], C4MIP 16 

[Friedlingstein et al., 2006], CMIP5 [Taylor et al., 2012], and ISI-MIP [Warszawski et al., 2013]. 17 

Two central challenges associated with MMEs are integration (how individual ensemble 18 

members are combined into a single ensemble value) and interpretation (how MMEs inform our 19 

understanding of Earth system processes and their uncertainties) [Annan & Hargreaves, 2010; 20 

Christensen & Boberg, 2012; Knutti, 2010; Hacker et al., 2011; Stephenson et al., 2012; von 21 

Storch & Zwiers, 2013; Zhao et al., 2013]. Integration methods range from “model democracy” 22 

or “one model – one vote” where ensemble integration is the mean across all models [Zhao et al., 23 
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2013] to linear combinations of ensemble members informed by model error [Eckel & Mass, 24 

2005], degree of independence [Abramowitz & Gupta, 2008; Abramowitz 2010; Masson & 25 

Knutti, 2011] or model skill, e.g., Bayesian model averaging [Raftery et al., 2005], reliability 26 

ensemble averaging [Giorgi & Mearns, 2002], and “superensembles” [Stefanova & 27 

Krishnamurti, 2002]. Regardless of approach, integrated ensembles typically show higher skill 28 

than all or most of the ensemble members [Raftery et al., 2008] and are often used as the “best 29 

estimate” in climate change assessments [IPCC 2007; IPCC 2010; IPCC 2013].  30 

 31 

Ensemble methods may also be used to explore the uncertainty in model simulations that arises 32 

from internal variability, boundary conditions, parameter values for a given model structure, or 33 

structural uncertainty due to different model formulations [Fisher et al., 2014; Hawkins & 34 

Sutton, 2009; Huntzinger et al., 2013; Knutti et al., 2010]. Uncertainty is typically quantified as 35 

some measure of spread across the ensemble, e.g., standard deviation. An important 36 

consideration here is whether the ensemble is broad enough to represent uncertainty [Annan et 37 

al., 2011]. “Broadness” relates to how well the ensemble samples representations of a particular 38 

process. As an example, an ensemble that does not represent sub-grid scale cloud formation or 39 

the soil moisture-precipitation feedback will not directly inform uncertainty related to these 40 

processes.  41 

 42 

Traditionally, MME studies have focused primarily on the atmospheric component of Earth 43 

system models. This is related to the legacy of numerical weather prediction (NWP), which 44 

serves as the basis for the atmospheric component of climate models [Leonardo et al., 2014; 45 

Lynch, 2008], and where leveraging ensemble forecasts has a long tradition [e.g., Epstein, 1969]. 46 



4 
 

In contrast, analyses of MME integration and interpretation have received significantly less 47 

attention for terrestrial biosphere models (TBMs) –the land component of climate or Earth 48 

system models– despite several large-scale model intercomparison projects, e.g., 49 

Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) [VEMAP, 1995], Potsdam 50 

NPP MIP [Cramer et al., 1999], the North American Carbon Program (NACP) Interim Site 51 

[Schwalm et al., 2010] and Regional Syntheses [Huntzinger et al., 2012], the Trends in Net 52 

Land–Atmosphere Carbon Exchange (TRENDY) [Piao et al., 2013], and the Multi-scale 53 

synthesis and Terrestrial Model Intercomparison Project (MsTMIP) [Huntzinger et al., 2013]. 54 

 55 

Apart from equal weighting, MME integration generally requires some basis (e.g., model skill, 56 

error) to inform a linear combination of ensemble members. However, uncertainties or model 57 

error are not routinely available for TBM outputs, e.g., perturbed-physics ensembles are rare 58 

[e.g., Booth et al., 2012; Huntingford et al., 2009; Zaehle et al., 2005], and “truth” for TBMs, 59 

especially at the coarse spatial resolutions that typify TBM output, is not well constrained. 60 

Furthermore, total simulation duration for TBMs (years to centuries) is usually much longer than 61 

for NWP (days to weeks), resulting in a longer validation cycle. Despite these ongoing 62 

challenges for TBM ensemble integration, there is a clear need to better compare TBMs to each 63 

other and other independent estimates of land-atmosphere carbon dynamics to better constrain 64 

the past and future evolution of the terrestrial carbon land sink. 65 

 66 

In this study we develop a methodology that uses an MME to generate a “best estimate” of land-67 

atmosphere CO2 flux and its associated uncertainty. Our approach uses 10 state-of-the-art TBM 68 

simulations from a model intercomparison study with a prescribed simulation protocol 69 
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[Huntzinger et al., 2013; Wei et al., 2014]. The principal goal of this study is to contrast the 70 

extent to which an “intelligent” skill-based integration differs from naïve integration. In the 71 

following section we describe the model ensemble and its integration with optimal weights 72 

derived using model-reference mismatch or benchmarking [Luo et al., 2012]. In section 3 we 73 

contrast the naïve case (“one model – one vote”) with the optimal case. Lastly, in Section 4 we 74 

discuss the implications of our findings and suggestions for future research.  75 

2. Model Ensemble and Integration 76 

The model ensemble is drawn from the Multi-scale synthesis and Terrestrial Model 77 

Intercomparison Project [MsTMIP; Huntzinger et al., 2013]. MsTMIP uses a prescribed 78 

simulation protocol to isolate structural differences in model output, with driving data, land 79 

cover, and steady-state spin-up all standardized across models [Wei et al., 2014]. MsTMIP 80 

global monthly model runs span a 110-year period (1901-2010) and use a semi-factorial set of 81 

simulations where time-varying climate, CO2 concentration, land cover, and nitrogen deposition 82 

are sequentially “turned on” after steady-state is achieved [Huntzinger et al., 2013]. For this 83 

study we use the simulation results from 10 TBMs (Table 1) released under MsTMIP Version 1 84 

[http://nacp.ornl.gov/mstmipdata/mstmip_simulation_results_global_v1.jsp]. Here, simulations 85 

have all factors enabled (MsTMIP simulation BG1). For the subset of models that do not include 86 

a nitrogen cycle, SG3 runs (which exclude nitrogen deposition but are otherwise identical to 87 

BG1) are used. 88 

 89 

For model integration, i.e., combining ensemble members to a single integrated value, we 90 

contrast two use cases: (i) the ensemble mean where each model is weighted equally (hereafter: 91 

naïve case); and (ii) an optimal case where weights are derived using reliability ensemble 92 
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averaging [REA; Giorgi & Mearns, 2002]. We apply these two use cases to four variables: net 93 

ecosystem exchange (NEE, i.e., land sink strength), gross primary productivity (GPP), vegetation 94 

biomass, and net ecosystem productivity (NEP). MsTMIP definitions for NEP and NEE are: 95 ܰܲܧ = ܲܲܩ − ܴ௛ − ܴ௔ and ܰܧܧ = ܴ௛ + ܴ௔ + ௅௎஼ܧ + ܲ −  respectively, where ܴ௛ is 96 ,ܲܲܩ

heterotrophic respiration, ܴ௔ autotrophic respiration, ܧ௅௎஼ emissions from anthropogenic 97 

activities (e.g., deforestation, shifting agriculture, biomass burning) that cause land use change 98 

[Le Quéré et al., 2013], and ܲ is emissions due to harvested wood product decay.  99 

 100 

The weights required for the optimal case are derived using REA. This method uses reference 101 

data products and model-reference mismatch [Luo et al., 2012] as well as inter-model spread 102 

[Giorgi & Mearns, 2002] to determine model reliability: 103 ܴ௜ = ∏ ௝݂௠ೕ௝   [1] 104 

where ܴ௜ is the model reliability factor for model ݅ at a given land grid cell, ௝݂ represents model 105 

skill relative to reference factor ݆, and ௝݉ is a weighting factor. The ௝݉ exponent term gives the 106 

relative importance of model skill for each reference factor ݆ [Eum et al., 2012]. In this study, all 107 

௝݉ are initially assumed equal at unity and we calculate reference factors for gross uptake and 108 

biomass. We note that while more directly observable quantities (e.g., evapotranspiration per 109 

basin or the global residual carbon sink) are available we use gridded references to recovery the 110 

spatial morphology of skill and reliability at the scale at which MsTMIP simulations are 111 

executed.  112 

 113 

For gross uptake we use the global GPP MPI-BGC product based on upscaled FLUXNET data 114 

[Beer et al., 2010; Jung et al., 2011]. GPP is the largest global carbon flux [Beer et al., 2010], the 115 
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dominant carbon input source for terrestrial ecosystems [Chapin et al., 2006], and is important in 116 

model benchmarking as TBMs simulate carbon dynamics “downstream” of GPP, i.e., errors in 117 

GPP propagate to errors in carbon stocks and other fluxes [Schaefer et al., 2012]. The MPI-BGC 118 

GPP dataset is available monthly at 0.5° spatial resolution from 1982 to 2008 and is routinely 119 

used in benchmarking [e.g., Anav et al., 2013; Piao et al., 2013]. While the MPI-BGC product 120 

also includes NEE (–17.1 ± 4.7 Pg C per annum), it differs markedly from other estimates, e.g., –121 

2.6 ± 0.8 Pg C per annum from the Global Carbon Project [Le Quéré et al., 2013; 122 

http://www.globalcarbonproject.org/]. This bias is also present in upscaled ecosystem respiration 123 

and is related to processes not well-resolved [Jung et al., 2011] by FLUXNET (e.g., land use 124 

change, fire emissions, post-disturbance recovery, export of carbon by biomass harvesting and 125 

soil erosion [Regnier et al., 2013], and carbon emissions from reduced carbon species [Ciais et 126 

al., 2008]).  127 

 128 

The biomass reference is taken from the IPCC Tier-1 vegetation biomass product [Ruesch & 129 

Gibbs, 2008]. This product is based on specific biomass (above and belowground) values for 124 130 

carbon zones mapped using geospatial datasets of global land cover, continent, ecofloristic zone, 131 

and forest age. On multi-decadal scales vegetation biomass contributes to net land-atmosphere 132 

exchange of carbon [Houghton, 2005] and has direct implications for assessing forest 133 

deforestation [Keith et al., 2009], especially reductions in emissions from deforestation and 134 

forest degradation (REDD) in tropical forests [Gibbs et al., 2007]. This dataset is available for c. 135 

2000 on a 10 minute global grid and is regridded using box averaging to 0.5° spatial resolution. 136 

 137 
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Using these two reference products, we derive, for each grid cell over the 1982-2008 period, 138 

seven reference factors (Table S1) used to calculate ܴ௜. These factors are bound by zero and 139 

unity, and quantify (i) bias in mean long-term GPP ( ஻݂,௜), (ii) bias in the standard deviation of 140 

mean long-term GPP ( ఙ݂,௜), (iii) convergence [Giorgi & Mearns, 2002] in simulated GPP ( ஼݂,௜), 141 

(iv) bias in GPP trend (்݂ ,௜), (v) correlation in GPP ( ఘ݂,௜), (vi) bias in biomass ( ఉ݂,௜), and (vii) 142 

convergence in simulated biomass ( ఊ݂,௜). The convergence factors address inter-model spread 143 

whereby higher convergence indicates that simulation output is largely insensitive to TBM, i.e., a 144 

robust signal is found across the majority of models [Giorgi & Mearns, 2002]. All reference 145 

factors (except ఘ݂,௜) are based on normalizing uncertainty by the absolute difference between the 146 

reference and simulation. Finally, all factors use well-established skill metrics from 147 

intercomparison studies [e.g., Cadule et al., 2010; Exbrayat et al., 2013; Fisher et al., 2014; Luo 148 

et al., 2012] and address both the distance between simulated and reference values as well as 149 

their correlation and variability in time and space. 150 

 151 

With each reference factor defined and equal importance Eq. [1] simplifies to: 152 ܴ௜ = ஻݂,௜ × ఙ݂,௜ × ஼݂,௜ × ்݂ ,௜ × ఘ݂,௜ × ఉ݂,௜ × ఊ݂,௜ [2] 153 

These ܴ௜ values are then normalized to composite model reliability ( ෨ܴ௜) for each model, i.e., ܴ௜ 154 

is scaled to sum to unity across all ݊ models in the ensemble (∑ ෨ܴ௜ = 1௡௜ୀଵ ) for each grid cell. 155 

These reliabilities, ෨ܴ௜, serve as optimal weights for MME integration: 156 ܨ෨ = ∑ ෨ܴ௜ܨ௜௜  [3] 157 

where ܨ is one of NEE, GPP, vegetation biomass, or NEP for model ݅, and ܨ෨, optimally-158 

integrated ܨ, is calculated for each vegetated grid cell, i.e., although ܴ௜ are derived using GPP 159 

and vegetation biomass they are used for all four variables. 160 
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To assess uncertainty of the optimal integration we generate 1000 bootstrap replicates by 161 

randomly varying the relative importance of each reference factor ௝݉ from zero (i.e., excluded 162 

from reliability calculations) to seven (i.e., only factor considered). Uncertainty is given as either 163 

a confidence bound (the 2.5th to 97.5th percentiles) or the standard deviation across all bootstrap 164 

replicates where each represents an alternative, albeit plausible, optimal integration. 165 

3. Naïve vs. Optimal Cases 166 

For global aggregates the naïve and optimal cases are indistinguishable despite strong spatial 167 

variability in composite model reliability (Figure S1) and individual reference factors (Figures 168 

S2-S11). Naïve case NEE is estimated as −1.15 vs. −1.16 Pg C per annum for the optimal case; 169 

values reference 1982-2008 means. This difference of −0.01 Pg C per annum is small (Figure 1) 170 

relative to the uncertainty of optimal integration (1σ across 1000 replicates: 0.09 Pg C per 171 

annum) and relative to interannual variability (1σ across 27 global annual values: 1.13 [naïve] vs. 172 

1.02 [optimal] Pg C per annum).  173 

 174 

For NEE the lack of significant difference occurs (i) despite variations in components included in 175 

simulated NEE (Table 1), (ii) even though the reference flux GPP does not fully constrain NEE, 176 

and (iii) despite smaller ranges in GPP and biomass compared to NEE (Table 1): GPP varies by a 177 

factor of c. 2 (from 99 [ISAM] to 187 [GTEC] Pg C per annum) and biomass a factor of c. 2.5 178 

(from 460 [ORCHIDEE-LSCE] to 1138 [BIOME-BGC] Gt C) whereas NEE ranges from +0.24 179 

(a weak source; ISAM) to −3.63 (a strong sink; VISIT) Pg C per annum. 180 

 181 

The lack of difference between naïve and optimal cases globally is supported by uniformly small 182 

grid cell differences. The uncertainty of the optimal integration is greater than the difference 183 
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between the cases for 84% of the vegetated land surface (Figure 1). Also, the spatial morphology 184 

of both cases shows a high degree of similarity without any region that skews the global 185 

integrals; only a weak tendency for slightly larger (albeit statistically insignificant) differences in 186 

tropical forests is present (Figure 2). This holds for composite model reliability as well as 187 

considering each reference factor singly (Figure S12).  188 

 189 

In using TBM skill for GPP and biomass to estimate reliability for NEE we assume model skill is 190 

transitive, i.e., skill in the former is relevant for a model’s ability to simulate the latter. As a test 191 

we evaluate integration differences for GPP and biomass as well. A result in contrast to NEE 192 

would violate this assumption. While there are larger magnitude differences between the optimal 193 

and naïve case for GPP (128 and 136 Pg C per annum for naïve and optimal respectively) and 194 

biomass (681 and 699 Gt C for naïve and optimal respectively), these differences are statistically 195 

insignificant relative to the uncertainty of the optimal case (Figure 1).  196 

 197 

A key concern in the comparison of naïve and optimal values is the semantic differences in NEE 198 

[Hayes et al., 2012]. While all TBMs adhere to the MsTMIP protocol not all TBMs are able to 199 

simulate all components of NEE (Table 1). That is, if NEE is indistinguishable across naïve and 200 

optimal integration this begs the question if the inclusion/exclusion of relevant NEE components 201 

acts in a compensatory manner. Thus, as an additional check on the equivalence of naïve and 202 

optimal cases we test the impact of variable NEE semantics directly using NEP. This test is 203 

based on using the largest subset of NEE components simulated across the full ensemble. Here, 204 

only gross uptake and gross loss are simulated by all TBMs. The disequilibrium between these 205 

two fluxes is per definitionem NEP. As seen with GPP and biomass, which are also semantically 206 
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equivalent across models, differences in NEP (5.32 and 5.76 Pg C per annum for naïve and 207 

optimal respectively) are statistically insignificant relative to the uncertainty of the optimal case 208 

(Figure 1).  209 

 210 

Furthermore, the lack of difference in global integrals is, as seen for NEE, supported by the small 211 

magnitudes of grid cell difference between cases (Figure 1) and the high degree of similarity in 212 

spatial morphology across cases (Figure 2) for NEP, GPP, and biomass. No region skews the 213 

global values with only a weak tendency for slightly larger differences in tropical forests, 214 

especially for GPP. For NEP, GPP, and biomass the percent of grid cells where the difference 215 

between naïve and optimal values is less than the uncertainty of the optimal integration is 87%, 216 

87%, and 86% respectively (Figure 1).  217 

 218 

Does that lack of a significant difference in integrated values indicate that the naïve case is 219 

“correct”? The naïve case presupposes equal weighting, i.e., “one model – one vote”. For 220 

composite model reliabilities ( ෨ܴ௜) this implies weights of unity normalized by the number of 221 

ensemble members, i.e., uncertainty bounds derived from the 1000 replicates must contain a 222 

global mean ෨ܴ௜ of 0.1 for each model. This is the case for 8 of the 10 models; ISAM and 223 

ORCHIDEE-LSCE are near-misses where the upper uncertainty bounds are just below this 224 

cutoff (0.096 and 0.095 respectively). A similar pattern is seen with model rank, i.e., a one-225 

number assessment of relative skill (Figure S13). Here, model ranks show considerable overlap 226 

without any clear indication of “best” or “worst”. Furthermore, even when focusing on a single 227 

bootstrap replicate a higher rank does not demonstrate that one model is “good” per se. As 228 

reliabilities do not exceed 0.25 (unity indicates perfect agreement between TBM and references) 229 
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a higher rank only shows that the predictive skill of a higher ranked model is marginally higher 230 

than the next ranked model. Taken together, the equivalence in global model reliabilities and 231 

rank strongly imply that the benchmarking and complexity inherent in optimal integration add no 232 

value relative to the naïve case. 233 

 234 

Collapsing ෨ܴ௜ for each grid cell to ranks yields the preferred model (Figure 3). “Preferred” here 235 

indicates the highest composite ෨ܴ௜. Applying this approach the most skilled TBM is GTEC 236 

which is the preferred model for c. 23% of the vegetated land surface. However, the preferred 237 

model is, as seen for global ranks, highly variable (Figure 3). Depending on reference factor 238 

importance, c. 75% of all vegetated grid cells have between 4 and 7 different preferred models 239 

(Figure 3, inset) with only 33 of 55,457 vegetated grid cells having the same preferred model 240 

throughout. Lastly, while there is the suggestion (Figure 3) that some TBMs exhibit higher skill 241 

levels, the associated variability emphasizes the equivalence of models (Figure 3, inset). That is, 242 

a given TBM only posts higher reliability scores under a particular set of references and relative 243 

importance of those reference factors. These conditions are not identifiable a priori such that 244 

skill-based discrimination is not feasible as the signal (actual model skill) is dwarfed by the noise 245 

(plausible approaches to asses actual model skill). 246 

4. Implications 247 

The equivalence of the naïve and optimal cases is a troubling but robust finding of this study. 248 

The difference between both integrations is small in magnitude and less than the uncertainty 249 

associated with the optimal integration. This holds for global aggregates and is the 250 

overwhelmingly dominant pattern on a grid cell basis. Equivalence also applies to both 251 

semantically identical (GPP, biomass, and NEP) and semantically diverse (NEE) simulation 252 
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outputs. Taken together this indicates that TBM skill is largely indistinguishable as well as 253 

malleable in that over a plausible set of skill assessments (i.e., the variants in REA from 254 

bootstrapping) a model’s reliability ranges widely.  255 

 256 

To better understand the interplay between TBM skill, ensemble integration, and benchmarking 257 

several innovations are needed: As with the atmospheric component of Earth system models, the 258 

land component evaluated here must be regularly subject to perturbed-physics ensembles (where 259 

parameterizations are varied within some tolerance). This is motivated by parameter tuning 260 

[Bindoff et al., 2013; Flato et al., 2013] and the social anchoring tendency of models to regress to 261 

the mean value of an existing ensemble or reference [Knuti, 2010; Sanderson & Knutti, 2012]. A 262 

systemic exploration of parameter-based divergence in model outputs is needed to quantify and 263 

isolate sources of uncertainty and “de-tune” models (i.e., uncover compensatory errors [Collins 264 

et al., 2011]). A second innovation concerns steady-state spin-up. Models are routinely run to 265 

equilibrium states, where change in carbon stocks is zero within some tolerance [e.g., Huntzinger 266 

et al., 2013] prior to actual simulation. However, the resultant initial carbon pool sizes vary 267 

dramatically both for fully-coupled Earth system models [Exbrayat et al., 2014] as well as 268 

TBMs. For the MsTMIP ensemble evaluated here starting soil carbon pools range from 409 to 269 

2118 relative to a reference value of 890 to 1660 Gt C [Todd-Brown et al., 2013]. Given the 270 

interplay between carbon pool size and carbon flux insuring a model’s equilibrated state is 271 

similar to observations will materially affect TBM skill.  272 

 273 

Systemically varying TBM structure [Curry & Webster 2011; McWilliams, 2007] is also a 274 

needed innovation. This is especially warranted given the recent emphasis on more 275 
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comprehensive treatments of Earth climate system dynamics. This additional complexity does 276 

not guarantee more accurate projections [Knutti & Sedláček, 2013], but represents another 277 

structural component to assess. Here, a change in model building is needed such that discrete 278 

subroutines can be altered systematically. Target subroutines must include known problematic 279 

processes (e.g., phenology [Richardson et al., 2012], net land use flux [Pongratz et al., 2014], or 280 

carbon allocation [De Kauwe et al., 2014]) as well as, in the case of MsTMIP, key processes 281 

with uneven (or absent) structural representation [Huntzinger et al., 2014] such as carbon-282 

nitrogen interactions [Zaehle et al., 2014], phosphorous limitation, fire emissions, forest 283 

management, and forest age structure. Note that this is a refinement of the prescribed protocol 284 

used in MsTMIP which fixes non-structural TBM characteristics but does not guarantee that the 285 

ensemble range in structural characteristics equates to a systematic sampling of all possible 286 

modeling algorithms.  287 

 288 

A further protocol refinement concerns the use of offline runs. While this effectively controls for 289 

model-specific implementations of atmospheric coupling it can be considered biased as 290 

interactions between the surface energy budget and atmospheric conditions are missing. This 291 

suggests a nested experimental design whereby the components of a fully-coupled Earth system 292 

model (land, cryosphere, atmosphere, and ocean) are, in conjunction with the semi-factorial base 293 

runs, systemically varied. A full factorial design with systematically toggleable subroutines 294 

across all Earth system model domains, in turn, requires a deeper understanding of the trade-offs 295 

between ensemble size, model complexity, and computational resources [Ferro et al., 2012]. A 296 

corollary to this approach is to move model development toward using stochastic treatments of 297 
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unresolved processes [Palmer et al., 2014] and the realization that treating ensemble spread as 298 

uncertainty is an approximation [Curry & Webster, 2011; Parker, 2010]. 299 

 300 

Another key innovation concerns “ground truth” for gridded model outputs. Here, the analyst 301 

must contend with multiple plausible references [e.g., Mitchard et al., 2014; Schwalm et al., 302 

2013] and/or references with large uncertainty bounds [Todd-Brown et al., 2013]. For point-303 

based data upscaled to gridded reference products, like the GPP product used here, 304 

representativeness is a further concern [Schwalm et al., 2011]. The resultant ambiguity 305 

surrounding “ground truth” can render model reliability a pliable construct. As such we suggest a 306 

parallel track of MIPs and DIPs, i.e., data intercomparison projects where “data” encompasses 307 

observationally-based reference products. Only when reference datasets themselves have been 308 

reconciled and their uncertainty quantified at scales that typify TBM simulations can we 309 

unambiguously assess TBM skill. This highlights an advantage of skill-based integration that 310 

generalizes to accommodate MIP- and/or DIP-based uncertainties (using ߯ଶ-based metrics 311 

[Schwalm et al., 2010]) where available. MIPs and DIPs must also be viewed as necessary 312 

vehicles to explicitly link TBM skill gradients to intrinsic model structural characteristics. 313 

Effectively mapping uncertainty-aware skill gradients to structural attributes [Schwalm et al., 314 

2010; Xia et al, 2013] has great potential to inform future development of TBMs by identifying 315 

subroutines associated with higher skill. 316 

 317 

Finally, it is important to emphasize that the TBM equivalence shown here is in the context of 318 

carbon metabolism for a given model ensemble with a given set of references. Previous work 319 

[Schwalm et al., 2013] showed similar results in model skill assessment using evapotranspiration 320 
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from fully-coupled CMIP5 runs and we expect this overall result to generalize across multiple 321 

land surface processes, especially when “ground truth” is ambiguous. The equivalence between 322 

naïve and optimal cases is, however, not a reason to abandon skill-based integration or TBM 323 

skill assessment in general. Advancing our understanding across the full taxonomy of 324 

uncertainties is necessary to resolve actual model skill as well as issues of MME integration and 325 

interpretation. This taxonomy includes uncertainty relative to parameterization, steady-state spin-326 

up (i.e., initial conditions), structure, reference data, and forcing data (relatively well-established 327 

in the land surface modeling community [e.g., Barman et al., 2014a,b; Fekete et al., 2004; 328 

Haddeland et al., 2011; Jain et al., 2013]). 329 

 330 

As is, the enduring popularity of the naïve case is based both on ease (e.g., no references are 331 

needed) and the higher skill generally shown by the naïve case relative to most or all ensemble 332 

members singly. While it is possible that land surface carbon metabolism has predictability limits 333 

similar to atmospheric dynamics [Slingo & Palmer, 2011] –variously termed ߪ௖௟௜௠௔௧௘, 334 

“irreducible imprecision”, or “irreducible ignorance” [McWilliams 2007; Walker et al., 2003]– 335 

only a full inventory of uncertainty types will allow an “intelligent” skill-based integration and 336 

reveal if TBMs are subject to “reducible ignorance” (where additional insight and predictive skill 337 

are achievable [Luo et al., 2014]) or “irreducible ignorance” (where predictive skill is limited). 338 
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Tables 763 
 764 
Table 1. Characteristics of terrestrial biosphere models and reference datasets. Native 0.5° spatial 765 
resolution for all TBMs. NEE components refer to aspects of biosphere-atmosphere exchange 766 
included in NEE: D, maintenance respiration deficit; F, fire emissions; ܧ௅௎஼, land use change 767 
emissions; P, product decay emissions. VISIT does not include any of these components. The 768 
MsTMIP median model is used for convergence-based reference factors. Carbon fluxes and 769 
biomass model values are 1982-2008 global means. 770 
 
Model 

 
Run 

NEE 
Components 

NEE 
[Pg C yr-1] 

NEP 
[Pg C yr-1] 

GPP 
[Pg C yr-1] 

Vegetation 
Biomass [Gt C] 

 
Reference 

BIOME-BGC BG1 F -0.38 6.46 138 1138 Thornton et al., 2002 
CLM BG1 D/F/ܧ௅௎஼/P 0.16 4.46 142 668 Mao et al., 2012 
CLM4VIC BG1 D/F/ܧ௅௎஼/P -0.15 3.57 112 550 Lei et al., 2014 
DLEM BG1 ܧ௅௎஼/P -1.51 2.18 105 475 Tian et al., 2012 
GTEC SG3 P -2.79 9.67 187 986 King et al., 1997; 

Ricciuto et al., 2011 
ISAM BG1 ܧ௅௎஼ 0.24 1.49 99 642 Jain & Yang, 2005 
LPJ SG3 F/ܧ௅௎஼ -0.53 10.55 138 536 Sitch et al., 2003 
ORCHIDEE-LSCE SG3 ܧ௅௎஼/P -1.84 6.68 118 460 Krinner et al., 2005 
VEGAS2.1 SG3 F/ܧ௅௎஼/P -1.11 4.48 117 597 Zeng et al., 2005 
VISIT SG3 – -3.63 3.63 122 763 Ito, 2010 
MsTMIP Median – – – – 120 620 this study 
FLUXNET-based GPP – – – – 119 – Jung et al., 2011 
IPCC Vegetation Biomass – – – – – 491 Ruesch & Gibbs, 2008 
Naïve Integration  – – -1.15 5.32 128 681 this study 
Optimal Integration – – -1.16 5.76 136 699 this study 
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Figure 3 795 
 796 

 797 
 798 
Figure 3. Preferred model. Upper panel: preferred model based on equal relative importance of 799 
all seven reference factors, the default optimal case. Values in parenthesis show fraction of 800 
vegetated land surface where a given model is preferred. A 3x3 majority filter is used for 801 
visualization purposes. Middle panel: number of unique preferred models across all bootstrap 802 
replicates, inset shows histogram. Lower panel: median reliability of preferred model across all 803 
1000 bootstrap replicates; inset shows cumulative distribution (y-axis) over maximum (red), 804 
median (black), and minimum (blue) reliability (x-axis). 805 
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