
Abstract The Global Carbon Project estimates that the terrestrial biosphere has absorbed about one-third 
of anthropogenic CO2 emissions during the 1959–2019 period. This sink-estimate is produced by an ensemble 
of terrestrial biosphere models and is consistent with the land uptake inferred from the residual of emissions 
and ocean uptake. The purpose of our study is to understand how well terrestrial biosphere models reproduce 
the processes that drive the terrestrial carbon sink. One challenge is to decide what level of agreement between 
model output and observation-based reference data is adequate considering that reference data are prone to 
uncertainties. To define such a level of agreement, we compute benchmark scores that quantify the similarity 
between independently derived reference data sets using multiple statistical metrics. Models are considered 
to perform well if their model scores reach benchmark scores. Our results show that reference data can differ 
considerably, causing benchmark scores to be low. Model scores are often of similar magnitude as benchmark 
scores, implying that model performance is reasonable given how different reference data are. While model 
performance is encouraging, ample potential for improvements remains, including a reduction in a positive leaf 
area index bias, improved representations of processes that govern soil organic carbon in high latitudes, and 
an assessment of causes that drive the inter-model spread of gross primary productivity in boreal regions and 
humid tropics. The success of future model development will increasingly depend on our capacity to reduce and 
account for observational uncertainties.

Plain Language Summary Earth's natural vegetation absorbs about one-third of CO2 emissions 
caused by human activities. This value is produced by a group of models rather than through direct 
observations. Our study assesses how well models reproduce the processes that drive the CO2 exchange 
between land and atmosphere using a wide range of data sets that are mainly derived from field measurements 
and satellite images. These reference data sets are prone to errors that are not quantified in a consistent manner. 
To account for such errors, we first compare different reference data sets against each other. We then compare 
model output against reference data and assess whether the differences are comparable to the differences among 
the reference data sets. We conclude that the performance of models is encouraging given how uncertain 
reference data are, but that ample potential for improvements remains.
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Key Points:
•  Differences between model and 

observations are often similar 
compared to differences between 
independently derived observation-
based data

•  We quantify differences between 
independently derived observations to 
disentangle model deficiencies from 
observational uncertainties

•  Future work should address biases in 
soil organic carbon, leaf area index, 
and the large spread of gross primary 
productivity among models
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1. Introduction
Effective climate policies demand reliable estimates of global carbon fluxes and trends. The Global Carbon 
Project coordinates an annual publication on the Global Carbon Budget, which assesses and reports (a) CO2 
emissions from fossil fuel combustion and oxidation from all energy and industrial processes (EFOS) and land use 
change (ELUC), (b) atmospheric CO2 concentration growth rate (GATM), and (c) the uptake of CO2 by the ocean 
(SOCEAN) and natural vegetation (SLAND), all expressed in GtC yr −1 (Friedlingstein et al., 2020):

𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐹𝐹𝐹𝐹𝐿𝐿𝐸𝐸𝐴𝐴𝑂𝑂 + 𝐹𝐹𝐿𝐿𝐴𝐴𝑂𝑂𝐿𝐿 + 𝐵𝐵𝐼𝐼𝐴𝐴. (1)

The components of the carbon budget are computed independently and the budget imbalance (BIM) reflects the 
remaining uncertainty associated with imperfect spatial and/or temporal data coverage, observational errors, 
and omission of smaller terms. The land sink term SLAND arises from the combined effects of CO2 fertilization, 
nitrogen deposition, and climate change under pre-industrial land cover. Estimates for the 1959–2019 period 
show that anthropogenic CO2 emissions associated with fossil fuel combustion (365 GtC) and land use change 
(85 GtC) are approximately balanced by the increase of atmospheric CO2 (205 GtC) and the uptake of CO2 by 
oceans (105 GtC) and land (145 GtC). The natural terrestrial ecosystems would have therefore absorbed about 
one-third of anthropogenic CO2 emissions, which emphasizes the pivotal role of the terrestrial biosphere in the 
global climate system. Note that the values above are rounded to the nearest 5 GtC and BIM is estimated to equal 
0 GtC for this period.

The value for SLAND is not based on direct observations, but on the mean value from an ensemble of terrestrial 
biosphere models collectively referred to as the trends in the land carbon cycle project (TRENDY) ensemble. 
Results from TRENDY simulations have been used extensively to explore different aspects of the global carbon 
cycle (e.g., Bastos et al., 2020; Fernández-Martínez et al., 2019; Forzieri et al., 2018; Kondo et al., 2020; Piao 
et al., 2020). Friedlingstein et al. (2020) presented a brief assessment of model performance for key processes that 
are relevant for SLAND (their Figure B2). Using a skill score system developed by the International Land Model 
Benchmarking Project (ILAMB; Collier et  al.,  2018), the authors concluded that (a) TRENDY models show 
high skill scores for runoff, and to a lesser extent for vegetation biomass, gross primary productivity (GPP), and 
ecosystem respiration, and that (b) skill scores are lowest for leaf area index (LAI) and net ecosystem exchange 
(NEE), with the widest disparity among models for soil organic carbon. The ILAMB skill scores summarize how 
well model output resembles reference data across multiple statistical metrics, including the bias, centralized 
root-mean square error, the timing of seasonal peaks, inter-annual variability, spatial correlation, and spatial 
variability (see Section 2.4 for details).

One challenge of model evaluation is accounting for observational uncertainty. Observational uncertainty can be 
understood as an estimate characterizing the range of values within which the true value of a measurand, that is, 
the quantity to be measured, lies (JCGM, 2008). Any measurement consists of a series of transformations from 
the event observed to the final value, and each transformation may introduce and propagate errors (Merchant 
et  al.,  2017). For instance, sources of uncertainty in satellite LAI products include uncertainties in the input 
data (e.g., surface reflectance, radiance, albedo, land cover type), the radiative transfer model, the inversion 
technique, and the prior information (Fang et al., 2012). Unfortunately, observational uncertainty is not reported 
consistently among reference data sets (Merchant et al., 2017). To account for observational uncertainty never-
theless, a pragmatic and common approach is to evaluate model output against multiple reference data sets per 
variable, which may underestimate uncertainty if reference data are not sufficiently independent and overestimate 
uncertainty if one reference data set is strongly inferior compared to others (Covey et al., 2002). The ILAMB 
framework addresses observational uncertainty by using multiple reference data sets that are weighed depending 
on their estimated quality and spatiotemporal coverage (Collier et al., 2018). However, the ILAMB approach 
does not indicate what score a model should actually yield given how uncertain reference data are. This makes 
the interpretation of the ILAMB scores challenging, as it remains unclear to what extent low scores are related to 
observational uncertainty. The purpose of our study is to evaluate how well terrestrial biosphere models repro-
duce processes that drive the terrestrial carbon sink term SLAND. As a novel contribution, we will demonstrate how 
well models should score given that reference data are imperfect.
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2. Methods
2.1. Simulation Protocol

The TRENDY model ensemble consists of a variety of terrestrial ecosystem models intended for climate simu-
lations. Some TRENDY models are characterized as land surface models (LSMs), which were initially devel-
oped to simulate land-atmosphere fluxes of mass, energy, and momentum required as inputs for the atmospheric 
component of global climate models. Other TRENDY models are dynamic global vegetation models (DGVMs), 
which were designed to simulate terrestrial carbon pools and fluxes, as well as biogeography and plant demog-
raphy. To represent carbon cycle dynamics in global climate models, model developers began incorporating 
DGVMs into LSMs in the early 2000s (Fisher & Koven, 2020). In this paper we use the more general term terres-
trial biosphere models (G. Bonan, 2019) to describe all TRENDY models regardless of their original purpose. 
Model results evaluated in this study form part of TRENDY version 9, which was used for quantifying the global 
carbon budget of 2020 (Friedlingstein et al., 2020). We selected 15 terrestrial biosphere models for which most 
variables were available at the time of writing (Table 1).

TRENDY models are run for three simulations that are designed to disentangle the role of changes in CO2, 
climate, as well as land-use and land-cover change (LULCC). The first simulation (S1) is driven by time-varying 
atmospheric CO2 concentration but land cover state is fixed for the year 1700 and repeating climate is used from 
the period 1901–1920. The S1 simulation is designed to infer the effect of increasing atmospheric CO2. The 
second simulation (S2) is driven with increasing CO2 concentrations and climate varying in time, but keeps the 
land cover state fixed to its pre-industrial state of 1700. Finally, in the third simulation (S3) all forcings (CO2, 
climate, and LULCC) are time varying. Models with a coupled carbon-nitrogen cycle are also forced with histor-
ical nitrogen deposition (S1, S2, and S3), pre-industrial nitrogen fertilization (S1, S2) and historical nitrogen 
fertilization (S3). Our study only assess results for S3, as S1 and S2 are counter-factual.

The term SLAND in Equation 1 corresponds to the net biome productivity (NBP) in the S2 simulation, where NBP 
equals GPP minus ecosystem respiration minus CO2 fluxes associated with disturbance. The SLAND term is a coun-
ter-factual value that represents the strength of the terrestrial carbon sink under pre-industrial land cover. Given 
the hypothetical nature of global SLAND, we cannot evaluate it against observations. However, we can evaluate 
NBP, and the processes that drive it, in the S3 experiment where CO2, climate, and LULCC forcings all vary in 
time. The variable NBP under S3 approximates SLAND (3.4 GtC yr −1 with a standard deviation of ±0.9 GtC yr −1) 

Model Resolution C-N Wetland Peatland Permafrost Reference

CLASSIC 1° × 1° No No No No Melton et al. (2020)

CLM5.0 1° × 1° Yes No No Yes Lawrence et al. (2019)

DLEM 0.5° × 0.5° Yes Yes Yes No Tian, Chen, et al. (2015)

IBIS 1° × 1° No No No No Yuan et al. (2014)

ISAM 0.5° × 0.5° Yes Yes No Yes Meiyappan et al. (2015)

ISBA-CTRIP 1° × 1° No No No Yes Delire et al. (2020)

JSBACH 1.875° × 1.875° Yes No No No Reick et al. (2021)

LPJ-GUESS 0.5° × 0.5° Yes No No No Smith et al. (2014)

LPX-Bern 0.5° × 0.5° Yes No Yes Yes Lienert and Joos (2018)

OCN 1° × 1° Yes No No No Zaehle and Friend (2010)

ORCHIDEE 0.5° × 0.5° No No No No Krinner et al. (2005)

ORCHIDEE-CNP 2° × 2° Yes No No No Goll et al. (2017)

ORCHIDEEv3 2° × 2° Yes No No No Vuichard et al. (2019)

SDGVM 1° × 1° Yes No No No Walker et al. (2017)

VISIT 0.5° × 0.5° No Yes No No Kato et al. (2013)

Table 1 
TRENDY (v9) Terrestrial Biosphere Models, Their Horizontal Resolution in Terms of Degrees Longitude and Latitude, 
and Whether Models Include Representations of Processes Required for Simulating Carbon Cycle Dynamics Related to (a) 
Carbon-Nitrogen (C-N) Interaction, (b) Wetlands, (c) Peatlands, and (d) Permafrost
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minus ELUC (1.6 ± 0.7 GtC yr −1). Note that ELUC values can be obtained from terrestrial biosphere models or, 
as for the Global Carbon Budget, from bookkeeping models (BLUE, HandN2017, and OSCAR; Friedlingstein 
et al., 2020).

The S3 TRENDY simulation protocol (version 9) consists of a preindustrial spin up for the year 1700 and two 
transient runs for the periods 1701–1900 and 1901–2019, respectively (Friedlingstein et al., 2020). The prein-
dustrial spin up uses a constant atmospheric CO2 concentration of 276.59 ppm, repeating climate data from the 
early decades of the 20th century (i.e., 1901–1920), and land cover that uses crops and pasture distribution corre-
sponding to the year 1700. Since terrestrial biosphere models use different sets of plant functional types (PFTs) 
their land covers are different although they are all expected to represent the crop and pasture distribution using 
the specified common LULCC forcing. The first transient run for the 1701–1900 period uses the same climate as 
for the spin up, but time-varying CO2 concentrations and land cover. The second transient run uses time-varying 
CO2, climate, and land use for the 1901–2017 period. Note that the two transient runs are typically combined in 
a single run, where meteorological data from the 1901–1920 period are repeatedly used during the 1701–1900 
period. Meteorological inputs required by TRENDY models may include surface downwelling shortwave and 
longwave radiation, near-surface air temperature, precipitation, near-surface specific humidity, surface pressure, 
and near-surface horizontal wind speed. Models were forced with the merged monthly Climate Research Unit 
(CRU) and 6-hourly Japanese 55-year Reanalysis (JRA-55) data or by the monthly CRU data (Harris et al., 2014; 
Kobayashi et  al.,  2015). The LULCC forcing was given by the Land-Use Harmonization 2 data set (Hurtt 
et al., 2020) or the HYDE land-use change data set (Klein Goldewijk et al., 2017). For the purpose of our study, 
all S3 model outputs were spatially interpolated to a common resolution of 1° × 1° using bilinear interpolation. 
In the case of the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC; Table 1), we 
reran the model at the 1° × 1° resolution rather than spatially interpolating the original 2.8125° × 2.8125° grid.

2.2. In Situ Reference Data

In situ reference data include the variables GPP, ecosystem respiration (RECO), NEE, vegetation carbon (CVEG), 
LAI, latent heat flux (HFLS), and streamflow (Table 2). The variable NEE is defined as RECO minus GPP, such 
that negative NEE values imply a net land carbon sink. In situ observations that fell into the same model grid cell 
were averaged prior to the comparison against model output. In situ reference data are compared against model 
output at the grid cell level. An evaluation that accounts for the presence of particular PFTs at a site would have 
been desirable, but most model data were reported on a grid cell level only. All comparisons were conducted for 
locations and time steps that models and reference data have in common. Time-invariant reference data (vegeta-
tion carbon) were compared against model output averaged from 1980 to 2019. Details on each in situ reference 
data set are provided next.

The FLUXNET2015 database includes 204 eddy covariance sites with measurements made sometime during 
the 1997–2014 period (Pastorello et  al.,  2020) (Table  2; Figure  B1a). The corresponding variables are GPP, 
ecosystem respiration, NEE, and latent heat flux. Only sites with at least 3 years of data were considered. We 
assessed NEE using two versions of the FLUXNET2015 database. The first version uses all available sites with 
at least 3 years of data. This data set was then filtered for sites that were located in forests where no disturbance 
occurred over the last 50 years as documented in Besnard et al. (2018) and for months that have ≥95% of high 
quality data. The first and second version of this reference data set is here referred to as NEE-FLUXNET and 
NEE-FLUXNETB, respectively.

Aboveground biomass measurements were obtained from two data sets. The first database consists of 1974 meas-
urements that were compiled from literature by Xue et al. (2017). The second database consists of 1645 measure-
ments from 274 sites provided by the Forest Observation System (Schepaschenko et al., 2019). We merged both 
data sets and replaced Xue et al. (2017) with the more recent Schepaschenko et al. (2019) data when a site was 
present in both data sets. We then converted aboveground biomass to total vegetation carbon using an empirical 
relation between root biomass y and shoot biomass x (y = 0.489 × x 0.890) (Mokany et al., 2006), as well as a 
carbon-to-biomass ratio of 0.5. It must be noted that empirical data on root-shoot ratios are likely to be subject to 
a sampling bias towards smaller rather than larger trees, as the former are easier to excavate (Huang et al., 2021). 
Since root-shoot ratios tend to be larger for smaller trees, this sampling bias may result in an overestimation of 
root-shoot ratios. The conversion from aboveground biomass to total vegetation carbon was necessary as the 
TRENDY data set provides only total biomass without separation into below and aboveground components. 
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Measurements located within the same model grid cells were averaged, leading to a total of 592 grid cells with at 
least one in situ measurement (Figure B1c).

LAI observations were taken from the Committee on Earth Observation Satellites (CEOS) which consists of 141 
sites with monthly measurements during the 1999–2017 period (Figure B1b) (Garrigues et al., 2008). The values 
are based on a transfer function that upscales ground LAI measurements to a moderate resolution grid cell using 
high spatial resolution surface reflectances.

Annual stream flow gauge records were obtained from the Global Runoff Data Centre (GRDC) for the world's 
50 largest basins (Figure B1d) (Dai & Trenberth, 2002). Measurements were made some time between 1980 and 
2010, depending on the basin.

2.3. Globally Gridded Reference Data

Globally gridded reference data sets include the variables GPP, NBP, vegetation carbon, soil organic carbon, LAI, 
latent heat flux, and runoff. The variable NBP is defined as GPP minus RECO minus CO2 emissions associated 
with disturbance and LULCC, such that positive NBP values imply a net land carbon sink. All gridded reference 
data were spatially interpolated to a common resolution of 1° × 1° using bilinear interpolation. All comparisons 
are conducted for grid cells and time steps that models and reference data have in common. Spatially gridded 
vegetation carbon and soil organic carbon reference data do not vary in time as they are based on a range of 
spatial data sets and in situ measurements that correspond to different instances in time. To compare model results 

Source Variables Approach (n sites) Period Reference

In situ measurements

 FLUXNET2015 GPP, RECO, NEE, HFLS Eddy covariance (204) 1997–2014 Pastorello et al. (2020)

 FOS CVEG Allometry (274) 1999–2018 Schepaschenko et al. (2019)

 Xue CVEG Allometry (1974) 1999–2018 Xue et al. (2017)

 CEOS LAI Transfer function (141) 1999–2017 Garrigues et al. (2008)

 GRDC MRRO Gauge records (50) 1980–2010 Dai and Trenberth (2002)

Globally gridded data sets

 MODIS GPP Light use efficiency model 2000–2016 Zhang et al. (2017)

 GOSIF GPP Statistical model 2000–2017 Li and Xiao (2019)

 FluxCom GPP Machine learning 1980–2013 Jung et al. (2020)

 CT2019 NEE Atmospheric inversion 2000–2017 Jacobson et al. (2022)

 CAMS NBP Atmospheric inversion 1979–2019 Agustí-Panareda et al. (2019)

 CarboScope NBP Atmospheric inversion 1999–2019 Rödenbeck et al. (2018)

 GEOCARBON CVEG Machine learning NA Avitabile et al. (2016) and 
Santoro et al. (2015)

 Zhang CVEG Data fusion 2000s Zhang and Liang (2020)

 HWSD CSOIL Soil inventory NA Wieder (2014) and Todd-
Brown et al. (2013)

 SG250 m CSOIL Machine learning NA Hengl et al. (2017)

 AVHRR LAI Artificial neural network 1982–2010 Claverie et al. (2016)

 Copernicus LAI Artificial neural network 1999–2019 Verger et al. (2014)

 MODIS LAI Radiative transfer model 2000–2017 R. B. Myneni et al. (2002)

 FluxCom HFLS Machine learning 2001–2013 Jung et al. (2019)

 CLASSr HFLS, MRRO Blended product 2003–2009 Hobeichi et al. (2019)

Note. Meanings of acronyms are provided in Section 2.

Table 2 
Observation-Based Reference Data Used for Model Evaluation
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against time-invariant reference data we averaged model output over the 1980–2019 period, a time during which 
most measurements have been made. Details on each globally gridded reference data set are provided next.

2.3.1. Gross Primary Productivity

We used three different globally gridded GPP reference data sets. The first data set is based on satellite 
imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period 2000–2016 (Zhang 
et al., 2017). The data set estimates GPP as the product of light absorption by chlorophyll and the efficiency 
that converts the absorbed energy to carbon fixed by plants through photosynthesis. The required inputs to the 
Zhang et al. (2017) algorithm include a range of MODIS products (surface temperature, land surface water index, 
enhanced vegetation index, and land cover classification), as well as air temperature and radiation fluxes from 
NCEP Reanalysis II (Kanamitsu et al., 2002).

The second reference GPP data, referred to as GOSIF, consists of solar-induced chlorophyll fluorescence (SIF) 
soundings from the global Orbiting Carbon Observatory-2 (OCO-2). The data set is based on a linear correlation 
between SIF soundings and GPP measurements from 91 eddy covariance measurements sites from FLUXNET 
for the period 2000–2017 (Li & Xiao, 2019).

The third GPP reference data, referred to as FluxCom, is based on a variety of machine-learning algorithms 
that upscale eddy covariance data using remote sensing data and meteorological data as global predictors (Jung 
et al., 2020; Tramontana et al., 2016). Remote sensing data employed by FluxCom include land surface temper-
ature (LST; MOD11A226), land cover (MCD12Q127), fraction of absorbed photosynthetically active radiation 
by a canopy (fPAR; MOD15A228), and bidirectional reflectance distribution function (BRDF)-corrected reflec-
tances (MCD43B429) from MODIS. Meteorological inputs for FluxCom were taken from the Climate Research 
Unit National Centers for Environmental Prediction version 8. The FluxCom values used in our study are the 
median values computed over a FluxCom ensemble for the 1980–2013 period. The GPP FluxCom ensemble 
consists of six ensemble members that vary with respect to the employed machine learning algorithm (Artifi-
cial Neural Network, Multivariate Adaptive Regression Splines, and Random forest) and partitioning method 
(Lasslop et al., 2010; Reichstein et al., 2005). It should be noted that neither the satellite based GPP estimates nor 
the FluxCom product explicitly account for the CO2 fertilization effect, which compromises the respective carbon 
flux trends (De Kauwe et al., 2016; Jung et al., 2020).

2.3.2. Net Biome Productivity

Globally gridded reference NBP was obtained from the three inversion models Copernicus Atmosphere Monitor-
ing Service (CAMS; Chevallier, 2013), the Jena CarboScope (Rödenbeck et al., 2018), and CarbonTracker 2019 
(CT2019; Jacobson et al., 2020). Inversion models attempt to reproduce observed atmospheric CO2 concentra-
tions by adjusting CO2 fluxes at the surface. This process requires an atmospheric transport model and apriori 
estimates of surface CO2 fluxes. The prior fluxes are usually derived from terrestrial biosphere models. For 
CAMS, atmospheric CO2 concentrations are taken from 81 sites provided by the National Oceanic and Atmos-
pheric Administration (NOAA) Earth System Research Laboratory archive. The inversion is based on the global 
atmospheric transport model Laboratoire de Météorologie Dynamique (LMDZ) and covers the period 1979–2019 
(Hourdin et al., 2006). Land-atmosphere fluxes are based on priors from the Organizing Carbon and Hydrology 
in Dynamic Ecosystems (ORCHIDEE; Krinner et  al.,  2005) and GFED wild fire emissions. CO2 emissions 
from wild fires are compensated by the same annual flux of opposite sign representing the regrowth of burnt 
vegetation.

The second inversion-based NBP estimate from Jena CarboScope (Run ID s99oc v2020) uses 48 CO2 measure-
ment sites mostly from NOAA (Rödenbeck et al., 2018). The atmospheric transport is simulated by the Transport 
Model 3 for the period 1999–2019. As for CAMS, the land CO2 flux of Jena CarboScope represents the net flux 
resulting from GPP, ecosystem respiration, and disturbances, such as wild fires and LULCC. While Rödenbeck 
et al. (2018) refer to the Jena CarboScope land CO2 flux as NEE, we refer to it as NBP, as it includes the effects 
of disturbances and LULUC.

The third inversion-based NBP estimate from CT2019 uses 460 CO2 measurement sites provided by the 
GLOBALVIEW + data product version 5.0 (Masarie et al., 2014). The transport model employed by CT2019 is 
the Transport Model 5, which is run for the period 1999–2019 (Huijnen et al., 2010). The apriori land-atmos-
phere fluxes are taken from the Carnegie-Ames Stanford Approach biogeochemical model (Potter et al., 1993). 
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Carbon emissions from fires are prescribed from the Global Fire Emissions Database (GFED; van der Werf 
et al., 2017), and are not modified by the optimization process.

2.3.3. Vegetation Carbon

We used three globally gridded and time-invariant vegetation carbon reference data sets. Two of the three data 
sets originally consisted of aboveground biomass. As for our in situ measurements, we converted aboveground 
biomass to vegetation carbon using the empirical relation between root biomass and shoot biomass provided 
by Mokany et al. (2006). Again, this was necessary as most TRENDY models only reported total rather than 
aboveground biomass.

The first reference data set, here referred to as GEOCARBON-Mokany, integrates local high-quality biomass 
data with a boreal forest biomass map by Santoro et al.  (2015) and a pan-tropical biomass map by Avitabile 
et al. (2016), which is based on data from Saatchi et al. (2011) and Baccini et al. (2012). The data set covers only 
areas that are dominated by trees in the Global Land Cover 2000 map (Bartholome & Belward, 2005). The boreal 
biomass estimates are based on radar imagery provided by the Envisat Advanced Synthetic Aperture Radar. The 
pan-tropical biomass maps are based on Light Detection and Ranging observations that were calibrated with in 
situ measurements of tree allometry. Baccini et al. (2012) upscaled data using a random forest machine learning 
algorithm and satellite imagery, including the MODIS Nadir BRDF-Adjusted Reflectance, MODIS land surface 
temperature, and shuttle radar topography mission digital elevation data.

The second vegetation carbon reference data set, here referred to as Zhang-Mokany, was obtained from Zhang 
and Liang (2020), who integrated 10 existing local and global aboveground biomass maps using a data fusion 
technique. It must be noted that one of the 10 maps is the pan-tropical biomass map by Avitabile et al. (2016), 
which also forms part of the above-mentioned data set by Santoro et al. (2015). Zhang and Liang (2020) evaluated 
each of the 10 data sets against in situ observations and high-resolution airborne lidar data.

The third vegetation carbon data set was obtained by Huang et al. (2021), who upscaled in situ measurements 
of root biomass using a machine learning algorithm (Random Forest) and globally gridded predictors of shoot 
biomass, tree height, soil properties, and climatological data. The shoot biomass presented by Huang et al. (2021) 
was derived from the above ground biomass by Santoro et al. (2021). Adding root and shoot mass, and convert-
ing biomass to carbon mass using a carbon-to-biomass ratio of 0.5, we obtained a globally gridded data set for 
vegetation carbon associated with trees.

2.3.4. Soil Organic Carbon

Reference data for soil organic carbon in the top 100 cm were obtained from the Harmonized World Soil Data-
base (HWSD; Wieder, 2014) and from SoilGrids250 m (SG250 m; Hengl et al., 2017). The HWSD data provided 
by the Food Agriculture Organization (FAO) combines existing regional and national updates of soil informa-
tion worldwide with the information contained by the FAO Soil Map of the World (Wieder, 2014). The values 
correspond to the top 100 cm soil depth. The SoilGrids250 m (SG250 m) data set provides a globally gridded 
data set of soil organic carbon at various depths between the surface and 200 cm belowground. The estimates 
are produced by an ensemble of machine learning methods that used 150,000 soil profiles and 158 remote sens-
ing-based soil covariates. Our study considers only the top 100 cm to ensure that the values are comparable to 
estimates from the HWSD data set. It must be noted that both reference data sets differ considerably, with lower 
values in HWSD compared to SG250 m, in part due to a poor representation of wetlands and permafrost soils in 
HWSD (Tifafi et al., 2018).

2.3.5. Leaf Area Index

We used three globally gridded reference LAI, defined as the one-sided leaf area per unit of ground area, derived 
from satellite imagery. MODIS LAI (MOD15A2H, collection 6; R. Myneni et al., 2015) is based on the inversion 
of a three dimensional canopy radiative transfer model that simulates surface reflectance from canopy structural 
characteristics (Knyazikhin et al., 1998).

A second LAI reference data set was provided by Claverie et al. (2016) for the period 1982–2010. This data set is 
based on an artificial neural network that relates LAI to surface reflectance from the Advanced Very High Reso-
lution Radiometer. The artificial neural network was calibrated with LAI from MODIS (MCD15A2) and in situ 
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data from BELMANIP2 (445 sites; Baret et al., 2006). The performance of the algorithm was assessed against in 
situ observations from the DIRECT database (113; Garrigues et al., 2008).

A third LAI data set was provided by the Copernicus Global Land Service for the period 1999–2019 (Verger 
et al., 2014). This product uses an artificial neural network that gives instantaneous estimates from reflectances 
by SPOT/VEGETATION satellite imagery. The data are filtered to reduce the impacts of atmospheric effects 
and snow cover, temporally smoothed, and gap-filled. For the purpose of this study only non-gap filled grid cell 
values were used.

2.3.6. Latent Heat Flux and Runoff

We used two globally gridded reference latent heat flux data sets. The first data set provided by FluxCom covers 
the period 2001–2013 (Jung et al., 2019). As for GPP, FluxCom upscales FLUXNET observations, where remote 
sensing data and meteorological data serve as global predictors. Our study uses median values from 36 Flux-
Com ensemble members that vary with respect to the employed meteorological forcing (Climate Research Unit 
National Centers for Environmental Prediction version 8, WATCH Forcing Data ERA Interim, the Global Soil 
Wetness Project 3, and Clouds and the Earth's Radiant Energy System in combination with the Global Precipi-
tation Climatology Project), the machine learning algorithm (Artificial Neural Network, Multivariate Adaptive 
Regression Splines, and Random forest), and the energy balance closure correction (none, Bowen ratio correction 
and residual approach).

Our second reference data set was taken from the Conserving Land-Atmosphere Synthesis Suite (CLASSr), 
which covers the period 2003–2009 (Hobeichi et al., 2019). The CLASSr provides estimates of simultaneously 
balanced surface water and energy budget components. Each variable presents a weighted mean computed from 
multiple data products that are, to some extent, observation-based. The data are observationally constrained with 
in situ measurements, and each term is adjusted to allow for energy and water balance closure. Latent heat flux 
provided by CLASSr is based on blending data from remote sensing, reanalysis, and terrestrial biosphere models.

The CLASSr data set described above also provides monthly runoff. The values are based on 11 runoff estimates 
from eight hydrological models that are constrained by observational streamflow records from around 600 down-
stream stations. To obtain benchmark scores for streamflow we converted monthly CLASSr runoff to annual 
streamflow for the earth's 50 largest river basins and compared annual values against gauge measurements from 
GRDC. The conversion is based on integrating monthly runoff values over each year and basin, assuming no 
changes in storage.

2.4. Automated Model Benchmarking R Package (AMBER)

Benchmarking terrestrial biosphere models usually involves a range of canonical metrics that assess the mean 
state of a model such as the mean bias, root-mean-square error, normalized mean error, and correlation coeffi-
cient (Best et al., 2015). The Automated Model Benchmarking R package developed by Seiler et al. (2021) quan-
tifies model performance using a skill score system that is based on the ILAMB framework (Collier et al., 2018). 
The method employs five scores that assess the model's annual mean bias (Sbias), monthly centralized root-mean-
square-error (Srmse), the timing of the seasonal peak (Sphase), inter-annual variability (Siav), and spatial distribution 
(Sdist). The metrics emerged from a number of ILAMB workshops held to define a statistical framework that the 
modeling, measurements, and remote sensing communities consider to be most insightful (Collier et al., 2018). 
The exact definition of each skill score is provided in Appendix A, as well as in Seiler et al. (2021). The main 
steps for computing a score usually include (a) computing a dimensionless statistical metric, (b) scaling this 
metric onto a unit interval, and (c) computing a spatial mean. All scores are dimensionless and range from zero to 
one, where increasing values imply better performance. These properties allow us to average skill scores across 
different statistical metrics in order to obtain an overall score for each variable (Soverall; Collier et al., 2018):

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑆𝑆𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 + 2𝑆𝑆𝑜𝑜𝑟𝑟𝑏𝑏𝑜𝑜 + 𝑆𝑆𝑝𝑝𝑝𝑜𝑜𝑏𝑏𝑜𝑜 + 𝑆𝑆𝑏𝑏𝑜𝑜𝑜𝑜 + 𝑆𝑆𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑

1 + 2 + 1 + 1 + 1
. (2)

To reward models that reproduce a realistic response to changes in the meteorological forcing, we increase the 
weight of Srmse by a factor of two. In the case of GPP FluxCom we assign Siav a weight of zero, since the reference 
data are known to underestimate interannual variability (Jung et al., 2020).
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Model scores are calculated by comparing model output against observa-
tion-based reference data (Figure 1) as documented in Appendix A. Bench-
mark scores are computed by comparing multiple reference data sets of a 
variable among each other. The purpose of benchmark scores is to quantify 
the similarity between equally plausible reference data sets, which indicates 
what level of agreement between model output and reference data can be 
expected, given how uncertain reference data are. The number of compari-
sons for n number of reference data sets of a given variable is given by the 
possible number of permutations P:

𝑃𝑃 (𝑛𝑛𝑛 𝑛𝑛) =
𝑛𝑛!

(𝑛𝑛 − 𝑛𝑛)!
𝑛 (3)

where k = 2 for comparing two reference data sets among each other. The 
benchmark score b for a reference data set i is then chosen to equal the mini-
mum of P/n number of scores:

𝑏𝑏𝑖𝑖 = min
(

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1
,… , 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃∕𝑛𝑛

)

. (4)

For instance, consider the three inversion-based NBP reference data sets 
CAMS, CT2019, and CarboScope. The resulting number of permutations 
P equals six possible combinations (i.e., CAMS vs. CarboScope, CT2019 
vs. CarboScope, CarboScope vs. CT2019, CAMS vs. CT2019, CarboScope 
vs. CAMS, and CT2019 vs. CAMS). From these six permutations, P/n = 2 
permutations are used to compute the benchmark score for a particular refer-

ence data set (e.g., CAMS vs. CarboScope and CT2019 vs. CarboScope when using the CarboScope reference 
data set). Choosing the minimum rather than the mean value ensures that we cover the full range of uncertainty.

Note that we compute benchmark scores for all reference data sets, and that score values of a given variable may 
vary among reference data. For instance, the benchmark score for NBP-CAMS and NBP-CT2019 are 0.56 and 
0.57, respectively. The difference arises due to the normalization of a statistical metric. In the case of Sbias, the bias 
is divided by the standard deviation of the reference data σref (Equation A2). If we evaluate CT2019 using CAMS 
as a reference, the value of σref is given by CAMS, and if we evaluate CAMS using CT2019 as a reference, the 
value of σref is given by CT2019. We can therefore have different benchmark scores for different reference data 
sets for the same variable in question.

The final benchmarking step in Figure 1 consists of comparing model scores against benchmark scores. If model 
scores reach benchmark scores, then the degree of similarity between model output and reference data is the same 
as between two independently derived reference data sets. Using this criteria, we then judge models to perform 
sufficiently well, given how uncertain reference data are. Note that model scores may also exceed benchmark 
scores when, for instance, model values are enclosed by the uncertainty range span by two or more reference data.

A useful side effect of our approach is that the benchmark scores don't only quantify the differences among refer-
ence data sets but also express what degree of mismatch may be expected when comparing gridded against in situ 
reference data. This is important as in situ data may not be sufficiently representative for the region covered by 
a grid cell. All AMBER outputs for TRENDY are available at https://cseiler.shinyapps.io/TRENDY2020/ (last 
visited on April 12, 2022).

3. Results
3.1. Gross Primary Productivity and Ecosystem Respiration

Reference data estimate global annual GPP fluxes to range from 108.9 (FluxCom) to 123.8 PgC yr −1 (GOSIF; 
Table 3). The corresponding TRENDY multi-model mean values lie within this uncertainty range, with values 
ranging between 115.0 and 119.3 PgC yr −1, depending on the choice of reference data. The multi-model mean 
values vary with the choice of reference data, because all comparisons are conducted for grid cells and time steps 
that models and reference data have in common. If the spatiotemporal coverage varies among reference data, so 

Figure 1. Conceptual diagram of benchmarking terrestrial biosphere models 
using the Automated Model Benchmarking R package. Model scores are 
computed by comparing model output against reference data. Benchmark 
scores are computed by comparing multiple reference data sets against each 
other. Benchmarking consists of comparing model scores against benchmark 
scores.

https://cseiler.shinyapps.io/TRENDY2020/
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do the multi-model mean values. In relative terms, the mean bias across models ranges from −6% when evalu-
ating models against GOSIF and +6% when choosing FluxCom as reference data. The biases of the individual 
models range between −27% and +25%, with 7/15 models lying within the uncertainty range of the reference 
data. Note that differences between reference values, listed in Table 3, may be caused by differences in the obser-
vational period and grid. Although all reference data are regridded to a common horizontal resolution of 1° × 1°, 
data sets may still differ with respect to the distribution of grid cells with missing data. Reducing reference data 
to a common period and identical grid leads to similar results, with 5/15 models within the uncertainty range of 
global mean values, which is depicted in Figure 2a.

Zonal mean values are well reproduced, but the inter-model spread is large, with values ranging from 5 to 10 gC 
m −2 day −1 at the equator (Figure 2a). The models reproduce the seasonal GPP cycle well across regions, with 
a tendency to overestimate the GPP amplitude in the boreal region of North America and Eurasia (Figure 3). 
Two models with particularly large positive biases in the boreal regions are LPX-Bern and CLM5.0. This bias is 
confined to the boreal regions and does not extend across the globe. Evaluations against FLUXNET data confirm 
that both models simulate larger-than-observed GPP values in boreal regions (Figures B2e and B2l). GPP bench-
mark scores for globally gridded data equals 0.72, and multi-model mean scores range between 0.61 and 0.64 
(Figure 4). None of the models reach GPP benchmark scores, but some come close with model scores of 0.70 
(ISAM, ORCHIDEE, and SDGVM).

Concerning ecosystem respiration, our evaluation relies on in situ measurements only. This is because the currently 
available gridded reference data sets, which rely on spatially upscaled eddy covariance measurements, yield 
results that are inconsistent with inversion-based estimates in the tropics (Jung et al., 2020). Evaluating modeled 
ecosystem respiration against FLUXNET data shows that annual mean values are reasonably well reproduced 
with correlation coefficients ranging between 0.44 (ORCHIDEE-CNP) and 0.75 (ISBA-CTRIP; Figure B3). The 
corresponding overall score values are similar to the GPP scores for FLUXNET data, with a multi-model mean 
score value of 0.62 for both ecosystem respiration and GPP (Figure 4). Note that we did not compute ecosystem 
respiration benchmark scores as we lack a second reference data set.

Variable Ref. ID Period Unit Reference Multi-model mean
Mean bias 

(%) Minimum bias (%) Maximum bias (%) Pos. Neg.

GPP FluxCom 1980–2013 PgC yr −1 108.9 115.0 6 −17 25 11 4

GPP GOSIF 2000–2017 PgC yr −1 123.8 116.0 −6 −27 12 4 11

GPP MODIS 2000–2016 PgC yr −1 115.2 119.3 4 −20 23 11 4

NBP CAMS 1979–2019 PgC yr −1 1.9 1.0 −46 −86 −19 0 13

NBP CarboScope 1999–2019 PgC yr −1 1.3 1.3 −1 −79 50 7 6

NBP CT2019 2000–2017 PgC yr −1 1.3 1.2 −9 −82 37 5 8

CVEG Geocarbon-Mokany 2000–2010 PgC 264.6 403.3 52 11 109 15 0

CVEG Zhang-Mokany 2000–2010 PgC 482.5 429.2 −11 −35 20 5 10

CVEG Huang2021 NA PgC 310.2 344.6 11 −17 53 9 6

CSOIL HWSD NA PgC 1143.4 1121.1 −3 −57 146 6 9

CSOIL SG250m NA PgC 2708.0 1160.9 −57 −82 9 1 14

LAI AVHRR 1982–2010 m 2 m −2 1.4 2.1 58 4 210 15 0

LAI Copernicus 1999–2019 m 2 m −2 1.4 2.0 50 −4 187 14 1

LAI MODIS 2000–2017 m 2 m −2 1.5 2.5 67 9 220 15 0

HFLS CLASSr 2003–2009 W m −2 32.6 37.0 13 −12 40 14 1

HFLS FluxCom 2001–2013 W m −2 45.2 40.1 −11 −34 10 1 14

MRRO CLASSr 2003–2009 kg m −2 day −1 0.7 0.6 −8 −55 9 8 6

Note. In the absence of a reference period, model values are averaged over the 1980–2017 period.

Table 3 
Global Reference (Ref.) and Multi-Model Mean Values, With Multi-Model Mean, Minimum, and Maximum Relative Biases, and Number of Models With Positive 
(Pos.) and Negative (Neg.) Biases
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3.2. Net Ecosystem Exchange

Evaluating modeled NEE against FLUXNET data shows no correlation for annual mean values (Figure B4). 
Annual mean FLUXNET NEE values range from −4.8 to +2.0 gC m −2 day −1, with a mean value of −0.6 gC 
m −2 day −1. Modeled values cover a smaller NEE range from −1.3 to +0.4 gC m −2 day −1 with a mean value of 
−0.2 gC m −2 day −1. The apparent mismatch between modeled and observed values could be due to a variety 
of reasons. First, grid cell values represent a much larger region compared to eddy covariance measurements. 
Second, the globally gridded data are not necessarily representative of the actual meteorological conditions at 

Figure 2. Zonal mean values of annual mean (a) gross primary productivity, (b) net biome productivity (NBP), (c) NBP averaged every 30° latitude, (d) vegetation 
carbon, (e) soil organic carbon, (f) leaf area index, (g) latent heat flux, and (h) runoff. Red/yellow color shades denote reference data, and blue/green color shades 
give the mean values and percentiles of models (50%, 80%, and 100%). The boxplots give the multi-model median, the inter-quartile range (box), and 80th percentiles 
(whiskers) of global annual mean values. Triangles give the multi-model mean, and gray circles indicate results for individual models.
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the site level. Third, models do not reproduce the disturbance history of FLUXNET sites. And fourth, gap-filling 
observations may have reduced data quality. To address at least the last two issues, we filtered FLUXNET data 
for sites with mature forests and for months that have 95% of high quality data (here referred to as FLUXNETB, 
see Section 2.2). Evaluating models against high-quality sites located in mature forests improves the correlation 
between models and observations, with correlation coefficients reaching up to 0.69 (Figure 5). However, the 
modeled NEE ranges are still substantially smaller compared to the observations. This also holds true when 
considering only CO2 fluxes associated with tree PFTs (not shown, and tested for CLASSIC only due to data 
availability). Looking at model scores for each site shows that models perform best for sites that present modest 
sinks, with NEE values of −0.5 gC m −2 day −1. The multi-model mean score improves from 0.48 to 0.55 when 
comparing modeled NEE against FLUXNET and FLUXNETB, respectively (Figure 4). This improvement is 
mainly due to an increase in the model score associated with the spatial distribution (Sdist). As for ecosystem 
respiration, we did not compute NEE benchmark scores as we lack a second reference data set.

3.3. Net Biome Productivity

Inversion models estimate a net CO2 sink with a global NBP that ranges between 1.3 PgC yr −1 for CarboScope 
(1999–2019) and CT2019 (2000–2017) and 1.9 PgC yr −1 for CAMS (1979–2019; Table 3). About half of the 
models (7/13) lie within the NBP uncertainty range (ISBA-CTRIP, JSBACH, OCN, ORCHIDEE, ORCHIDEEv3, 

Figure 3. Climatological mean seasonal cycle of gross primary productivity for TransCom regions shown in Figure B1a. Blue/green color shades give the mean values 
and percentiles of models (50%, 80%, and 100%).
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SDGVM, VISIT), with a multi-model mean value that is in closer agreement with CarboScope and CT2019 than 
with CAMS (Table B1).

The zonal mean NBP of CAMS, CarboScope, and CT2019 show very little agreement, with opposing signs in 
multiple regions (Figure 2b). TRENDY models do not reproduce the zonal mean values of either reference data 
set. The only region with some reasonable agreement between both reference data sets and models is the tendency 

Figure 4. Model and benchmark scores, where green circles denote cases where model scores exceed benchmark scores and white squares present cases where model 
scores exceed the multi-model mean values. Blank spaces indicate missing data.
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for a carbon sink between 50° and 65°N. Averaging NBP values across every 30° latitude shows that models and 
reference data agree on a stronger sink in higher latitudes compared to the tropics (Figure 2c).

All three reference data sets show a very similar global seasonal cycle, with a net carbon source during the NH 
winter and a net carbon sink during the NH summer (Figure 6). While the seasonal cycle of the multi-model 
mean is in reasonable agreement with the reference data, the inter-model spread can be large. For instance, model 
values in the boreal region range between 0 and 2 gC m −2 day −1 during summer (Figures 6a and 6g). Multi-model 
mean scores (0.50–0.53) and benchmark scores (0.52, 0.56) are similar, with six models reaching benchmark 
scores (IBIS, ISAM, ISBA-CTRIP, ORCHIDEE, ORCHIDEEv3 and VISIT; Figure 4).

Figure 5. Evaluation of annual mean net ecosystem exchange model output against forest eddy-covariance measurements that were filtered for data quality and 
disturbance history in units of gC m −2 day −1.
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3.4. Vegetation Carbon

The amount of vegetation carbon stored in forested regions on a global scale varies strongly among reference data, 
with 264.6 PgC for Geocarbon-Mokany, 310.2 PgC for Huang2021, and 482.5 PgC for Zhang-Mokany (Table 3). 
As a comparison, global vegetation carbon estimates for all biomes reported by Friedlingstein et al. (2020) range 
from 450 to 650 PgC. This range is taken from the fifth Assessment Report of the Intergovernmental Panel on 
Climate Change (AR5; Ciais et al., 2013), which cites the third Assessment Report (AR3; Houghton et al., 2001). 
The values in AR3 are based on data provided by Dixon et al. (1994) (466 PgC) and Roy et al. (2001) (654 PgC). 
The corresponding range for vegetation biomass in forests only is 359–539 PgC (Houghton et al., 2001), which is 
larger compared to the range reported in our study. The multi-model mean value (403.3–429.2 PgC) lies within 
the observational uncertainty range (Table 3 and Figure 2c). The biases of the individual models range between 
−35% and +109%, with 10/15 models that are within the uncertainty range.

The zonal mean values tend to be largest for Zhang-Mokany followed by Huang2021 and GEOCARBON-Mokany 
(Figure 2d). The Zhang-Mokany data set is in stronger agreement with forest inventory data (Soverall = 0.76) than 
the Huang2021 (Soverall = 0.69) or the Geocarbon-Mokany data set (Soverall = 0.68). All three tend towards a nega-
tive bias, with a larger bias for Geocarbon-Mokany (−57%) than for Huang2021 (−38%), and Zhang-Mokany 
(−26%), suggesting that the latter is likely to provide more accurate values, at least for regions where forest inven-
tory data are present (Figure B5). It must be noted that this comparison is limited by the fact that the three data 

Figure 6. Same as Figure 3 but for net biome productivity.
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sets Geocarbon-Mokany, Zhang-Mokany, and FOSXue all use the same approach for estimating belowground 
biomass, which makes them more similar by construction.

Multi-model zonal mean values are in closer agreement with data from Zhang-Mokany compared to Huang2021 
and Geocarbon-Mokany. All models tend towards a negative bias when assessed against forest inventory. Bench-
mark scores (0.62–0.74) and multi-model mean scores (0.60–0.69) are similar, where 6/15 models meet bench-
marks when evaluated against in situ measurements (CLM5.0, ISAM, ISBA-CTRIP, JSBACH, OCN, SDGVM), 
and 5/15 models reach benchmarks when assessed against Geocarbon-Mokany (Figure 4).

3.5. Soil Organic Carbon

The global soil organic carbon pool in the top 100 cm is estimated to range between 1143 PgC (HWSD) and 
2708 PgC (SG250m). The larger values in SG250m are found across all latitudes, but differences are particularly 
large at high latitudes (50°–80°N) as well as the equator associated with differences in SE Asia (Table 3 and 
Figure 2e). As a comparison, the global soil carbon pool reported by Friedlingstein et al. (2020) is estimated to 
range from 1500 to 2400 PgC. This range is taken from AR5 (Ciais et al., 2013), and is based on a global soil 
carbon map developed by Batjes (1996), who estimate a soil organic carbon pool of 1462–1548 PgC in the upper 
100 cm and 2376–2456 PgC in the upper 200 cm. The large differences between HWSD and SG250m presented 
here confirm findings from Tifafi et  al.  (2018), who showed that differences are caused by different organic 
carbon concentrations in high latitudes and by different bulk densities in other regions. Comparing the refer-
ence data against in situ measurements (Tifafi et al., 2018), demonstrated that biases were smaller for SG250m 
compared to HWSD. The study concludes that the low soil organic carbon values in HWSD can be explained in 
part by a poor representation of wetlands and permafrost soils.

Models are in much closer agreement with HWSD (−3% mean bias) than with SG250m (−57% mean bias), with 
5/15 models showing values that are within the observational uncertainty range (Table 3 and Figure 2d). Zonal 
multi-model mean values are in close agreement with HWSD, lacking the large increase of soil organic carbon at 
higher latitudes present in SG250m (Figure 2e). The model CLM5.0 was excluded from Figure 2e, as it produces 
zonal mean values that exceed 200 kgC m −2, dwarfing values from all other data sets. The top three models with 
largest soil organic carbon stocks are CLM5.0 (3139 PgC), LPX-Bern (1838 PgC), and ISBA-CTRIP (1549 PgC), 
all of which include processes required for simulating carbon dynamics in permafrost regions (Table 1).

Due to the large differences between HWSD and SG250m, the benchmarking values are very small (0.33–0.42). 
All models but CLM5.0 therefore exceed the benchmark when assessed against HWSD. However, this result must 
be interpreted with caution. The large discrepancy between HWSD and SG250m suggests that the data sets have 
fundamental differences, possibly related to a poor representation of wetlands and permafrost soils in HWSD 
(Tifafi et al., 2018). It is therefore likely that SG250 m is more accurate than HWSD, which implies that the 
difference between HWSD and SG250m overestimates the true observational uncertainty.

3.6. Leaf Area Index

Remotely sensed estimates of LAI yield very similar global mean values, ranging from 1.4 to 1.5 m 2 m −2 (Table 3 
and Figure 2f). The multi-model mean value exceeds the observational uncertainty range by up to 67%, with 
biases from individual models between −4% and +220%. Only one model (ORCHIDEE-CNP) is within the 
uncertainty range, while all other models (13/14) show positive biases for all three global reference data.

Zonal mean values of annual mean LAI are very similar among all three reference data sets (Figure 2e). The 
multi-model zonal mean values reproduce the general pattern of the reference data, with a positive bias of up to 
2 m 2 m −2 across most latitudes. Individual ensemble members can have very large biases of up to 7 m 2 m −2 at the 
equator. The tendency for a positive LAI bias is evident for all regions and seasons (Figure 7). The seasonal peak 
of maximum LAI tends to lag behind the reference data by about 1 month in the boreal and temperate regions. 
Also, the model IBIS lacks a seasonal LAI cycle in the tropics.

Comparing satellite-based LAI against in situ measurements from CEOS suggests that global reference data 
tend towards a negative bias ranging between −0.2 m 2 m −2 (−10%) for Copernicus to −0.4 m 2 m −2 (−19%) 
for MODIS when evaluated against data from CEOS. This leads to the question whether the positive LAI of 
terrestrial biosphere models described above is due to an underestimation of LAI in satellite-based reference 
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data. Comparing modelled LAI against the same in situ data yields far greater biases for multiple models, most 
notably for the models IBIS (+71%), LPX-Bern (+144%), and OCN (85%; Figures 8g, 8k, and 8l). Further-
more model biases derived from globally gridded reference data and in situ data are correlated (R = 0.95) and 
of similar magnitude. For instance, a model with a large bias with respect to globally gridded reference LAI 
(LPX-Bern, 154% with respect to Copernicus) also has a large bias when assessed against in situ measurements 
(144% with respect to CEOS). Conversely, a model with a small bias with respect to globally gridded reference 
LAI (ORCHIDEE-CNP, −4%) also has a small bias when assessed against in situ data (1%). This suggests that 
the positive LAI bias present in some models is real, and not just due to an underestimation of LAI in satellite 
products. However, it must be noted that the evaluation against CEOS data is limited by the fact that sampling 
size varies substantially among regions, with the largest sampling density located in Europe. While none of the 
models reaches benchmarks for globally gridded reference LAI (0.65–0.66), 5/15 models reach the benchmark 
for in situ data (0.66; CLM5.0, ISBA-CTRIP, ORCHIDEE, ORCHIDEE-CNP, and ORCHIDEEv3; Figure 4).

3.7. Latent Heat Flux

Global fluxes of annual mean latent heat from CLASSr and FluxCom range from 32.6 to 45.2 W m −2 (Table 3 and 
Figure 2f). The multi-model mean value, as well as the values from most individual models (14/15), lie within the 
observational uncertainty range. FluxCom values exceed CLASSr values across all latitudes. The inter-quartile 
range of models reproduces zonal patterns well, mostly within the observational uncertainty range. However, 

Figure 7. Same as Figure 3 but for leaf area index.
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Figure 8. Evaluation of leaf area index against site-level measurements with units in m 2 m −2.
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considerable inter-model spread remains in the tropics, where zonal mean latent heat fluxes range between 70 
and 120 W m −2 at the equator, confirming previous findings from Pan et al. (2020). Multi-model mean values 
reproduce the seasonal cycle well, but the inter-model range is very large in the tropical parts of South America 
and Asia (Figure B6). The large inter-model spread is also present at the site-level, where annual mean biases 
across all sites range from −31% (LPX-Bern) to +20% (JSBACH; Figure B7).

The multi model mean scores (0.67 and 0.70 when assessed against FluxCom and CLASSr, respectively) exceed 
the benchmark scores for globally gridded and site-level reference data (0.62–0.67). Most of the individual 
models reach the benchmark scores, suggesting that most models perform well given how uncertain current refer-
ence data are. One exception is JSBACH with a systematic positive bias across all regions and seasons.

3.8. Runoff and Streamflow

Global mean reference runoff (CLASSr) is estimated to be 0.7 kg m −2 day −1 (Figures 2g and 3). The multi-model 
mean bias is −8%, with biases from individual models ranging between −55% (JSBACH) and +9% (ORCHIDEE-
CNP). There is no clear tendency for models to have either positive or negative biases.

The models reproduce the zonal mean pattern of annual mean runoff reasonably well (Figure 2g). The seasonal 
runoff peak, however, is 2 months earlier compared to CLASSr (Figure B8). The time lag is present in multiple 
parts of the globe, including the boreal regions, tropical South America, and Europe (Figure B8).

Converting runoff to annual streamflow for the earth's 50 largest river basins and comparing values against gauge 
measurements from GRDC shows that models reproduce annual streamflow reasonably well (11/14 models with 
R ≥ 0.9; Figure B9). However, none of the models nor the multi-model mean streamflow score of 0.71 reach the 
corresponding benchmark score of 0.82 (Figure 4).

3.9. Model Performance

Our findings documented above show that benchmark scores vary considerably among variables, ranging from 
0.33 for soil organic carbon to 0.82 for runoff. Model scores range from 0.39 to 0.71 for the same variables, which 
raises the question to what extent both scores are correlated. Figure 9 compares model scores against benchmark 
scores, where dots represent mean score values and bars show total ranges. Figure 9 shows that model scores 
and benchmark scores are positively correlated, suggesting that low model scores can result not only from model 
deficiencies, but also from observational uncertainties. One important exception is LAI, with model scores (0.50) 

Figure 9. Model scores and benchmark scores, where dots present multi-model mean values and bars give the total range of 
scores.
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that are much lower than benchmark scores (0.66 minimum) for globally gridded products. The large difference 
suggests that models have a great potential for improving their representation of LAI. This also applies when 
evaluating models against in situ LAI data from CEOS.

Another question we want to address here is to what extent model score differences are related to dynamic 
carbon-nitrogen (CN) interactions, permafrost, and wetlands (Table 1). There is no indication that a representation 
of CN interactions improves model performance. Comparing the model versions ORCHIDEE (with CN-interac-
tions) against ORCHIDEEv3 (without CN-interactions) shows no statistically significant difference between  the 
mean scores when considering all evaluations combined (two-sided t-test, p-value = 0.05). Comparing the mean 
score of all models that include CN-interactions (10 models) against the mean score of all models that lack such 
representation (five models) suggests that the inclusion of CN-interactions leads to statistically significant lower 
scores when assessing models for NBP from CT2019 (−0.03) and CAMS (−0.04). This result suggests that 
modeling groups may consider retuning their models when incorporating CN interactions. Models that include a 
representation of processes required for simulating carbon dynamics in permafrost regions (four models) tend to 
perform better than models that lack such representation when assessing runoff (0.02 for CLASSr and GRDC) 
and vegetation carbon (0.05 for FOSXue). Models that represent carbon dynamics in wetlands (three models) 
perform better for NBP (0.04 for CarboScope) but worse for vegetation carbon (−0.05 for ZhangMokany). Since 
only two models include a representation of carbon dynamics in peatlands, we cannot assess to what extent the 
inclusion of such processes have any statistical significance on model performance.

4. Discussion
Our study evaluates how well TRENDY models reproduce variables that drive the terrestrial carbon sink. A 
particular focus was to quantify what level of agreement between model output and reference data should be 
expected given that reference data are imperfect. Our approach accounts for observational uncertainties using two 
sets of skill scores. Model scores summarize the similarity between model output and reference data across multi-
ple statistical metrics, including the bias, the centralized root mean square error, time lags of seasonal maxima 
or minima, inter-annual variability, as well as spatial variability and correlation. Scores range from zero to unity, 
where unity implies perfect agreement. Using the same statistical framework we then compute benchmark scores 
that quantify the similarity between independently derived reference data, which serves as an approximation of 
observational uncertainty. If model scores reach benchmark scores, then models perform sufficiently well, given 
how uncertain reference data are. For instance, comparing modeled against reference GPP from FluxCom yields 
a maximum model score of 0.70, suggesting that model performance is modest. However, comparing remotely 
sensed GPP (GOSIF) against FluxCom yields a benchmark score of 0.72, which suggests that model performance 
is reasonable given how uncertain reference data are.

Our results show that the disagreement between independently derived reference data are much larger than 
expected, with benchmark scores ranging between 0.33 for soil organic carbon, to 0.82 for annual streamflow. 
Comparing model scores against benchmark scores shows that both scores are positively correlated, suggesting 
that low model scores is often a sign of large observational uncertainty rather than poor model performance alone. 
For instance, model and benchmark scores are both relatively low for NBP (0.51 and 0.55, respectively) and rela-
tively high for streamflow (0.71 and 0.82, respectively). The larger the gap between model scores and benchmark 
scores, the greater the potential for model improvement. For instance, this applies to LAI, with a model score of 
about 0.49 and a benchmark score of about 0.66 for globally gridded data. We further conclude that the lower the 
benchmark score, the greater the need to reduce observational uncertainty. This applies in particular to gridded 
reference data for soil organic carbon and inversion-based estimates for NBP.

Considering these findings, can we conclude that TRENDY models are fit for simulating the terrestrial carbon 
sink? Let us recall that the terrestrial carbon sink, which is here defined by the term SLAND in Equation 1, repre-
sents the natural carbon sink under present-day conditions for atmospheric CO2 and climate, but pre-industrial 
land cover (S2 simulation). Given the counter-factual nature of SLAND, we can only evaluate it indirectly by assess-
ing NBP, and the processes that drive it, in the S3 simulation where CO2, climate, and LULCC forcings all vary 
in time. The better a model performs for those variables, the greater the likelihood that its estimate of SLAND is 
reliable. In the best case, all models, or at least the multi-model mean, would reach benchmark scores for all vari-
ables assessed in this study. While this is clearly not the case, there are multiple models that reach the benchmarks 
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for globally gridded NBP (IBIS, ISAM, ISBA-CTRIP, ORCHIDEE, ORCHIDEEv3 and VISIT), vegetation 
carbon (JSBACH, LPJ-GUESS, LPX-Bern, ORCHIDEE, ORCHIDEEv3), in situ LAI (CLM5.0, ISBA-CTRIP, 
ORCHIDEE, ORCHIDEE-CNP, and ORCHIDEEv3), and globally gridded latent heat flux (all but JSBACH). 
In the case of GPP, none of the models reach the benchmark for globally gridded values (0.72), but some models 
come reasonably close (e.g., ORCHIDEE and SDGVM with 0.70). Furthermore, for GPP, vegetation carbon, and 
latent heat flux, the global multi-model annual mean values are within the uncertainty range of the reference data. 
This supports the notion that model diversity is a healthy aspect of any scientific community. Finally, the seasonal 
cycle of NBP across TransCom regions is reasonably consistent with results from inversion models, although the 
inter-model spread remains large, in particular in the boreal regions. We conclude that the performance of the 
TRENDY ensemble is encouraging, but that ample potential for improvements remains. Future efforts should 
focus on reducing the positive LAI bias across the globe, improving the representation of processes that govern 
soil organic carbon in high latitudes, and assessing the causes that drive the large inter-model spread of GPP 
amplitude in boreal regions and zonal mean GPP in the humid tropics. The potential for model improvement, 
however, also relies on our capability to reduce observational uncertainty. This applies in particular to globally 
gridded products of NBP and soil organic carbon.

Our approach leads to a new interpretation of the TRENDY model scores presented by Friedlingstein et al. (2020). 
Their main findings are that (a) TRENDY models show high skill scores for runoff, and to a lesser extent for 
vegetation biomass, GPP, and ecosystem respiration, and that (b) skill scores are lowest for LAI and NEE, with a 
widest disparity among models for soil organic carbon. While our model scores are mainly consistent with these 
findings, our benchmark scores lead to a somewhat different interpretation. For instance, we confirm that model 
scores are larger for runoff than for GPP, but the difference between model and benchmark scores, and hence 
model performance, is approximately the same for both variables. Furthermore, the effectiveness of future model 
development is dependent on our ability to reduce observational uncertainties of these two variables. For soil 
organic carbon in particular, the observational uncertainties must be reduced substantially to provide adequate 
guidance for model development. If the large values in SG250m are due to a better representation of wetlands 
and permafrost soils compared to HWSD (Tifafi et al., 2018), then modeling groups may consider masking-out 
wetlands and permafrost soils when evaluating model output against HWSD (Tian, Lu, et al., 2015).

One limitation of our study is that we don't explicitly evaluate how SLAND responds to increasing atmospheric 
CO2 concentrations. While some reference data may indirectly account for CO2 fertilization, a more direct evalu-
ation could be based on Free Air CO2 Enrichment experiments in mature forests, which are currently in progress 
(Norby et al., 2016; Walker et al., 2020). Another limitation is that we are unable to assess how uncertainty in 
model inputs affects model scores as the TRENDY ensemble includes only a single set of model forcing data. 
However, this has been investigated by G. B. Bonan et  al.  (2019) and Seiler et  al.  (2021) for the terrestrial 
biosphere models CLM and CLASSIC, respectively. Both studies conclude that the uncertainties associated with 
climate forcing are too large to be neglected. For instance, Seiler et al. (2021) show that the global mean biases 
of seven out of 19 variables switches sign when forcing CLASSIC with different meteorological data sets. Such 
results suggest that robust model development must consider multiple forcing data sets to avoid tuning models 
towards a particular forcing data set.

Future evaluations of TRENDY models would benefit from having access to aboveground vegetation carbon 
model output, which is currently available for some models only. Evaluating above ground rather than total 
vegetation carbon is an advantage because below ground vegetation carbon is difficult to measure. Furthermore, 
modeling groups should provide PFT-specific values for aboveground vegetation carbon and NEE to allow for 
a more direct evaluation against forest inventory data and eddy covariance measurements, respectively. Finally, 
a  more comprehensive evaluation would require access to more model variables for all TRENDY models, includ-
ing radiation fluxes, sensible heat flux, soil respiration, fractional area burnt, and snow water equivalent. Includ-
ing those variables may help diagnosing the underlying causes of model deficiencies.

Our results demonstrate that benchmark scores facilitate the interpretation of model scores as they indicate what 
level of agreement between model output and reference data may be expected, and whether low model scores 
indeed reflect poor model performance or observational uncertainty. Our benchmark approach is not limited to 
terrestrial biosphere models or the AMBER or ILAMB statistical framework, but can be applied to any geophys-
ical model that is evaluated against observations. We hope these results will stimulate model development that 
aims at reducing the uncertainties of processes that drive terrestrial carbon, water, and energy fluxes.
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Appendix A: Automated Model Benchmarking R Package (AMBER)
The Automated Model Benchmarking R package (AMBER; version 1.1.0) quantifies model performance using 
five scores that assess the model's bias (Sbias), root-mean-square-error (Srmse), seasonality (Sphase), inter-annual 
variability (Siav), and spatial distribution (Sdist). All scores are dimensionless and range from zero to one, where 
increasing values imply better performance. The exact definition of each skill score is provided below.

A1. Bias Score (Sbias)

The bias is defined as the difference between the time-mean values of model and reference data:

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆𝜆 𝜆𝜆) = 𝑣𝑣mod(𝜆𝜆𝜆 𝜆𝜆) − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 (𝜆𝜆𝜆 𝜆𝜆)𝜆 (A1)

where 𝐴𝐴 𝑣𝑣mod(𝜆𝜆𝜆 𝜆𝜆) and 𝐴𝐴 𝑣𝑣mod(𝜆𝜆𝜆 𝜆𝜆) are the mean values in time (t) of a variable v as a function of longitude λ and 
latitude ϕ for model and reference data, respectively. Nondimensionalization is achieved by dividing the bias by 
the standard deviation of the reference data (σref):

𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆𝜆 𝜆𝜆) = |𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆𝜆 𝜆𝜆)|∕𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 (𝜆𝜆𝜆 𝜆𝜆). (A2)

Note that ɛbias is always positive, as it uses the absolute value of the bias. For evaluations against stream flow 
measurements the bias is divided by the annual mean rather than the standard deviation of the reference data. This 
is because we assess streamflow on an annual rather than monthly basis, implying that the corresponding stand-
ard deviation is small. The same approach is applied to soil carbon and biomass, whose reference data provide a 
static snap shot in time. In both of these cases, ɛbias(λ, ϕ) becomes:

�����(�, �) = |����(�, �)|∕���� (�, �). (A3)

A bias score that scales from zero to one is calculated next:

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠(𝜆𝜆𝜆 𝜆𝜆) = 𝑒𝑒
−𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠(𝜆𝜆𝜆𝜆𝜆). (A4)

While small relative errors yield score values close to one, large relative errors cause score values to approach 
zero. Taking the mean of sbias across all latitudes and longitudes, denoted by a double bar over a variable, leads 
to the scalar score:

𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆𝜆 𝜆𝜆). (A5)

A2. Root-Mean-Square-Error Score (Srmse)

While the bias assesses the difference between time-mean values, the root-mean-square-error (rmse) is concerned 
with the residuals of the modeled and observed time series:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆𝜆 𝜆𝜆) =

√

1

𝑡𝑡𝑓𝑓 − 𝑡𝑡0 ∫
𝑡𝑡𝑓𝑓

𝑡𝑡0

(𝑣𝑣mod(𝑡𝑡𝜆 𝜆𝜆𝜆 𝜆𝜆) − 𝑣𝑣𝑟𝑟𝑟𝑟𝑓𝑓 (𝑡𝑡𝜆 𝜆𝜆𝜆 𝜆𝜆))
2
𝑑𝑑𝑡𝑡𝜆 (A6)

where t0 and tf are the initial and final time step, respectively. A similar metric is the centralized rmse (crmse), 
which is based on the residuals of the anomalies:

�����(�, �) =

√

1
�� − �0 ∫

��

�0

[(

�mod(�, �, �) − �mod(�, �)
)

−
(

���� (�, �, �) − ���� (�, �)
)]2��. (A7)

The crmse, therefore, assesses residuals that have been bias-corrected. Since we already assessed the model's bias 
through Sbias, it is convenient to assess the residuals using crmse rather than rmse. In a similar fashion to the bias, 
we then compute a relative error:

�����(�, �) = �����(�, �)∕���� (�, �), (A8)
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scale this error onto a unit interval:

𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟(𝜆𝜆𝜆 𝜆𝜆) = 𝑟𝑟
−𝜀𝜀𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟(𝜆𝜆𝜆𝜆𝜆)𝜆 (A9)

and compute the spatial mean:

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. (A10)

A3. Phase Score (Sphase)

The skill score Sphase assesses how well the model reproduces the seasonality of a variable by computing the time 
difference (θ(λ, ϕ)) between modeled and observed maxima of the climatological mean cycle:

�(�, �) = max(�mod(�, �, �)) − max(���� (�, �, �)) , (A11)

where cmod and cref are the climatological mean cycle of the model and reference data, respectively. This time 
difference is then scaled from zero to one based on the consideration that the maximum possible time difference 
is 6 months:

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝(𝜆𝜆𝜆 𝜆𝜆) =
1

2

[

1 + cos

(

2𝜋𝜋𝜋𝜋(𝜆𝜆𝜆 𝜆𝜆)

365

)]

. (A12)

The spatial mean of sphase then leads to the scalar score:

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. (A13)

A4. Inter-Annual Variability Score (Siav)

The skill score Siav quantifies how well the model reproduces patterns of inter-annual variability. This score is 
based on data where the seasonal cycle (cmod and cref) has been removed:

𝑖𝑖𝑖𝑖𝑖𝑖mod(𝜆𝜆𝜆 𝜆𝜆) =

√

1

𝑡𝑡𝑓𝑓 − 𝑡𝑡0 ∫
𝑡𝑡𝑓𝑓

𝑡𝑡0

(𝑖𝑖mod(𝑡𝑡𝜆 𝜆𝜆𝜆 𝜆𝜆) − 𝑐𝑐mod(𝑡𝑡𝜆 𝜆𝜆𝜆 𝜆𝜆))
2
𝑑𝑑𝑡𝑡𝜆 (A14)

𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 (𝜆𝜆𝜆 𝜆𝜆) =

√

1

𝑡𝑡𝑟𝑟 − 𝑡𝑡0 ∫
𝑡𝑡𝑟𝑟

𝑡𝑡0

(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡𝜆 𝜆𝜆𝜆 𝜆𝜆) − 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡𝜆 𝜆𝜆𝜆 𝜆𝜆))
2
𝑑𝑑𝑡𝑡𝑑 (A15)

The relative error, nondimensionalization, and spatial mean are computed next:

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = | (𝑖𝑖𝑖𝑖𝑖𝑖mod(𝜆𝜆𝜆 𝜆𝜆) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 (𝜆𝜆𝜆 𝜆𝜆)) |∕𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 (𝜆𝜆𝜆 𝜆𝜆)𝜆 (A16)

𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝜆𝜆𝜆 𝜆𝜆) = 𝑒𝑒
−𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆𝜆)𝜆 (A17)

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖. (A18)

A5. Spatial Distribution Score (Sdist)

The spatial distribution score Sdist assesses how well the model reproduces the spatial pattern of a variable. 
The score considers the correlation coefficient R and the relative standard deviation σ between 𝐴𝐴 𝑣𝑣mod(𝜆𝜆𝜆 𝜆𝜆) and 

𝐴𝐴 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 (𝜆𝜆𝜆 𝜆𝜆) . The score Sdist increases from zero to one, the closer R and σ approach a value of one. No spatial inte-
gration is required as this calculation yields a single value:

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2(1 + 𝑅𝑅)

(

𝜎𝜎 +
1

𝜎𝜎

)−2

, (A19)
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where σ is the ratio between the standard deviation of the model and reference data:

𝜎𝜎 = 𝜎𝜎𝑣𝑣mod
∕𝜎𝜎𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

. (A20)

A6. Overall Score (Soverall)

As a final step, scores are averaged to obtain an overall score:

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑆𝑆𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 + 2𝑆𝑆𝑜𝑜𝑟𝑟𝑏𝑏𝑜𝑜 + 𝑆𝑆𝑝𝑝𝑝𝑜𝑜𝑏𝑏𝑜𝑜 + 𝑆𝑆𝑏𝑏𝑜𝑜𝑜𝑜 + 𝑆𝑆𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑

1 + 2 + 1 + 1 + 1
. (A21)

Note that Srmse is weighted by a factor of two, which emphasizes its importance.

Appendix B: Supportive Figures
Figures B1, B2, B3, B4, B5, B6, B7, B8, and B9; Table B1

Figure B1. (a) Location of FLUXNET sites and TransCom regions (1 = North American Boreal, 2 = North American Temperate, 3 = South American Tropical, 
4 = South American Temperate, 5 = Northern Africa, 6 = Southern Africa, 7 = Eurasia Boreal, 8 = Eurasia Temperate, 9 = Tropical Asia, 10 = Australia, 
11 = Europe) (Gurney et al., 2004), (b) site-level measurements of leaf area index, (c) forest inventory sites, and (d) river basins with location of streamflow 
measurements.
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Figure B2. Evaluation of gross primary productivity against eddy covariance measurements in units of gC m −2 day −1.
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Figure B3. Evaluation of ecosystem respiration against eddy covariance measurements in units of gC m −2 day −1.
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Figure B4. Evaluation of annual mean net ecosystem exchange model output against eddy-covariance measurements in units of gC m −2 day −1.
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Figure B5. Evaluation of vegetation carbon against site-level measurements in units of kgC m −2.
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Figure B6. Same as Figure 3 but for latent heat flux.
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Figure B7. Evaluation of latent heat flux against site-level measurements in units of W m −2.
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Figure B8. Same as Figure 3 but for runoff.
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Figure B9. Evaluation of annually streamflow against gauge records in units of kg m −2 day −1.
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Variable Ref. ID Model ID Ref. Model Bias Bias (%) Unit Period

NBP CAMS CLASSIC 1.86 0.82 −1.04 −55.91 PgC yr −1 1979–2017

NBP CAMS CLM5.0 1.90 0.68 −1.22 −64.21 PgC yr −1 1979–2019

NBP CAMS IBIS 1.60 0.74 −0.86 −53.75 PgC yr −1 1979–2019

NBP CAMS ISAM 1.88 0.94 −0.94 −50.00 PgC yr −1 1979–2019

NBP CAMS ISBA-CTRIP 1.89 1.19 −0.70 −37.04 PgC yr −1 1979–2019

NBP CAMS JSBACH 1.80 1.01 −0.79 −43.89 PgC yr −1 1979–2019

NBP CAMS LPX-Bern 1.90 0.40 −1.50 −78.95 PgC yr −1 1979–2019

NBP CAMS OCN 1.86 1.51 −0.35 −18.82 PgC yr −1 1979–2019

NBP CAMS ORCHIDEE 1.90 1.46 −0.44 −23.16 PgC yr −1 1979–2019

NBP CAMS ORCHIDEE-CNP 1.91 0.26 −1.65 −86.39 PgC yr −1 1979–2019

NBP CAMS ORCHIDEEv3 1.91 1.34 −0.57 −29.84 PgC yr −1 1979–2019

NBP CAMS SDGVM 1.87 1.30 −0.57 −30.48 PgC yr −1 1979–2019

NBP CAMS VISIT 1.85 1.26 −0.59 −31.89 PgC yr −1 1979–2019

NBP CT2019 CLASSIC 1.33 1.17 −0.16 −12.03 PgC yr −1 2000–2017

NBP CT2019 CLM5.0 1.33 0.80 −0.53 −39.85 PgC yr −1 2000–2018

NBP CT2019 IBIS 1.17 0.97 −0.20 −17.09 PgC yr −1 2000–2018

NBP CT2019 ISAM 1.31 0.91 −0.40 −30.53 PgC yr −1 2000–2018

NBP CT2019 ISBA-CTRIP 1.32 1.24 −0.08 −6.06 PgC yr −1 2000–2018

NBP CT2019 JSBACH 1.32 1.23 −0.09 −6.82 PgC yr −1 2000–2018

NBP CT2019 LPX-Bern 1.32 0.62 −0.70 −53.03 PgC yr −1 2000–2018

NBP CT2019 OCN 1.34 1.83 0.49 36.57 PgC yr −1 2000–2018

NBP CT2019 ORCHIDEE 1.33 1.74 0.41 30.83 PgC yr −1 2000–2018

NBP CT2019 ORCHIDEE-CNP 1.33 0.24 −1.09 −81.95 PgC yr −1 2000–2018

NBP CT2019 ORCHIDEEv3 1.33 1.44 0.11 8.27 PgC yr −1 2000–2018

NBP CT2019 SDGVM 1.33 1.67 0.34 25.56 PgC yr −1 2000–2018

NBP CT2019 VISIT 1.32 1.79 0.47 35.61 PgC yr −1 2000–2018

NBP CarboScope CLASSIC 1.46 1.40 −0.06 −4.11 PgC yr −1 1999–2017

NBP CarboScope CLM5.0 1.38 0.90 −0.48 −34.78 PgC yr −1 1999–2019

NBP CarboScope IBIS 1.18 1.07 −0.11 −9.32 PgC yr −1 1999–2019

NBP CarboScope ISAM 1.29 0.94 −0.35 −27.13 PgC yr −1 1999–2019

NBP CarboScope ISBA-CTRIP 1.40 1.41 0.01 0.71 PgC yr −1 1999–2019

NBP CarboScope JSBACH 1.14 1.33 0.19 16.67 PgC yr −1 1999–2019

NBP CarboScope LPX-Bern 1.36 0.65 −0.71 −52.21 PgC yr −1 1999–2019

NBP CarboScope OCN 1.25 1.88 0.63 50.40 PgC yr −1 1999–2019

NBP CarboScope ORCHIDEE 1.37 1.83 0.46 33.58 PgC yr −1 1999–2019

NBP CarboScope ORCHIDEE-CNP 1.46 0.30 −1.16 −79.45 PgC yr −1 1999–2019

NBP CarboScope ORCHIDEEv3 1.46 1.54 0.08 5.48 PgC yr −1 1999–2019

NBP CarboScope SDGVM 1.30 1.73 0.43 33.08 PgC yr −1 1999–2019

NBP CarboScope VISIT 1.27 1.88 0.61 48.03 PgC yr −1 1999–2019

Table B1 
Globally Summed Mean Values and Corresponding Biases
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Data Availability Statement
The data, scripts, code, computational environment, and instructions required for reproducing the results presented 
in our paper can be downloaded from https://doi.org/10.5281/zenodo.5670387. The full set of Figures produced 
by AMBER for this study can be accessed at https://cseiler.shinyapps.io/AmberTrendy2020/ (last visited on April 
12, 2022).
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