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Abstract We developed vertically resolved soil biogeochemistry (carbon and nitrogen) module and
implemented it into a land surface model, ISAM. The model captures the vertical heterogeneity of the
northern high latitudes permafrost soil organic carbon (SOC). We also implemented Δ14C to estimate SOC
turnover time, a critical determinant of SOC stocks, sequestration potential, and the carbon cycle
feedback under changing atmospheric CO2 concentration [CO2] and climate. ISAM accounted for the
vertical movement of SOC caused by cryoturbation and its linkage to frost heaving process, oxygen
availability, organo‐mineral interaction, and depth‐dependent environmental modifiers. After evaluating
the model processes using the site and regional level heterotrophic respiration, SOC stocks, and soil Δ14C
profiles, the vertically resolved soil biogeochemistry version of the model (ISAM‐1D) estimated permafrost
SOC turnover time of 1,443 years, which is about 3 times more than the estimation based on the
without vertically resolved version of ISAM (ISAM‐0D). ISAM‐1D‐simulated SOC stocks for permafrost
regions was 319 Pg C in the top 1 m soil depth by the 2000s, about 80% higher than the estimates based on
ISAM‐0D. ISAM‐1D SOC stock and turnover time were compared well with the observations. However,
the longer SOC turnover time preserves less SOC stocks due to the lower carbon use efficiency (CUE) for
SOC than ISAM‐0D and thus respires more SOC than being transferred downward by cryoturbation.
ISAM‐1D simulated reduced SOC sequestration (3.7 Pg C) compared to ISAM‐0D (4.8 Pg C) and published
Earth system models (ESMs) over the 1860s–2000s, due to weaker [CO2]‐carbon cycle and stronger
climate‐carbon cycle feedbacks, highlighting the importance of the vertically heterogeneous soil
for understanding the permafrost SOC sinks.

1. Introduction

The northern high latitudes permafrost soils store more than half of the global total soil organic carbon
(SOC) (approximately 1,300 Pg C; Hugelius et al., 2014) and show extreme spatial and vertical heterogene-
ity (Beer, 2016; Mishra et al., 2017) due to various cryopedogenic processes (Ping et al., 2008, 2015), includ-
ing the vertical movement of SOC due to seasonal freeze‐thaw cycles and associated movement of water
and soil particles in all dimensions (Beer, 2016; Nicolsky et al., 2008; Woo, 2012). These vertically hetero-
geneous and waterlogging permafrost conditions slow SOC decomposition and humification of the plant
litter input, resulting in a lower amount of loss of SOC stock from the upper soil layers and relatively longer
SOC turnover time, which is the time it would take for the SOC pools to empty without further inputs as
defined and described in supporting information Text S6. Under changing environmental conditions these
processes affect two basic feedbacks and hence SOC stocks (Friedlingstein et al., 2006; He et al., 2016):
(1) carbon‐concentration (or CO2 fertilization) feedback, which enhances plant productivity and litter
input flux under the higher atmospheric CO2 concertation ([CO2]) conditions and hence increase SOC,
and (2) carbon‐climate feedback, which increases SOC losses due to higher decomposition under warmer
climate and hence reduce SOC.

However, the uncertainties in model‐based estimates of the effect of these two feedback processes and hence
SOC storage amount in the permafrost regions are large (Burke et al., 2012; Burke et al., 2017; Harden
et al., 2012; Koven et al., 2011; MacDougall et al., 2012; Schaefer et al., 2014). This is mainly caused by the
single soil layer with multiple pools structure of the terrestrial ecosystem models (TEMs) (Clark et al., 2011;
Jain et al., 2009; Jain & Yang, 2005; Melillo et al., 1993; Sitch et al., 2003; Thornton et al., 2007), which is
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unable to account for the vertical heterogeneities of freeze‐thaw cycles and associated movement of water
and SOC. Hence, TEMs are unable to simulate SOC stock and turnover time accurately in permafrost
regions, and their predictive capabilities under changing environmental conditions are limited.

Although a few attempts have beenmade to improve TEMs' performance by incorporating a limited number
of dynamic thaw processes, including better environmental conditions (e.g., soil temperature, moisture con-
tent, nutrient, and oxygen availability) and snowpack development (Barman & Jain, 2016; Schaefer
et al., 2009), thermal insulation effect of moss (Chadburn et al., 2015), soil organic matter (SOM)
(Lawrence et al., 2008), the zero‐curtain effect (Romanovsky & Osterkamp, 2000), anoxic respiration and
the organo‐mineral interaction (Riley et al., 2011; Wania et al., 2010). A limited effort has also been made
to implement a vertical dimension to the soil biogeochemistry model (e.g., National Center for
Atmospheric Research's [NCAR's] Community Earth System Model, UVic ESCM, etc.) to account for verti-
cal movement of SOC due to cryoturbation using simple diffusive schemes (Burke et al., 2017; Chadburn &
Ekici, 2017; Koven et al., 2013; MacDougall & Knutti, 2016; Nakhavali et al., 2018). These modeling efforts
account for vertical movement of SOC due to cryoturbation (Burke et al., 2017; Chadburn & Ekici, 2017;
Koven et al., 2013; MacDougall & Knutti, 2016; Nakhavali et al., 2018) and complete the treatment of carbon
and nitrogen interactions, including controls on SOC turnover time by depth‐dependent temperature, moist-
ure, and redox state (Burke et al., 2017; Chadburn & Ekici, 2017; Koven et al., 2009, 2011, 2013; Todd‐Brown
et al., 2014). However, some recent studies argue that these attempts are still not detailed enough to describe
the changes in the SOC dynamics due to vertical thawing of permafrost under changing climate (Beer, 2016;
Mishra et al., 2013) and to simulate the carbon‐concentration and carbon‐climate feedbacks correctly (Burke
et al., 2017; He et al., 2016; Koven et al., 2015; MacDougall & Knutti, 2016), in part because models do not
adequately account for vertical movement of soil particles, such as organic‐rich surface soil material (O/A
horizon) and water transport toward the permafrost layer, and ice lens formation. These processes largely
determine soil heterogeneity in turbels (Beer, 2016; Harden et al., 2012; Mishra et al., 2013; Mishra &
Riley, 2015). For example, the cryoturbation increases the transport of the SOM from the surface or labile
pool to the deeper or more resistant soil pools due to the frost heave, which moves the soil particles nearby
the ice lens during the freeze‐thaw cycle (Bockheim, 1995, 2007; Kaiser et al., 2007), resulting in a decrease of
SOC turnover time for the topsoil layers (i.e., soil section from 0 to 30 cm) and increase of soil surface tem-
perature for subsoil layers (i.e., soil section from 31 cm to 1 m). In addition, organo‐mineral interactions are
important for the cycling and preservation of organic carbon in soils. This increased stability of SOM is
hypothesized to be gained from the protection of organic matter from mineralizing agents, thus increasing
SOC stock and turnover time, especially in the subsoil layers (Kleber et al., 2007). However, microbial carbon
use efficiency (CUE), which controls the transfer of carbon from the labile to resistant pools, may decrease
the SOC stock and turnover time. This is an important model parameter, which in this study is calibrated
using the site observation of SOC stock and turnover time. Moreover, the anoxic soil conditions may reduce
the decomposition of SOC even under the warmer temperature. This process may also reduce the soil
mineral nitrogen available for the plant uptake and thus control the plant productivity. Therefore, all these
processes may further weaken carbon‐concentration and strengthen carbon‐climate feedbacks and enhance
the SOC turnover time and increase steady‐state SOC stock, but decrease the SOC sequestration capacity
over the historical and future time periods.

The objective of this study is to estimate the spatial and the vertical distribution of SOC stock and turnover
time in the permafrost regions using a land surface model, ISAM (Barman et al., 2014a, 2014b; El‐Masri
et al., 2015; Yang et al., 2009). This study builds upon and extends the approaches of the modeling studies
discussed above. While ISAM considers the similar soil and snow processes and their interactions with bio-
geophysics and biogeochemistry under various environmental conditions in the permafrost regions, as
accounted for in the vertically unresolved soil biogeochemistry version of ISAM (Barman & Jain, 2016;
El‐Masri et al., 2015), in this study we implement in ISAMmore advanced parameterizations for calculating
the cryoturbation of SOC. These parameterizations explicitly estimate ice lens formation and link the cryo-
turbation rate to the freeze‐thaw cycle of the soil above the permafrost table. In addition, we implementΔ14C
to calculate SOC turnover time based on radioactive decay based on inputs of Δ14C from atmospheric “bomb
carbon” (He et al., 2016). After calibration and evaluations of the newly implemented processes, as well as
examine the uncertainty in the model estimated SOC stock and turnover time due to uncertainties in the
model parameters, the improved model was applied to estimate SOC stock and turnover time of the
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permafrost regions due to [CO2] and climate change and analyze their changes over the historical time
period 1861–2010.

In the following section 2, first, we describe ISAM original version (refer to as ISAM‐0D hereafter) and
extended version (refer to as ISAM‐1D hereafter). Then in section 3, we describe the data used to calibrate
and evaluatemodel estimated SOC stock and turnover time. Section 4 describes the results for model calibra-
tion and evaluation, and model estimated SOC stocks and turnover time results for the permafrost regions
over the period 1901–2010. In section 5 we discuss the importance of model improvements for calculating
the vertical heterogeneity of SOC, as well as some model limitations and conclude our major findings.

2. Model Description

The ISAMmodel applied here to study permafrost SOC dynamics in the permafrost regions is a fully coupled
biogeophysical and biogeochemical cycle model with 0.5° × 0.5° spatial and multitemporal resolution from
half‐hour to year (El‐Masri et al., 2013; Jain et al., 2009, 2013; Yang et al., 2009). Each grid cell is occupied by
a combination of fractional vegetation, bare soil, and glacier (Meiyappan & Jain, 2012). The original version
of the model, ISAM‐0D, includes a comprehensive description of the biogeophysical (energy and water) pro-
cesses, which are resolved with 15 discretized soil layers extending up to 50 m. The five bottom layers, which
extend between 3.5 and 50 m, are the deep thermally active soil layers, which are added to avoid numerically
biased estimation of the deep soil temperature and only active for the soil thermal conduction calculation.
All other calculations, including soil hydrology, soil carbon, and nitrogen, are performed in the first 10
layers, which extend up to 3.5 m. ISAM biogeochemical (carbon and nitrogen) processes resolving across
the atmosphere‐vegetation‐soil with a single 1 m soil layer (Barman et al., 2014a, 2014b; El‐Masri et al., 2015)
(Figure 1). The biogeochemistry in ISAM‐0D are cycled among the vegetation (tree and aboveground foliage
and tree‐woody biomass), aboveground litter (dead foliage and dead wood), belowground litter (dead roots),
aboveground and belowground SOM (microbial biomass and hummus), and inorganic N (NH4

+ and NO3
−)

pools (Yang et al., 2009) (Figure 1). Carbon assimilation, heat, and water fluxes are calculated through
coupled canopy photosynthesis, energy, and hydrological processes. Carbon assimilation is allocated into
different vegetation pools and then transfer to litter and SOM pools. The C cycle is then coupled with a
complete N cycle, which accounts for major N processes, including N deposition, N fixation, N mineraliza-
tion, N immobilization, nitrification, denitrification, and leaching (Yang et al., 2009).

The model incorporates several structural extensions and processes in recently published papers (Barman &
Jain, 2016; El‐Masri et al., 2015), which are important for describing the distinct biogeophysical and biogeo-
chemical processes in the permafrost region; wind compaction of snow and depth hoar formations (Barman
& Jain, 2016) by updated thermal conduction and soil water movement processes. The biogeochemical cycle
component accounts for C‐gain based dynamic plant phenology, dynamic rooting distribution and depth
parameterizations (El‐Masri et al., 2015).

2.1. Extended Version of ISAM

Here we extend the single soil layer of the biogeochemistry component of ISAM‐0D to the same 10 discre-
tized soil layers extend up to 3.5 m depth. The carbon and nitrogen pools in each of the 10 soil layers are
the same as has been considered in the ISAM‐0D (Figure 1). The major permafrost region plant functional
types (PFTs) considered in the extended model, ISAM‐1D, are shown in Figure S1. The ISAM‐1D includes
three major processes essential to better represent the vertical distribution of SOC stocks and turnover time
in the permafrost region. These processes are (1) bioturbation and cryoturbation, including the formation of
ice lens‐induced soil transport processes, as well as the response of permafrost systems to changing environ-
mental conditions; (2) vertically resolved SOC decomposition and related environmental modifiers, includ-
ing soil temperature, soil moisture, oxygen availability, and the strength of organo‐mineral interaction; and
(3) moss insulation due to changing soil temperature and soil state heterogeneity, including moisture and
texture. Besides these processes, a 14C tracer is incorporated to evaluate the model estimated SOC turnover
time (Figure 1). In the following, we provide a brief description of the individual process added to ISAM‐1D;
the detailed description can be found in Text S1. The description of the newly added variables and equations
in the model are provided in Tables S1 and S2.
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The vertical transport of SOC among the soil layers are accounted for by the bioturbation and cryoturbation
processes. In the model bioturbation is represented by the diffusion term and cryoturbation by advection
terms (Elzein & Balesdent, 1995, Equations S1 and S2) (Text S1). Bioturbation, which is themovement of soil
particles through living soil organisms, matches the diffusion process that determines the movement direc-
tion through the SOC gradient from topsoils with high SOC concentration to the deeper soils. Cryoturbation,
on the other hand, has several forms based on the particle moving direction, including horizontal, vertical,
andmixed (Rempel, 2007). In this study, we consider cryoturbation in the vertical direction, because the ver-
tical transport serves as an important mechanism to protect SOC (Ping et al., 2015). The cryoturbation pro-
cess in this study is represented by advection (Equation S4, Rempel, 2007) as a function of the ice lens growth
rate (Equation S5). This is because cryoturbation can bring carbon from a low carbon density layer to a high
carbon density layer, depending on the direction of the ice lens nudging. This SOC gradient effect can only
be accounted for well by the advection rate. In addition, the model accounts for the cryoturbation rate (ν) as
a linear function of the movement rate of the ice lens with γ as the slop parameter of the liner function
(Equation S4). This parameterization is useful for accounting for the effect of the cryoturbation on the
SOC profile instead of implementing the detailed microscopic ice‐soil particle interaction processes
(Rempel, 2007). A depth limitation parameter (Zmaxcryo) is also added in the model, which prevents the
penetration of SOC into deeper soils due to cryoturbation. The ice lens growth rate is calculated using a
rigid‐ice module (O'Neill & Miller, 1985) (Text S2), which simulates the uplift of water‐saturated soil due
to expansion caused by the ice lens growth. To calculate a more realistic rate of ice lens growth with time,
the hydraulic conductivity in frozen soils accounts for the effects of ice within the soil matrix by using an
ice impedance factor (Equation S7, Swenson et al., 2012). This cryoturbation scheme improves the modeled
changes in the cryoturbation rate under different climate conditions. For example, a drier climate may slow
the cryoturbation rates due to limited soil water availability for ice lens growth, leading to a lower frost heave
rate and cryoturbation activity (Ping et al., 2015). The model accounts for a reduction in soil respiration due

Figure 1. Conceptual diagrams of belowground structure and processes for (a) base version of ISAM (ISAM‐0D), (b) extended version of ISAM (ISAM‐1D), and
(c) soil and litter pools for both model versions. The soil depth for ISAM‐0D extends up to 1 m with a single homogeneous soil layer and for ISAM‐1D up to
3.5 m with 10 homogeneous soil layers.
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to frozen conditions using an empirical temperature modifier as a function of frozen Q10 temperature coeffi-
cient (Equations S11 and S12) (Koven et al., 2013; see Text S4 for detailed description).

Themodel grid cells can have frozen and unfrozen fractions of SOC, and themodel treats decomposition and
vertical oxygen diffusion separately for the frozen and unfrozen soils. The decomposition in the frozen soil is
controlled by the frozen Q10 temperature coefficient (see Text S4) and assumes no oxygen diffusion. The
model calculates O2 concentration in each soil layer for both saturated and unsaturated soil conditions
(Equations S15–S21) by accounting the process of oxygen diffusing into the soil from the atmosphere and
the soil oxygen consumption through heterotrophic respiration (Wania et al., 2010) (Text S5). To determine
the interface between the soil surface and air‐water (Swenson et al., 2012), we incorporated the perched
water level (Equation S23) on the permafrost during the early growing season, that is, the beginning of
the vegetation activity, due to the thawing of the ice.

We have added three different types of SOC processes into the vertically resolved model structure:
(1) SOC decomposition and degradation, (2) vertically resolved litter input, that is, the flux entering the soil
pools based on the above ground and below ground plant dead material, and (3) SOC accumulation in soil
layers once the SOC exceed the threshold value described by the bulk density (Equations S8–S10 and Text
S3). The model treats the SOC decomposition, degradation processes, and the corresponding temperature
(Equations S11–S12), moisture (Equation S13), and the environmental modifiers in the model's C‐N coupled
scheme (Yang et al., 2009) at each soil layer separately. We have added two newmodifiers: (1) A depth modi-
fier (Equation S14, see detailed description in Text S6) accounting for the resistance of SOC decomposition
due to organo‐mineral interaction (Masiello et al., 2004; Torn et al., 1997), and (2) an oxygen modifier
(Equation S15, Riley et al., 2011; Koven et al., 2013) to slow down the SOC decomposition due to oxygen lim-
itation. Text S4 provides a detailed technical description of all the environmental modifiers.

To improve modeled changes in soil microbial activities and active layer thickness, the revised model con-
siders the top first 10 cm soil layer as a moss layer, containing the accumulated amount of poorly decom-
posed litter. The thermal and hydraulic conductivities of this soil layer are replaced by the moss
conductivity values (O'Donnell et al., 2009). The added moss layer, which covers most of the boreal and tun-
dra areas, serves as a thermal insulator in the permafrost region, restricting seasonal soil temperature
changes; a cooler soil temperature during the summer inhibiting the soil microbial activity, while warmer
soil temperature during the early winter prolonged the soil microbial activity (Text S7 for details). When
the SOC is transferred downward through the processes discussed above, and the calculated stored amount
of SOC (Equation S8) in the SOC layer exceeds the maximum limit (e.g., the Bemmelen conversion factor,
which is 58% of C content for pure organic soil), the excess amount is transferred to the deeper soil layer
(Equation S9) (Lorenz & Lal, 2005). Without accounting this transfer, ISAM‐1D overestimated the vertical
transfer of soil thermal energy, resulting in the underestimation of the active layer thickness, surface organic
layer thicknesses, SOC storage, and Δ14C.

The model estimated Δ14C, described as the ratio of 14C and 12C (as SOC), soil profiles are used to calculate
SOC turnover time (Torn et al., 2009; described in Text S6). To calculate Δ14C (Equation S26, Stuiver &
Polach, 1977), we accounted for 14C in each SOC pool of ISAM, which is explicitly calculated by including
a set of equations (Equations S1b and S8b). The equations for the 14C are the same as for SOC, except that
14C equations account for radioactive decay with a half‐life (λ) of 5,568 years. In general, fractionations
are part of the 14C equations, but we assume no fractionation, because the observations data of Δ14C we used
compare ISAM modeled Δ14C to be already fractionation‐corrected (Koven et al., 2013). The decomposition
rate and environmental modifiers for 14C are assumed to be the same as for the SOC. For all 14C simulations,
we forced the model with a linearly interpolated long term atmospheric 14C time series for the period of
30 kyr before 0 BP (before present) (Reimer et al., 2013) to 2010 (Hua et al., 2013).

The more detailed light reaction scheme is incorporated in ISAM‐1D for better estimation of the CO2 ferti-
lization effect in the permafrost region. The light reaction of plant photosynthesis in the ISAM‐0D model
accounts for electron transport rate (J, mol m−2 s−1) calculation using a linear function of the light response
curve (Chen et al., 2011). In ISAM‐1D, we considered the electron transport rate to be limited by the
maximum capability (Jmax25) due to the limitation of enzyme activity, which is dependent on leaf tempera-
ture. The response curve of Jmax25 to leaf temperature is fitted to the measured response curve from
Yamasaki et al. (2002) using a parabolic equation (Text S8 for detail).
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3. Data and Experiments for Model Calibration, Evaluation, and
Uncertainty Analysis
3.1. Field Observation Data Set

Two different field data sets are compiled for the model calibrations and evaluations. First, the data for mod-
ern SOC and Δ14C profiles from five nonpeat sites in the permafrost region (He et al., 2016, See also
Figure S2) are used to calibrate and evaluate the model parameters (described in section 3.2). These sites
cover a variety of climate conditions for boreal forest and tundra biomes in the permafrost region. More basic
site information can be found in Table 1. We selected three specific sites (Boreal Forest: Donnelly Flats and
Hess Creek, and Shrub/Tundra: Gydansky Western Siberia) data for SOC and Δ14C profiles to calibrate and
two boreal forest sites (Old Black Spruce and Frost Fire Black Spruce) data to validate eight model para-
meters listed in Table 2. All these parameters are used to calculate vertical SOC and soil Δ14C distributions
in ISAM. (Table S3).

Second, we compiled 354 samples of Gelisol SOC profiles (Mishra et al., 2017; Vitharana et al., 2017) for eval-
uating themodeled SOC stock and turnover time at a regional scale. These profiles cover all major ecoregions
(Omernik & Griffith, 2014) in permafrost regions (Figure S2), with SOC stock ranging from 2–120 kg C m−2

for the top 1m. Since themodel does not account for peat soil, we first exclude all Histels soil profiles from the
compiled data. Next, we exclude soil samples from the coastal region where climate forcing data is not avail-
able to drive the model. Finally, we used the remaining 197 Gelisol samples (Figure S2).

We also compiled the following auxiliary surface variable data for each site to drive the model: the surface
PFT types, soil bulk density, and soil texture profiles (Michaelson et al., 2013; Mishra et al., 2017). In case

Table 1
Site Information and Environmental Conditions for Gelisol Samples With Observed Δ14C Profiles Chosen in This Study for Calibrations of ISAM‐1D Model

Site name Latitude Longitude Biome type Soil drainage class
Active layer thickness

(m)a
Sample
year References

Donnelly Flats Creek
Control

63.85°N 145.72°W Boreal forest Moderately well drained 0.57a (U58 Dot lake) 2001 Manies et al. (2004)

Gydansky Western
Siberia

69.72°N 74.65°E Shrub/tundra Well drained 0.603 2005 Kaiser et al. (2007)

Hess Creek 65.57°N 148.92°W Boreal forest Poorly drained 0.68 2007 O'Donnell et al. (2013)
Old Black Spruce 55.70°N 98.50°W Boreal forest Moderately well drained Not available 2002 Manies et al. (2006)
Frost Fire Black
Spruce

65.09°N 147.17°W Boreal forest Poorly drained 0.76a (Bonanza Creek
LTER)

1999 Manies & Harden (2011)

aThe active layer thickness data are obtained from the nearest Circumpolar Active Layer Monitoring network (CALM, https://www2.gwu.edu/~calm/). The
active layer thickness measuring site name is listed in the parentheses.

Table 2
A List of ISAM‐1D Model‐Calibrated Parameters

Parameter Name Equation
Calibrated

value
Range for uncertainty analysis

[low, high] Reference for the data range

zmaxcryo Maximum depth for cryoturbation Equation S3 1.48 m [0.2, 3.0] Koven et al. (2009); this study
D Diffusive rate Equation S3 1.4 cm2 yr−1 [0.1, 16.6] Koven et al. (2013
γ Slope parameter for cryoturbation

rates
Equation S4 18.8 [1, 100] This studya

bd Bulk density Equation S9 1 [0.42, 2.14] This studyb

Q10 Temperature modifier parameter
for decomposition

Equations S11
and S12

2.8 [1.3, 4.0] Ise and Moorcroft (2006);
Yang et al. (2009); Koven et al. (2017)

s Depth modifier slope parameter Equation S14 3.3 [2.0, 8.0] Jenkinson and
Coleman (2008)

aa Root growth direction Equation S22 0.25 [0.05, 0.9] Arora and Boer (2003)
bb Variable root distribution Equation S22 10.23 [0.9, 30.0] Arora and Boer (2003)

Note. The listed low‐ and high‐end range values are taken from the literature. The ISAM‐1D calibrated values are themean for five sites (see Table S3 for values of
the individual site) and have been used for the rest of the study.
aFor estimating the range of γ, we examine the range of cryoturbation rate by varying γ and select the γ value that produces a 5 times bigger cryoturbation rate
(Koven et al., 2013) compared to the diffusive rate. bWe used the standard deviation of SOC observation from 197 soil samples (Mishra et al., 2017) to estimate
the bulk density (bd) range and applied it to the empirical relationship of Périé and Ouimet (2008) to constrain the uncertainty for bulk density of SOC.
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the data for one or more variables is missing at particular sites, we used the Global Soil Dataset for Earth sys-
temmodeling (GSDE, Shangguan et al., 2014) data. We then used a mass‐preserving interpolation algorithm
(Malone et al., 2009) to calculate the SOC content and soil bulk density at each soil layer.

3.2. Experimental Design for Model Calibration, Evaluation, and Uncertainty Analyses

The model calibration is performed in the following two steps: First, we spin‐up the model to estimate
steady‐state vertical depth profiles for SOC and prebomb Δ14C for three calibration sites. In this step the
model is forced by repeating the 1901–1920 CRUNCEP 6‐hourly climate data with a fixed preindustrial
(1860) atmospheric CO2 concentration (286.41 ppm) and N deposition levels (Kanakidou et al., 2016).

We calibrated and evaluated the values of eight specific parameters (Table 2), controls all major processes,
which we have incorporated in ISAM‐1D, including cryoturbation, rooting depth, SOC vertical transport,
the temperature sensitivity of decomposition, and organo‐mineral interaction. These eight parameters are
(1) diffusive rate (D, Equation S3) determining the strength of bioturbation, (2) slop parameter
(γ, Equation S4) controlling cryoturbation rate as a function of the movement rate of ice lens, (3) maximum
depth (zmaxcryo, Equation S3) to which SOC can be penetrated to, (4) depth modifier slope parameter
(s, Equation S14) controls the strength of organo‐mineral‐interaction, (5) temperature coefficient
(Q10, Equations S11 and S12) controls the decomposition rates of labile litter, and SOC for each 10° tempera-
ture change, (6) soil bulk density (bd, Equation S9) determines the accumulation of organic layer, (7) root
growth direction parameter (aa, Equation S22), and (8) variable root distribution parameters
(bb, Equation S22) control root distribution vertically and horizontally. Though the root parameters aa
and bb are already described and calibrated in ISAM‐0D (El‐Masri et al., 2015; Song et al., 2013), here we
recalibrate these two parameters for the new ISAM‐1D model. The calibrated values and uncertainty range
values of these eight parameters are provided in Tables 2 and S3.

In the first step, we prescribed the values of eight parameters based on ISAM‐0D. In the second step, the
model is run iteratively from 1901–2010 by repeating the CRUNCEP climate forcing, atmospheric CO2 con-
centrations (Friedlingstein et al., 2019) and historical N deposition (Kanakidou et al., 2016) data and the
parameter values are adjusted within the predefined range, which we obtain based on published research
articles (Table 2). We optimized the cost function value of each parameter, which is the root‐mean‐square
error (RMSE) between the observed and modeled SOC and Δ14C profiles. The final parameter values are
achieved by using the automatic FFSQP (FORTRAN implementation of the Feasible Sequential Quadratic
Programming) numerical optimization package (Zhou et al., 1997). Under certain cases, FFSQP is unable
to minimize the cost function. In such cases, the parameters are manually adjusted using the trial and error
method.

To evaluate the SOC stocks and Δ14C profiles at the regional scale, we used the same model settings as
described above and calculated SOC stocks, Δ14C, and SOC turnover time for 197 sites using ISAM‐0D
and ISAM‐1D. These site‐specific simulations are carried out using the mean of calibrated site values for
all eight parameters (Table S3).

We determined the uncertainty in the model estimated SOC stocks and turnover time due to uncertainty in
the eight model parameters. A total of 16 simulations (8 for low range and 8 for high range of values) were
performed for all five sites (Table S3). For each simulation, we spin‐up the model by repeating the climate
and other soil data over the period 1901–2010, the same method as we have used for the calibration and eva-
luation cases. By changing each parameter values one at a time and keeping other parameter values fixed at
the calibrated values, we obtained the model estimated high and low range of values of SOC stocks and
turnover time.

3.3. Evaluation of the Model Results for Carbon Fluxes

After incorporating processes described above, we reevaluated ISAM‐1D estimation of major carbon fluxes
using site‐level data sets for gross primary productivity (GPP) (Table S4), net primary productivity (NPP) and
heterotrophic respiration (Rh) (Table S5). All sites are located above 45°N. Specifically, the microbial CUE,
the efficiency with which microorganisms transfer the available organic matter into labile and resistant
pools, is calibrated to match the observed Rh (Text S9). The microbial CUE in ISAM is determined by the
microbial efficiency parameter, which is the fraction of litter carbon transferring into the foliar and

10.1029/2020GB006585Global Biogeochemical Cycles

SHU ET AL. 7 of 23



woody microbial pools (Figure 1c) (Gougoulias et al., 2014). In the model we calibrate the fraction value
using the site level Rh data as described in Text S9. The calibrated microbial CUE parameter for the labile
pool is 0.3, which is 50% less compared to ISAM‐0D, leading to a decrease of carbon sequestration ability
due to an increase of the SOC respiration, particularly from the labile pool rather than transfer it to the resis-
tant pools.

3.4. Estimating Changes in SOC Stock and the SOC Turnover Time for Permafrost Regions Over
the Period 1901–2100

We conducted two regional simulations, one using ISAM‐0D and another using ISAM‐1D, to estimate the
current SOC stocks in the entire global permafrost region (Figure S2), which contains the entire permafrost
and the boreal forest area in North America, Asia, and Europe. The ISAM‐0D and ISAM‐1D do not account
for peat dynamics and the spodosol mechanisms. Therefore, our study region excludes the SOC from peat-
lands and spodosol. Both model simulations are forced with the same spin‐up settings as for the model cali-
bration case (i.e., repeating the 1901–1920 CRUNCEP climate data with 1860 level of atmospheric CO2

concentration, 286.41 ppm, and N deposition). Next, the historical simulations were performed using
1901–2010 data for climate, atmospheric CO2 concentrations, and N deposition. The SOC turnover time is
then calculated as the SOC mass‐weighted average of all layers above 1‐m soil (Trumbore &
Harden, 1997). We reported the results for the spin‐up case (for ca. 1860) and for the period 1860–2010 as
a change from 1860s to 2000s (mean for 2001–2010). The model results are presented explicitly for topsoil
(i.e., soil section from 0 to 30 cm), subsoil (i.e., soil section from 31 cm to 1 m), and top 1 m soils, which
are estimated by summing the model results for all layers from 0 to 30 cm, 31 cm to 1 m, and top 1 m.

4. Results
4.1. Model Calibration and Validation Results

All five sites have distinct soil vertical structure and composition. Therefore, the vertical distribution of SOC
are quite different for all five sites as represented by the large variations in calibrated values for two specific
parameters, zmaxcryo and γ, which are varying by 5 and 18 times across different sites (Table S3). The zmaxcryo

of 0.27 m at Hess Creek has the shallowest SOC profile (Figure 2e) with the lowest accumulation of labile
SOC. In contrast, zmaxcryo of 2.98 m value at Donnelly Flats Creek Control site suggests that the cryoturbation
process is active even in the deeper soils. The γ is the highest at Donnelly Flats Creek Control site due to a
higher frost heave rate resulted from faster ice lens growth. This is common for the silt soil to form high SOC
content in the subsoil (Kaiser et al., 2007; Ping et al., 2015). The ice lens growth at other calibrated sites is
small due to the lower cryosuction rates. Thus, a smaller calibrated γ value is sufficient for model simulation
to match the observed SOC stocks and Δ14C profiles.

After the implementation of the frost heave process in representing cryoturbation, ISAM is able to capture
explicitly the increased cryoturbation rate in response to the higher variation of soil moisture (Figure S3)
at calibrated sites with higher frost heave rates (Donnelly Flats Creek Control and Gydansky Western
Siberia). This results in a relatively higher SOC stocks (Figures 2a and 2c) and Δ14C (Figures 2b and 2d)
in subsoils at both sites compared to calibrated sites.

Despite a large heterogeneity at different sites, the ISAM‐1D model is able to capture the observed trend of a
higher Δ14C at the topsoil due to the accumulation of the large amount of the fresh litter residue with higher
14C and relatively negativeΔ14C at the subsoil due to downward transport of relatively lower amount of fresh
litter input and decomposed SOC from topsoil to subsoil, which is resistant to further decomposition
(Trumbore & Harden, 1997), at calibrated sites (Figure 2) and evaluated sites (Figure 3). The reduction of
Δ14C along with the soil depth indicates longer SOC turnover time in the subsoil compared to the topsoil.
Also, the newly added input to the topsoil decomposes faster and contributes to the Rh.

Further evaluation of the ISAM‐1D eight parameters, which were calibrated and evaluated using five sites
data, for the mean SOC stocks for the top 1 m soil over the 197 sites show that the ISAM‐1D results of
30.3 kg C m−2 are consistent with the Northern Circumpolar Soil Carbon Database (NCSCD), 30 kg C m−2

(Hugelius et al., 2013), and Mishra et al. (2017), 33 kg C m−2 data sets than the results of ISAM‐0D,
15 kg C m−2 (Figure 4a). At the same time, ISAM‐1D estimated mean permafrost SOC turnover time, which
is derived from the observed Δ14C profile, of the 1,443 years for the 197 permafrost soil sample sites, which is
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also in much better agreement with the value of the 1,408 years derived from the observed Δ14C profile than
ISAM‐0D estimated value of 439 years (Figure 4b). The ISAM‐1D estimates lower decomposition rates than
ISAM‐0D, resulting in more SOC amount in the topsoil. Excess amount of SOC is transported to the subsoil
layers over time where it is stabilized due to the organo‐mineral interactions and the colder temperature

Figure 2. The comparison between modeled and observed values for cumulative SOC stock (left) and Δ14C profiles
(right) up to 1 m depth for three calibrations: Donnelly Flats Creek control (a and b), Gydansky Western Siberia
(c and d), and Hess Creek (e and f). Each row represents the results from one site. Blue lines show the estimated profiles
using ISAM‐1D, and red lines show the profiles of the observation. For the results of the ISAM‐1D model, profiles of
calibration sites are simulated using calibrated parameters, and profiles of evaluation sites are simulated using the mean
calibrated parameters from the three calibration sites. The model uncertainty range for each site is calculated based
on the uncertainty in the eight model‐calibrated parameters. The uncertainty for observation is based on the standard
error of the samples collected at the same location.
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below the permafrost table, thus increasing SOC stock and SOC turnover time in subsurface soil layers. These
results suggest that ISAM‐1D can also be applied to the entire permafrost region for the calculations of SOC
stocks and turnover time.

4.2. ISAM‐1D Estimated SOC Stocks and Turnover Time for the Permafrost Region

The estimated top 1 m SOC over the permafrost region for the 2000s are 319 and 157 Pg C based on ISAM‐1D
and ISAM‐0D (Figures 5a and 5b). Over 1860–2000s, ISAM‐1D and ISAM‐0D estimated a total increase of
1.2% (3.7 Pg C) and 3.9% (4.8 Pg C) (Table 3), mostly in boreal forest region (Figures 6a and 6b). These results
suggest that ISAM‐1D results are in much better agreement with NCSCD estimates of 327.36 Pg C (after
excluding the peatland and spodosol SOC) than ISAM‐0D results (Figures 5a–5c).

The split of 1 m SOC between the topsoil and subsoil for the year 2000 is 37% and 63% (Figures 5b, 5e and 5h)
for ISAM‐1D, and 30% and 70% (Figures 5a, 5d, and 5g) for ISAM‐0D compared to NCSCD values of 43% and
57% (Figures 5c, 5f, and 5i), suggesting that both versions of ISAM estimated values for topsoil is underesti-
mated and for subsoil overestimated compared to NCSCD data. However, the split of observed total SOC
stocks (33 Pg C) from the 197 collected soil samples is 38% and 62%. These results are aligned with
ISAM‐1D estimated results, but about 5% lower (higher) than the topsoil (subsoil) estimates based on
NCSD data. The ISAM estimates and these two data sets are agreed within the uncertainty ranges
(6.5–55.2 kg C m−2) for NCSCD (6.7–53.7 kg C m−2) and 197 collected soil data sets (8.9–54.2 kg C m−2).

Most importantly, ISAM‐1D estimated spatial distribution of SOC stock shows a better alignment with
NCSCD spatial pattern than estimated based on ISAM‐0D, especially in the eastern Siberia tundra region
with low SOC content due to shallower rooting depth. ISAM‐1D estimation also captured the high SOC
for a boreal forest than for grassland and tundra in the eastern and southern Siberia region due to accounting
the frost heave, organo‐mineral interaction processes and deeper rooting depth (El‐Masri et al., 2015).

Figure 3. The comparison between modeled and observed values for cumulative SOC stock (left) and Δ14C profiles
(right) up to 1.0 m depth for two evaluation sites: Frost Fire Black Spruce (a and b), and Old Black Spruce (c and d).
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In regards to SOC turnover time, ISAM‐1D estimated 1 m Δ14C‐based SOC turnover time for the 2000s is
486 years (Figure 7b) with much higher SOC turnover time for the subsoil (815 years, Figure 7f) than for
the topsoil (168 years, Figure 7d). However, the estimated amounts are one order of magnitude larger than
estimated based on ISAM‐0D (Figure 7a). Over 1860–2000s, ISAM‐1D estimated changes of SOC turnover
time is about 5 times higher than ISAM‐0D (Figures 8a and 8b), suggesting that ISAM‐1D estimates lesser
sequestration of SOC (or higher decay rate) in comparison to ISAM‐0D. While ISAM‐0D estimated Δ14C‐
based 1 m SOC turnover time increases over the permafrost region (Figure 8a) for topsoil and subsoil
(Figures 8c and 8e) over the period 1860–2000, ISAM‐1D estimated Δ14C‐based 1 m SOC turnover time
increases for the tundra region and decreases for boreal forests (Figures 8a and 8b), particularly for Siberia
and northern Canada boreal regions. In addition, ISAM‐1D SOC turnover time (Figure 8d) for topsoil

Figure 4. Boxplots of 1 meter (a) mean SOC stock and (b) mean soil turnover time calculated based on Δ 14C for 197 sites
in permafrost regions using two versions of ISAM model (0D and 1D). The model estimated results for SOC are
compared with Mishra et al. (2017) and NCSD (Hugelius et al., 2013) data sets and SOC turnover time results are
compared with three published studies (Knoblauch et al., 2013; Schädel et al., 2014; Trumbore &amp; Harden, 1997). The
solid triangles denote the mean values, and the red dash lines denote the median values. Gray horizontal dash lines show
the mean SOC stocks of two measured data sets and mean turnover time of the three field studies shown in (a) and (b).
The upper and bottom boundaries of the boxes represent the 25th and 75th percentiles, and the solid circles outside
the box represent outliers, which have the values of 1.5 times the interquartile range above and below the 25th and 75th
percentiles.
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decreases for most of the regions, implicating a faster decomposition for the near future, whereas SOC turn-
over time (Figure 8f) increases for subsoil in the tundra and most of the boreal region, suggesting the near
future the subsoil would sequester more SOC.

4.3. Effects of Carbon‐Concentration and Carbon‐Climate Feedbacks on Carbon Socks and Fluxes

The carbon‐concentration feedback leads to a higher SOC over the time period 1860–2000s. For example,
ISAM estimates higher SOC stocks in the southern Siberia boreal forest region due to a strong CO2 fertiliza-
tion effect (Figures 9a and 9c). Some of this sequestration amount is respired to the atmosphere due to
carbon‐climate feedback as shown by the increase of decomposition caused by higher soil temperature

Figure 5. The geographical distribution of mean permafrost SOC stock for the 1860s for the top 1 m soil (a, b, c), topsoil (d, e, f), and subsoil (g, h, i): (a), (d), and
(g) show the estimation based on ISAM‐0D model; (b), (e), and (h) show the estimation based on ISAM‐1D model; and (c), (f) and (i) show the SOC
stock compiled based on NCSCD (Hugelius et al., 2013) data set. In all subplots, regions containing peat soils (i.e., histosol and histel) and spodosol are not
accounted for.
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(Figure S4). However, the estimated effects of these two feedbacks based
on both versions of ISAM are quite distinct. For example, ISAM‐1D
(ISAM‐0D) estimates higher (lower) SOC sequestration amount for topsoil
than subsoil (Figures 9c–9f), because ISAM‐1D (ISAM‐0D) estimated
effect of carbon‐concentration feedback leads to a larger increase of SOC
sequestrations in topsoil layers (Figures 9e, 9g, 9i, and 9k). ISAM‐1D based
respired soil carbon due to carbon‐climate feedback for topsoil and subsoil
is about the same amount and have similar regional patterns (Figures 9f,
9h, 9j, and 9l), both the topsoil and subsoil shows more SOC losses from
boreal forest regions in Canada and the western and southern Siberia
and from the tundra region in the eastern Siberia. In contrast, ISAM‐0D
estimated losses in topsoil and subsoil layers are only in tundra regions.

ISAM‐1D estimates a gain of 2.3% SOC (7.3 Pg C) due to
carbon‐concentration feedback, whereas ISAM‐0D estimates 6.4 Pg C,
almost 2 times more (4.1%) carbon‐concentration feedback effect than
ISAM‐1D. At the same time, ISAM‐1D estimates a loss of SOC of 1.1%
(3.6 Pg C) and ISAM‐0D 1.0% (1.5 Pg C) due to carbon‐climate feedback.

Specific for ISAM‐1D, the higher litter input caused by a warmer climate is preserved through
organo‐mineral interaction. In addition, the warmer climate triggers a more frequent freeze‐thaw cycle
and accelerates the vertical transport of SOC via the cryoturbation process. However, the part of the accumu-
lated amount of SOC in the subsoil is lost due to a higher decomposition rate, as a result of warmer tempera-
tures (Figure 9l). The SOC in the topsoil is lost in one part due to SOC decomposition, but in a lesser amount
than in subsoil, and in another part due to the transport of carbon to the subsoil (Figure 9h).

4.4. Uncertainties in ISAM‐1D Estimated SOC Stock and SOC Turnover Time Owing to
Calibrated Parameters

Observation and model estimation for SOC stock and turnover time show good agreement within the uncer-
tainty range, suggesting that they are statistically indistinguishable. The overall estimated uncertainty in
ISAM‐1D SOC for the topsoil ranges 64.2% to 46.4% and for subsoil ranges −78.1% to 132.5% (Figure S5a).
The parameter s, describing the strength of organo‐mineral interaction, and the root distribution parameter
(bb) introduce the maximum positive (46%) and negative (−64%) uncertainties in estimated topsoil stock;
and the slope parameter for cryoturbation rate (γ) and the maximum depth for cryoturbation (zmaxcryo) intro-
duce the maximum positive (133%) and negative (−78%) uncertainties in estimated subsoil stock.

The uncertainty in ISAM‐1D SOC turnover time for topsoil and subsoil range −44% to 69.5% and −44.2% to
93.2% (Figure S5b), respectively. Since SOC turnover time is the indicator of the SOC sequestration ability
under the changing environmental conditions, the parameter uncertainty analysis suggests that the major
parameters that introduce maximum uncertainty in ISAM‐1D estimated topsoil and subsoil SOC turnover
time and SOC stock are the same, with the exception of γ and D. The γ is more important for determining
SOC, especially subsoil SOC, while D is more important for determining SOC turnover time.

The uncertainties in the model parameter values can be reduced by improving the cryoturbation process and
its rates, particularly in the deeper soil layers. First, Miller's frost heavingmodel for cryoturbation implemen-
ted in ISAM‐1D is based on the “rigid‐ice” (O'Neill & Miller, 1985) assumption; while this model is able to
capture the SOC turnover at different soil depth and the frost heave rates at the annual scale, its estimation
of seasonal to diurnal variation under extreme climate change conditions can be further improved by
accounting for detailed parameterization of ice lens dynamics, which can improve the cryoturbation rates.
Next, the implementation of vertical soil dissolved organic carbon (DOC) flux, which currently is not
accounted for in ISAM‐1D, could further improve the parameterization of organo‐mineral interaction and
hence cryoturbation rates, particularly in the deeper soil layers (Riley et al., 2014). Although DOC is low
in permafrost regions in the current environment, the vertical movement of DOC through soil water flow
might become substantial during the thawing of permafrost in the future. We plan to account for this effect
in our future modeling efforts based on recent efforts to model DOC in permafrost regions (e.g., Bowring
et al., 2019).

Table 3
ISAM Estimated Changes (%) in SOC Stocks Over the 1860s–2000s Due to
CO2‐Carbon Cycle Feedback (CO2), Climate‐Carbon Cycle Feedback
(Climate), and the Combined CO2‐Carbon Cycle and Climate‐Carbon
Cycle Effect (Total)

Changes in SOC
stocks ISAM‐0D ISAM‐1D

CO2 Climate Total CO2 Climate Total

Total 1 m (Pg C) 6.4 −1.5 4.8 7.3 −3.6 3.7
(%) 4.5 −1.0 3.1 2.3 −1.1 1.2
Topsoil (Pg C) (%) 5.4

(1.7)
−2.0
(−0.6)

3.4
(1.2)

Subsoil (Pg C) (%) 1.9
(0.6)

−1.6
(−0.5)

0.3
(0.1)

Note. The percentage of change is relative to the permafrost SOC stock for
the 1860s, which are 177 Pg C for ISAM‐0D and 319 Pg C for ISAM‐1D.

10.1029/2020GB006585Global Biogeochemical Cycles

SHU ET AL. 13 of 23



Figure 6. ISAM estimated changes in the permafrost SOC stock over the 1860s–2000s for (a, b) the top 1 m soil, (c, d) the
topsoil, and (e, f) the subsoil. The left column shows the ISAM‐0D simulated changes, and the right column ISAM‐1D
simulated changes.
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Figure 7. ISAM estimated permafrost SOC turnover time calculated using Δ 14C profile for the 2000 for the (a, b) top 1 m
soil, (c, d) topsoil, and (e, f) subsoil. The left column shows the ISAM‐0D simulated SOC turnover time and the right
column ISAM‐1D simulated SOC turnover time.
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Figure 8. ISAM estimated changes in the permafrost SOC turnover time calculated using Δ14C profile, while accounting for carbon‐concentration and
carbon‐climate feedbacks, over the 1860s–2000sfor (a, b) the top 1 m soil, (c, d) the topsoil, and (e, f) the subsoil. The left column shows the ISAM‐0D
simulated changes, and the right column ISAM‐1D simulated changes.
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5. Discussion and Conclusions
5.1. Modeled Steady‐State SOC Sock and SOC Turnover Time

After incorporating a number of processes to resolve the vertical soil heterogeneity, including the spatially
variable cryoturbation rates, the vertically resolved litter input, and environmental modifiers, ISAM‐1D
improved the estimation of spatial heterogeneity for both permafrost SOC stocks and turnover time for top-
soil and subsoil pools. The spatial heterogeneity of the cryoturbation rate in ISAM‐1D, which is calculated
through linking the frost heave process with the freezing and thawing of the soil ice, is able to capture more
accurately the redistribution of SOC stocks in the permafrost region soils affected by environmental factors.
For example, ISAM‐1D (Figure 10a) estimated the highest cryoturbation rate to be found in the regions
caused by more active freezing and thawings, such as the northern tundra region and the Hudson Bay.
ISAM‐1D also estimated the change of cryoturbation rates over the 1860–2000s (Figure 10b), showing a lar-
ger region with an increase of cryoturbation rate than the region with a decreasing rate, resulting in a faster

Figure 9. ISAM estimated changes in SOC stock (kg C m−2) from the 1860s to 2000s due to CO2‐carbon cycle feedback (Columns 1 and 3) and climate‐carbon
cycle feedback. The CO2‐carbon cycle feedback case assumes varying CO2 concentrations over the 1860s–2000s, but random climate forcing for 1901–1920,
whereas climate‐carbon cycle feedback simulation assumes varying climate forcing 1860s–2000s but fix CO2 concentration at 1860 level (286.41 ppm). The results
shown are for total 1 m soil (first row), topsoil (second row), and subsoil (third row).

10.1029/2020GB006585Global Biogeochemical Cycles

SHU ET AL. 17 of 23



movement of topsoil SOC stocks into the subsoils. The increase of cryoturbation rate is linked to the increase
of soil temperature (Figure S4), which activates stronger freezing and thawing activity of soil ice and hence
increases the frost heave strength and the estimated cryoturbation rate.

ISAM‐1D estimated Δ14C‐based SOC turnover time is also consistent with the published radiocarbon dates
of buried SOC stocks (Bockheim, 2007), which is longer than ISAM‐0D, resulting in an increase of steady‐
state SOC. While SOC turnover time is longer, ISAM‐1D calibrated CUE for labile pools is lower than
ISAM‐0D, resulting in a reduced amount of SOM transferred to the resistant pools in topsoil. Therefore,
more SOC is decomposed and then respired to the atmosphere from the labile pools of topsoil layers, result-
ing in a transfer of lesser amount to the deeper soil layers by the cryoturbation process. While moving down-
ward along the vertical soil layers, decomposition rates of SOC are reduced due to organo‐mineral
interaction accounted for in ISAM‐1D, resulting in an increase of SOC turnover time and thus stock in sub-
soils (Figure 8). Since the ISAM‐1D considers the vertically transport of litter input, it suffers the same fate
and hence further increases the SOC stocks and turnover time.

In order to tease out the effect of calibrated CUE for labial pools from other vertically resolved processes
incorporated in the ISAM‐1D, we performed another model simulation using ISAM‐1D with the original
CUE value (i.e., the value used in ISAM‐0D) over the 197 soil sample sites (Mishra et al., 2017). The compar-
ison of the two versions of the ISAM‐1D, one with calibrated CUE and another with original CUE, shows
that the model estimated SOC sink for the calibrated case is reduced by about 20% (Figure S9).

In contrast to ISAM‐0D, which assumed fixed values of the modifier for the SOC decomposition calculation,
ISAM‐1D calculations with vertically resolved biogeophysical modifiers for soil decompositions show the
improvement in the model estimated decomposition and Rh compared to Soil Respiration Database
(SRDB) observation data (Bond‐Lamberty & Thomson, 2018). This is because ISAM‐1D SOC decomposition
rates were higher in the topsoil than in ISAM‐0D due to the warmer daytime topsoil average teamperature
than the surface air temperature, which was used in the ISAM‐0D. In the case of soil moisture modifier, the
ISAM‐0D applied only the first 30 cm of soil moisture, thus lead to a dry bias for litter decomposition, while
ISAM‐1D applied the vertically resolved moisture at each layer, which was wetter. In addition, the biogeo-
chemical modifiers, including oxygen and nitrogen availability, also enhance the ISAM‐1D steady‐state
SOC stocks and turnover time. For example, the oxygen modifier in ISAM‐1D under the steady‐state condi-
tions shows a mean oxygen modifier of 0.8, and most of the oxygen‐limited region is found in the northern
permafrost region (Figure S6a) due to the shallower water table, which limits the oxygen diffusion into the

Figure 10. ISAM‐1D estimated spatial distribution of (a) the cryoturbation rate (unit: m yr−1) for the 1860s and (b) the changes in cryoturbation rates (unit:
m yr−1) over the 1860s–2000s.
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soil column. In the case of nitrogen modifier, ISAM‐1D shows a stronger N limitation in the northern region
compared to the southern boreal region (Figure S7a).

5.2. Modeled Carbon Cycle Feedback Effects on Soil Carbon Sequestration Potential Over
Historical Time

ISAM‐1D estimates longer SOC turnover time, suggesting an increase in SOC, a positive response. However,
this response changes under carbon‐concentration and carbon‐climate feedbacks over the historical period
(1860s–2000s). ISAM‐1D estimates a weaker carbon‐concentration and stronger carbon‐climate feedbacks
compared to ISAM‐0D. Thus, overall lesser carbon sequestration was estimated based on ISAM‐1D as
reflected by the changes in SOC (Table 3). This is because SOC losses from labile pools of the topsoil layers
are about 10 timesmore compared to the subsoil (Figures S8a and S8b), whereas ISAM‐0D sequestration rates
were higher, because more SOC was transferred from labile pools to the resistant pools as discussed next.

A comparison of ISAM‐0D and ISAM‐1D results for carbon dynamics of the labile pool (Figures S8a and S8b)
shows shorter SOC turnover time in ISAM‐1D than in ISAM‐0D for the labile pool, suggesting that the labile
pool in ISAM‐1D case is receiving additional carbon input, but respiring back to the atmosphere at much
faster rates as discussed above. This results in a less carbon remain in labile pools for further transform or
transport to the subsoil pools with a longer SOC turnover time and higher SOC sequester potential
(Figures S8c and S8d). In contrast, resistant pools show the opposite response. Overall, ISAM‐1D shows a
1.2% gain of SOC, which compared to the estimation of 3.1% gain of SOCS from ISAM‐0D (Table 3), confirm-
ing a large decrease of carbon sequestration ability in comparison to ISAM‐0D. In addition, the changes in
SOC stock in ISAM‐1D were also impacted by oxygen availability. Compared to the 1860s, oxygen availabil-
ity is increased by the 2000s (Figure S6b), resulting in an increase of SOC decomposition and the loss of more
SOC stock. Thus, further weakens the carbon‐concentration feedback effect.

In regards to carbon‐climate feedback, warmer conditions accelerate the decomposition of SOC in the top-
soil layer. In contrast, warmer condition enhances the soil freezing‐thawing frequency, resulting in an
enhancement of the frost heave rate and thus the cryoturbation rate (Equations S4–S6). A higher cryoturba-
tion rate transports more SOC to the deeper soil layers where it is preserved due to stronger organo‐mineral
interaction. However, ISAM‐1D shows almost similar warming for the topsoil and subsoil layers
(Figure S10), but the studies also show that higher temperatures are more sensitivity to the resistant pool
(Equation S12) compared to the labile pool (Knorr et al., 2005; Schmidt et al., 2011), which we incorporated
in ISAM by using a variant of Q10 formulations for labial and resistant pools (Equation S11 for labial pool
and Equation S12 for a resistant pool). Since the resistant pools in subsoils have a relatively higher amount
of SOC, therefore, there is an increased amount of carbon loss from the subsoil layers. In addition, higher
oxygen availability under warmer temperature further accelerates carbon decomposition, which means
strengthening the carbon‐climate feedback.

5.3. Future Perspective of the Work

Despite the advances made in ISAM‐1D, the model performance perhaps can be further improved by
improving the parameterization of modeling cryoturbation rates, and hence SOC stock and turnover time,
particularly in the deeper soil layers. First, Miller's frost heaving model for cryoturbation implemented in
ISAM‐1D is based on the “rigid‐ice” (O'Neill & Miller, 1985) assumption; while this model is able to capture
the SOC turnover time at different soil depth and the frost heave rates at the annual scale, its estimation of
seasonal to diurnal variation under extreme climate change conditions can be further improved by account-
ing for detailed parameterization of ice lens dynamics. Second, the implementation of vertical soil DOC flux,
which currently is not accounted for in ISAM‐1D, could further improve the parameterization of
organo‐mineral interaction and hence cryoturbation rates, particularly in the deeper soil layers (Riley
et al., 2014). Although DOC is low in permafrost regions, the vertical movement of DOC through soil water
flow might become important during the thawing of permafrost in the near future and would be accounted
for in our future modeling efforts. A recommendation for further reducing this uncertainty for large scale
TEMs is to explicitly account for the spatial heterogeneity of soil mineralogy (Torn et al., 1997).

5.4. Overall Conclusion

Overall, ISAM‐1Dmodel results for the permafrost region show substantial improvements in modeling both
SOC stocks and turnover time compared to previous study results (He et al., 2016). Also, ISAM‐1D estimated
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SOC profiles are consistent with observations and thus can reproduce the different responses of topsoil and
subsoil to the change of the environmental conditions. The revised ISAM‐1D model structure, added pro-
cesses, and effects of environmental factors improve the model performance for carbon‐concentration and
carbon‐climate feedback effects. The model estimates lesser carbon sequestration in the permafrost region
soils over the historical time period (1860–2000s). While the effect of these to feedbacks is small over the his-
torical time, we expect ISAM‐1D to calculate much less soil carbon sequestration rates under the future
scenarios with higher CO2 and higher temperature changes.

Overall, ISAM‐1D framework with the improved representation of SOC dynamics and turnover time is a
better tool to quantify the future permafrost SOC dynamics, greenhouse gas release, and the permafrost car-
bon cycle‐climate feedback compared to the current ESMs.

Data Availability Statement

ISAM simulated decadal mean permafrost SOC stocks and turnover time for the 1860s and 2000s can be
downloaded from the ISAM website (http://climate.atmos.uiuc.edu/ShuEtAl_Permafrost/). All the results
are stored in NetCDF files. In addition, ISAM model code is available upon request from the corresponding
author (email: jain1@illinois.edu). The ISAM‐0D and ISAM‐1D results discussed in this paper and listed in
the Data Access section are available for download from the ISAM website (http://climate.atmos.uiuc.edu/
ShuEtAl_Permafrost/).
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