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Abstract Free-air CO2 enrichment (FACE) experiments provide a remarkable wealth of data which can be
used to evaluate and improve terrestrial ecosystem models (TEMs). In the FACE model-data synthesis project,
11 TEMs were applied to two decadelong FACE experiments in temperate forests of the southeastern U.S.—the
evergreen Duke Forest and the deciduous Oak Ridge Forest. In this baseline paper, we demonstrate our
approach to model-data synthesis by evaluating the models’ ability to reproduce observed net primary
productivity (NPP), transpiration, and leaf area index (LAI) in ambient CO2 treatments. Model outputs were
compared against observations using a range of goodness-of-fit statistics. Many models simulated annual NPP
and transpiration within observed uncertainty. We demonstrate, however, that high goodness-of-fit values do not
necessarily indicate a successful model, because simulation accuracy may be achieved through compensating
biases in component variables. For example, transpiration accuracy was sometimes achieved with compensating
biases in leaf area index and transpiration per unit leaf area. Our approach to model-data synthesis therefore
goes beyond goodness-of-fit to investigate the success of alternative representations of component processes.
Here we demonstrate this approach by comparing competing model hypotheses determining peak LAI. Of
three alternative hypotheses—(1) optimization to maximize carbon export, (2) increasing specific leaf area with
canopy depth, and (3) the pipe model—the pipe model produced peak LAI closest to the observations. This
example illustrates how data sets from intensive field experiments such as FACE can be used to reduce model
uncertainty despite compensating biases by evaluating individual model assumptions.

1. Introduction
The terrestrial carbon cycle is a major source of interannual and intraannual variability in the global carbon
cycle [Canadell et al., 2007; Le Quere et al., 2009]. Many of the uncertainties in Earth Systemmodel projections
are related to uncertainties in the representation of the terrestrial carbon cycle and its response to
environmental change, in particular, atmospheric CO2 and climate [Cramer et al., 2001; Friedlingstein et al.,
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2006; Sitch et al., 2008; Forster et al., 2013; Piao et al., 2013]. To reduce this uncertainty, there is a need to first
evaluate and identify sources of uncertainty in terrestrial ecosystem and biosphere models (TEMs) and
then to improve TEMs using a wide range of ecosystem data. There have been a number of studies that
have evaluated TEMs against different kinds of ecosystem-scale data including eddy covariance [Schwalm
et al., 2010; Dietze et al., 2011; Keenan et al., 2012; Schaefer et al., 2012] and precipitation manipulations
[Hanson et al., 2004; Powell et al., 2013]. This paper analyses simulations from a model-experiment
intercomparison project in order to evaluate model predictions against data from the ambient CO2

treatments in two temperate forest free-air CO2 enrichment (FACE) experiments. The intercomparison
involved multiple modeling groups and strong involvement from the experimentalists. This paper focuses
on the ability of models to simulate ecosystems under ambient CO2, while other papers provide similar
discussion for water, carbon, and nitrogen cycle responses to elevated CO2: De Kauwe et al. [2013, 2014]
and Zaehle et al. [2014].

FACE experiments are ideal for model testing because they provide simultaneous data sets of multiple
ecosystem properties at scales suitable for direct comparison with models [Körner et al., 2005; Hendrey et al.,
1999; Oren et al., 2001; Norby et al., 2006; Calfapietra et al., 2001; Zak et al., 2011]. Situated in the southeastern
U.S., the two forest FACE experiments used in this intercomparison, Duke and Oak Ridge, yielded rich and
detailed data sets on the state and dynamics of temperate forest ecosystems across a range of temporal
scales. Some data, such as weather data and sap flow, were resolved hourly, while the length of the FACE
experiments used in this synthesis (~11 years) was sufficiently long to detect relatively slow feedbacks, such
as nutrient limitation [Johnson, 2006; Norby et al., 2010]. This paper focuses on net primary productivity (NPP)
and transpiration which drive carbon (C) and water fluxes, two of the main objectives of TEMs, and leaf area
index (LAI) which plays a key role in simulating both NPP and transpiration by scaling leaf-level C and water
fluxes to the forest canopy. Furthermore, leaf-level water C fluxes and water fluxes are linked via stomatal
conductance [De Kauwe et al., 2013], so that NPP, transpiration, and LAI are all linked such that a bias in any
one will lead to a bias in the other two. The purpose of this paper is threefold: (1) to detail the FACE model-
experiment synthesis describing the two FACE experiments, the 11 TEMs, and how the models were applied
to the FACE sites; (2) to evaluate and compare the models and their ability to simulate key ecosystem
variables that were directly measured in the FACE studies—NPP, transpiration, and LAI—under ambient CO2

conditions; and (3) to investigate the relationship between simulated transpiration and LAI to elucidate
biases in transpiration driven by biases in LAI predictions.

While this paper focuses on ambient CO2 conditions, it also discusses the consequences for the prediction of
responses to elevated CO2 that are detailed elsewhere. Goal two above uses the FACE experimental data to
assess model performance or skill in prediction of ecosystem dynamics in response to environmental
variability for each of the two ecosystems (Figure 1a). Model performance is quantified using a wide range of
goodness-of-fit (GOF) statistics [Nash and Sutcliffe, 1970; Smith and Rose, 1995; Moriasi et al., 2007], to which
we apply bootstrapping to estimate confidence in the GOF metrics.

Assessing GOF does not require understanding of the underlying modeling assumptions, and much can
be gained from diagnosing and understanding key model assumptions that result in good fit to the data
and that cause variability among model results [e.g., De Kauwe et al., 2013]. Goal three above aims to
synthesize model and experimental data (Figure 1b) viewing models as coherent sets of quantitative
hypotheses. Key hypotheses that lead to differences in predictions across models can be identified and
categorized for evaluating different modeling hypotheses and assumptions (i.e., not just the individual
models) using multiple observations. The model-data synthesis approach, illustrated in Figure 1b, generates
recommendations for future model development and prioritizes hypotheses that require further
experimental testing [Medlyn et al., 2005].

Simulating the Duke and Oak Ridge FACE experiments together provides a useful comparison of the C and
water fluxes in different systems (evergreen versus deciduous) having similar climates. Simulations of
annual NPP, daily transpiration, and daily LAI by 11 TEMs applied to the ambient CO2 treatments are
evaluated as key indicators of the state and dynamics of ecosystem carbon and water cycles at the two sites.
We also assess GOF of annual NPP in the context of component variables. The capacity of the model-data
synthesis approach is then demonstrated by evaluating the simulation of transpiration at the two FACE
experiments. We hypothesize that a component of transpiration biases are caused by LAI biases and test this
using a very simple conceptual model that expresses total plant transpiration as a rate of water use per unit
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leaf area index (LAI), multiplied by the LAI. The method used by each model to calculate LAI is investigated
and the influence of the underlying assumptions discussed. Finally, we consider the implications of our
findings for the simulation of elevated CO2 effects on ecosystem carbon and water fluxes.

2. Methods
2.1. Site Descriptions

FACE experiments subject intact ecosystems to an atmosphere enriched in CO2 [Hendrey et al., 1999]. We
simulated the Duke [Oren et al., 2001;McCarthy et al., 2010; Drake et al., 2011] and the Oak Ridge [Norby et al.,
2006, p. 200, 2010; Iversen et al., 2011] FACE experiments located in the southeastern USA. Both sites
were situated in young (11 years old at the beginning of the experiments) closed-canopy, unmanaged
plantation ecosystems. The two FACE sites were similar climatically, but they differed in soil type, species
composition, and phenology—evergreen needleleaf-dominated canopy at Duke with a deciduous
broadleaf understory and a deciduous broadleaf stand at Oak Ridge with little understory. Initial tree and
soil conditions and other site and experimental details are reported in Table 1. Experimental design,
measurement protocols, and ecosystem responses have been described in multiple papers, see above and
below and others listed at http://face.env.duke.edu/ and http://face.ornl.gov/pubs.html.
2.1.1. The Duke FACE Experiment
The Duke FACE experiment [Oren et al., 2001] was located within a 90 ha loblolly pine (Pinus taeda L.—
Piedmont provenance) plantation situated in the Duke Forest, Chapel Hill, North Carolina (35.97°N, 79.08°W)
(Table 1). The forest is on a moderately low fertility acidic loam supporting a site index (at age 25) for loblolly
pine of 16 m (dominant trees were 13.2 m and 11 years old at the beginning of the experiment) and rooting
depths were restricted to the upper 75 cm of the soil profile. The climate is typical of the warm-humid
Piedmont region of the southeastern U.S. (mean annual temperature 15.5°C and mean annual precipitation
1150 mm), with precipitation evenly distributed throughout the year. The trees were planted in 1983 at a
spacing of 2 m × 2.4 m. Canopy closure occurred around 1998, and peak stand LAI (~6 including hardwoods)
was reached in 2001 [McCarthy et al., 2007].

Figure 1. A schematic diagram of model-experiment data interactions: (a) assessment of goodness of fit (GOF) of model pre-
dictions to experimental data (benchmarking) and (b) model-experiment synthesis. The differences of model-experiment
synthesis and benchmarking are highlighted in red. For model-experiment synthesis the modeling loop feeds back into the
experimental loop, and another arrow could even be drawn whereby predictions are initially generated by the collection of
hypotheses represented by a suite of models which feed directly into the experimental cycle.
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CO2 enrichment commenced in August 1996 (targeted at ambient +200 ppmv) in the replicated experiment
(four experimental plots in each treatment). There was heterogeneity in N availability at the site and elevated
CO2 experimental plots were paired (blocked) with ambient CO2 control plots based on initial N availability
[DeLucia et al., 1999]. CO2 enrichment occurred during daylight hours of the growing season targeting
ambient +200 ppmv. The mean elevated CO2 concentration during 1996–2004 was 571 ppmv, with 92% of
1 min CO2 means within 20% of the target (average target = 573 ppmv).
2.1.2. The Oak Ridge FACE Experiment
The Oak Ridge FACE experiment [Norby et al., 2006, p. 200] was located in a sweet gum (Liquidambar
styraciflua L.) plantation on the Oak Ridge National Environmental Research Park, Tennessee (35.90°N,
84.33°W). The forest is on a low fertility silty clay-loam supporting a site index (at age 50) for sweet gum of
23–24m (trees were 12.4 m tall and 11 years old at the beginning of the experiment). The climate at the site is
typical of the humid southern Appalachian region (mean annual temperature 13.9°C and mean annual
precipitation 1370 mm); weather records during the experiment were reported by [Riggs et al., 2009]. At the
start of the experiment, the trees had a fully developed canopy and were in a linear growth phase.

Table 1. Comparison of Duke and Oak Ridge FACE Experiment Characteristics

Duke FACE Oak Ridge FACE

Location Orange County, North Carolina Roane County, Tennessee
35°58′N, 79°06′W 35°54′N, 84°20′W
Elevation 163 m Elevation 230 m

Soil Classification (U.S.) Ultic Hapludalf Aquic Hapludult
Soil texture acidic loam silty clay-loam

(49% sand, 42% silt, 9% clay) (21% sand, 55% silt, 24% clay)
Soil C content (Mg ha�1) 101 74
Soil N content (Mg ha�1) 3 8
Mean annual Temp (°C) 15.5 13.9
Mean annual precipitation (mm) 1145 1371
N deposition (kg ha�1 y�1) 13.7 12–15
Site history (used in
model initialization)

Pre-1800, deciduous broadleaf forest Pre-1750, deciduous broadleaf forest
1800, clear cut to grassland 1750, clear cut to C4 crop

1920, forest establishment allowed 1943, grassland established
1982, clear cut and burned, and

plantation established
1988, plantation established

Dominant species Pinus taeda (L) Liquidambar styraciflua (L)
Main other species present
(understory unless specified)

Liquidambar styraciflua (some
canopy trees), Ulmus alata, Acer

rubrum, Cornus florida

Elaeagnus umbellata, Microstegium
vimineum, Lonicera japonica, Acer
negundo, Liriodendron tulipifera,

Lindera benzoin
Nominal elevated CO2
concentration (ppm)

Ambient +200 565

Treatment duration 1994–2010 1998–2009
Age at initiation 11 11
Number of plots 4 elevated, 4 ambient (1994–1996

one plot per treatment)
2 elevated, 3 ambient

Plot size (m2) 527 314
Number trees per plot 86 P. taeda and 140 canopy and

subcanopy broad-leaved
individuals> 2 cm at 1.3 m

~90 L. styraciflua

Initial dominant height (m) 13.2 12.4
Initial peak leaf area index (LAI) 3.8 5.5
Initial basal area (m2 ha�1) 32.5 29
Initial stem+branch mass (kg C m�2) 4.0 3.6
Initial leaf mass (kg C m�2) 0.3 0.17
Initial coarse root mass (kg C m�2) 0.9 1.4
Initial peak fine root mass (kg C m�2) 0.1 0.37
Initial leaf C:N -a 24.3
Initial wood C:N - 365
Root C:Nb - 67

aNo data.
bAmbient treatment mean.
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CO2 enrichment began in May 1998 in two of five experimental plots (the remaining three plots were the
control ambient CO2 treatment). The FACE apparatus was constructed following the design employed at
the Duke FACE experiment [Hendrey et al., 1999] and CO2 enrichment targeted 565 ppmv. The mean elevated
CO2 concentration over the course of the experiment was 545 ppmv, and in 1998 and 1999, 90% of 1 min CO2

means were within 20% of the target [Norby et al., 2001].

2.2. Experimental Data

Over the entire course of the experiments at both sites, the most continuous and integrative data over the
spatial and temporal scales of the experiment were the measurements of NPP. NPP comprising leaf, wood
and coarse root, and fine-root production was calculated from primary measurements of litter mass,
specific leaf area, tree height and diameter, and minirhizotron or root ingrowth observations [Norby et al.,
2001, 2003; McCarthy et al., 2007, 2010; Iversen et al., 2008; Pritchard et al., 2008].

Daily LAI at both sites was inferred from measurements of litterfall, specific leaf area (SLA), and canopy
light interception [Norby et al., 2003; McCarthy et al., 2007]. At Duke, the native hardwood understory
contributed a few emergent trees to the canopy that contributed substantially (~50% peak LAI) to the stand
leaf area [McCarthy et al., 2007].

Transpiration data derived from sap flow observations were available at Duke from 1998 to 2007 and for the
years 1999, 2004, 2007, and 2008 at Oak Ridge. At Duke (all years), the thermal dissipation probe (TDP)
technique [Granier, 1987] was used to measure sap flow in up to eight loblolly pine trees and four sweet gum
trees per plot [Schäfer et al., 2002;Ward et al., 2013]. Duke TDP probes were vertically spaced 10 cm apart and
at two depths into the sapwood (0–2 or 2–4 cm) to estimate radial sap flux. At Oak Ridge, the compensated
heat-pulse technique was used in 1999 and 2004 to measure hourly sap flow at 1.3 m height and 19 mm
depth for four sweet gum trees in each of two ambient and elevated CO2 plots [Wullschleger and Norby, 2001].
At Oak Ridge (2007 and 2008) TDP probes were installed at 1.3 m in up to five trees in each plot [Warren et al.,
2011a, 2011b]. Probes were spaced vertically 5 cm apart, and installed at 1.5, 2.5, and 7.0 cm depths to
estimate radial sap flux. Sap flow was scaled to total tree transpiration based on radial patterns of sap flow
and sapwood depth considering potential error from a variety of sources [e.g., Ewers and Oren, 2000].

Other data collected at the sites included plant tissue N concentrations, soil water content, soil CO2 efflux,
soil carbon and nitrogen content and cycling, leaf physiology (photosynthesis and stomatal conductance),
and tissue respiration, but these data sets were less comprehensive in their spatial or temporal coverage and
were therefore less useful in this model-data synthesis.

2.3. The Models and Simulation Protocol

Eleven TEMs were used in the intercomparison: Community Atmosphere Biosphere Land Exchange (CABLE)
[Wang et al., 2010, 2011], Community Land Model 4 (CLM4) [Thornton et al., 2007], the daily timestep version
of the Century model (DAYCENT) [Parton et al., 2010], Ecological Assimilation of Land and Climate
Observations (EALCO) [Wang, 2008], Ecosystem Demography 2.1 (ED2) [Medvigy et al., 2009], Generic
Decomposition and Yield (GDAY) [Comins and McMurtrie, 1993], Integrated Science Assessment Model (ISAM)
[Jain and Yang, 2005], Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) [Smith et al., 2001], O-CN
[Zaehle and Friend, 2010], Sheffield Dynamic Global Vegetation Model (SDGVM) [Woodward and Lomas, 2004],
and Terrestrial Ecosystem model (TECO) [Weng and Luo, 2008]. Models features are described in Table 2, and
their primary functions and details are captured in a sequence of schematic images in Figure 2. Aspects of
both structural similarity and diversity across the 11 models provide a good sample of ecosystem models
developed over the last two decades. The models share a number of common features (Table 2), but notable
differences exist that are briefly discussed in the individual model sections below.

With the exception of EALCO and ED2 (detailed in the individual model descriptions below), the simulations
were initialized by spinning up the models to derive equilibrated stocks of C and N in vegetation and soils
for the year 1750. Spin-ups were conducted by repeating the meteorological data recorded over the
course of the experiments for 2000 years or until soil C had equilibrated. During the spin-up runs, each site
was simulated assuming a deciduous broadleaf cover.

Following the spin-up, a transient “industrial” period was simulated from 1750 to the year prior to the start of
the experiment. At both sites during this period several anthropogenic disturbance events and land use
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changes occurred, first clearing the “natural” vegetation to agricultural land use and then some fallow period
before site clearance and establishment of the plantations in which the experiments occurred. These site
histories (detailed in Table 1) were used to initialize the modeled forest stands at the correct age and in a
transient phase of ecosystem development similar to the experimental forests. Historical CO2 driving data
were taken from the record used by Vetter et al. [2008] created by combining the law dome ice-core record
[Etheridge et al., 1998] with Mauna Loa and Antarctic flask measurements [Keeling et al., 2005]. Over the
multiyear course of the experiments, daytime mean CO2 concentrations from the experimental observations
were used. N deposition data from Dentener et al. [2006] for the location of the experiments were in used in
the transient phase of the spin-up. During the simulations of the experiments, N deposition was fixed at a rate
of 13.7 kg N ha�1 yr�1 at Duke [Sparks et al., 2008] and 12.0 kg N ha�1 yr�1 at Oak Ridge [Johnson et al., 2004].
Fire was not simulated as there were no fires at either site.

All models were initialized with site data to most accurately represent conditions for the Duke and Oak Ridge
FACE experiments. The initialization served to eliminate some of the parametric difference between the
models and thus facilitated themodel comparison. Which site data were used by eachmodel for calibration is
described in Table 3. With one exception the Duke Forest was simulated as a uniform pine plantation. ED2
was used to simulate a combined pine and hardwood forest because it has the capacity to do so, and it was
consistent with the normal execution of that model.

The following brief descriptions are only intended to provide the reader with the general characteristics of each of
the 11 models. The reader should look to the original source material for detailed descriptions of each model.
2.3.1. CABLE
The Community Atmosphere Biosphere Land Exchange (CABLE) model is the Australian community land
surface model designed for coupling to a number of atmospheric models and Earth System models for air
pollution forecast, numerical weather, and climate predictions [Wang et al., 2010, 2011]. CABLE simulates
energy, water, carbon (C), nitrogen (N), and phosphorus (P) cycles in terrestrial ecosystems on a subdaily
time step. CABLE was the first global model to include both N and P cycles [Zhang et al., 2011], although
P limitation was not enabled in the current intercomparison as neither site was considered to be P limited.
Disturbance is not normally simulated by CABLE.

Figure 2. Structural representations of the 11 models used in the FACE model intercomparison. Canopy layering and Sun/
shade assumptions are designated for each model. A single- versus dual-colored stem section indicates independent
sapwood and heartwood simulations. Those models with a subcanopy “green box” include a ground-level vegetation
component. Belowground details indicate soil layering and the presence or absence of roots. Belowground horizontal lines
represent the approximate level of layering for that model. Dt and Ht indicate daily and hourly time steps, respectively.
Letters subtending eachmodel diagram indicate the presence of carbon (C), water (W), and nitrogen (N where Np is partial)
cycles and the execution of a full energy balance (E where EL is leaf only). EALCO includes stem water capacitance.
Additional model details are itemized in Table 2.
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Table 3. List of Site-Specific Parameters and Data Used to Calibrate Individual Models

Model Site
Prescribed But

Variable With Time Leaf Traits Physiological Traits Stoichiometry C Partitioning Soil Properties

CABLE Duke - - - - - -
CLM4 - Top-of-canopy

SLA, leaf
lifespan

- leaf C:N,
wood C:N,

leaf litter C:N

Fine root growth to leaf
growth ratio, stem
growth to leaf
growth ratio

texture

DAYCENT - SLA Amax (including
CO2 response),

transpiration response
to CO2

- - texture, water
holding capacity,

bulk density

EALCO - SLA, max LAI Vcmax/Jmax to
N relationship

- Target C ratios among
foliage, sapwood, and fine

root biomass

texture

ED2 - SLA Vcmax leaf C:N,
wood C:N

leaf and stem allometry texture

GDAY Leaf lifespan
(assumed the
same for roots)

Vcmax/Jmax to
N relationship

- NPP partitioning to leaves,
wood, and fine roots

water holding
capacity

ISAM LAI (daily) - - - - -
LPJ-GUESS - SLA - - - texture, water

holding capacity
O-CN - SLA - - - texture, water

holding
capacity

SDGVM Canopy N (annual) SLA Vcmax/Jmax to N
relationship

- - texture, water
holding

capacity, bulk
density

TECO - SLA - - - water holding
capacity

CABLE Oak Ridge - - - - - -
CLM4 - Top-of-canopy

SLA, SLA
increase rate,
leaf length

- - Fine root growth to leaf
growth ratio, coarse root
growth to stem growth

ratio

texture

DAYCENT - SLA Amax (including
CO2 response),
transpiration

response to CO2

- - texture, water
holding capacity,

bulk density

EALCO - SLA, max LAI Vcmax/Jmax to
N relationship

- Target C ratios among
foliage, sapwood, and

fine roots

texture

ED2 - SLA Vcmax leaf C:N leaf and stem allometries texture
GDAY - Leaf growth

and litterfall rates
Vcmax/Jmax to
N relationship

- NPP partitioning to leaves,
wood, and fine roots

(including CO2 response)

water holding
capacity

ISAM LAI (daily) - - - - -
LPJ-GUESS - SLA - - - texture, water

holding
capacity

O-CN - SLA - - - texture, water
holding
capacity

SDGVM Canopy N (annual) SLA Vcmax/Jmax to
N relationship

- - texture, water
holding capacity,

bulk density
TECO - SLA - - - water holding

capacity
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For this study, CABLE represented both the Duke and Oak Ridge Forests using the default evergreen
needleleaf and deciduous broadleaf plant functional type (PFT) parameters [Kowalczyk et al., 2007].
2.3.2. CLM4 (Version 4.0)
The Community Land Model (CLM4) is the land surface model of the Community Earth System Model
(CESM) [Thornton et al., 2007; Oleson et al., 2010], simulating energy, water, C, and N cycles, conserving both
mass and energy. CLM4 was one of the first global C cycle models to include a mass-balanced N cycle
[Thornton et al., 2007]. Normally, CLM4 simulates fire disturbance as a function of fuel availability and soil
water content [Oleson et al., 2010], though this was turned off for these simulations.

CLM4 was spun up with default PFT parameters to set initial conditions for the site (e.g., soil C), but various
parameters were updated to initialize the experimental period based on site observations. N deposition was
taken from the standard CLM4 data set [Galloway et al., 2004]. Also, the daily fraction of mineral N lost to
denitrification was changed from 0.5 to 0.1 day�1 resulting in a longer residence time of mineral nitrogen
within the ecosystem.
2.3.3. DAYCENT
DAYCENT [Parton et al., 2010] is a version of the CENTURY model [Parton et al., 1994] with an added
vegetation component operating on a daily time step. DAYCENT simulates C, N, and water cycles, typically for
predicting soil organic C and trace gas fluxes under agricultural conditions. DAYCENT is a growth-centric
model that does not explicitly simulate leaf physiology (e.g., photosynthesis and stomatal conductance). NPP
is determined by a prescribed potential rate that is downregulated by nutrient, water, and temperature stress.
NPP also increases, while transpiration decreases, as linear functions of atmospheric CO2 concentration, the
slopes of which were empirically determined using data from each site. GPP was assumed to be twice NPP
and autotrophic respiration (Ra) was not simulated. Disturbance is not normally simulated by DAYCENT.
2.3.4. EALCO
The Ecological Assimilation of Land and Climate Observations (EALCO) model [Wang et al., 2007;Wang, 2008]
was developed to assimilate a wide range of Earth observation data to study the impacts of environmental
change on water resources and ecosystems for applications ranging from local to continental scales.
EALCO simulates energy, water, C, and N cycles. A unique feature of EALCO is the dynamic coupling scheme
[Wang, 2008] which uses nested numerical algorithms to solve the governing system of equations.
Disturbance is not normally simulated by EALCO.

EALCO used a constrained spin-up whereby initial total soil C and N pools were prescribed with observations,
but the pool sizes within the total pool were spun up to equilibrium based on 4 years of site meteorological
data. Initial plant C and N pools were prescribed with observations.
2.3.5. ED2 (Version 2.1)
The Ecosystem Demography (ED) model [Moorcroft et al., 2001] is a complex ecosystem model which uses a
forest structure approximation to scale individual-level ecophysiology, stand-level competition, and
landscape-level stand age distributions to regional-scale dynamics. Stand structure is represented by
PFT-specific, age-segregated cohorts and evolves from the competition between cohorts varying in size and
stem density. ED2 uses a subdaily time step land surface scheme to simulate energy, water, C, and N cycles
within each cohort [Medvigy et al., 2009]. ED2 represents fine-scale gap generation, fire, and land cover
change [Albani et al., 2006] and has also been used to evaluate insect disturbance, for example, by the
hemlock wooly adelgid [Albani et al., 2010].

At both sites ED2 was run for each sample plot, initialized with the diameter breast high (DBH) and species of
each individual tree. Total soil C and N were initialized with site-level means, while a short spin-up was used
to initialize variables for which no measurements were available, i.e., transient responses in nonstructural C,
litter, soil temperature, and soil water content. Site data were used to adjust the southern pine and early-
successional hardwood PFTs (preexisting ED PFTs) to more closely reflect loblolly pines and sweet gum. An
experimental code for dynamic fine-root allocation in response to resource limitation was also employed.
2.3.6. GDAY
The Generic Decomposition and Yield (GDAY) model is a simple, daily time step ecosystem model that
represents C, N, and water dynamics at the stand scale [Comins and McMurtrie, 1993; Medlyn et al., 2000].
The model was originally developed as a research tool to investigate the general behavior of CO2 and
N interactions [Comins and McMurtrie, 1993] and therefore does not include many of the details of the other
models. The advantage of GDAY is its simplicity and tractability; the behavior of GDAY has been analyzed
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theoretically and is well understood [Kirschbaum et al., 1994; Mcmurtrie and Comins, 1996]. GDAY was
modified to represent deciduous phenology (described below) for this exercise. Disturbance is not normally
simulated by GDAY.
2.3.7. ISAM
The Integrated Science Assessment Model (ISAM) [Jain and Yang, 2005] is an Earth System model that has
been used to assess responses of the terrestrial biosphere to historical changes in cropland cover, and
environmental change. ISAM simulates C, N [Yang et al., 2009], and water cycles. ISAM simulates secondary
forest using a number of successional classes.

ISAM was applied to the two FACE sites using default PFT parameterizations and using prescribed daily
LAI data at both sites.
2.3.8. LPJ-GUESS
The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) [Smith et al., 2001] is an individual-based
dynamic vegetation-ecosystem model, applicable at local to global scales. LPJ-GUESS simulates vegetation
biogeography, ecosystem development, water, and C and N cycling at a daily time step. Vegetation dynamics
are simulated adopting a forest gap model approach, distinguishing different size and age classes, which
compete for light and resources within a patch. The N cycle has only recently been implemented and is
based on the CENTURY model [Smith et al., 2013]. In standard LPJ-GUESS simulations, generic patch-
destroying disturbances, representing for example windstorms, pest outbreaks, or harvest, are simulated
stochastically with a mean disturbance interval of 100 years, while wildfire is normally modeled
prognostically based on current fuel load and soil moisture.

The planting year was calibrated, such that the simulated tree height at the beginning of the experiment
corresponded with the observed tree height. The number of saplings was prescribed to match the real
planting density of the dominant trees. The model was run with default PFT parameters [Ahlstrom et al.,
2012] using the shade intolerant evergreen needle-leaved PFT at Duke and the shade intolerant deciduous
broad-leaved PFT at Oak Ridge National Laboratory (ORNL).
2.3.9. O-CN
O-CN [Zaehle and Friend, 2010] is a further development of the Organizing Carbon and Hydrology in Dynamic
Ecosystems land surface model [Krinner et al., 2005] that was developed to simulate terrestrial-climate feedbacks
within the Laboratoire de Météorologie Dynamique (LMDz) Earth system model [Marti et al., 2005]. O-CN
simulates energy, water, C, and N cycles at an hourly time scale. Disturbance is not normally simulated by O-CN.

The model was applied in its default parameterization, with the exception that leaf turnover time was
adjusted to be consistent with the observations at Duke, and the days of bud-burst and leaf senescence at
the Oak Ridge sites were adjusted to match average observations.
2.3.10. SDGVM
The Sheffield Dynamic Global Vegetation Model (SDGVM) [Woodward and Lomas, 2004] was developed to
simulate the global C cycle and global biogeography in response to climate. C and water cycles conserve
mass, while canopy N is normally simulated through an empirical relationship to soil C [Woodward et al.,
1995]. Ecologically, SDGVM simulates a dynamic vegetation age structure, and mortality occurs via self-
thinning and maximum age. Fire disturbance is simulated by an empirical function of temperature and
precipitation restricted by a location-specific fire return interval [Kantzas et al., 2013]. At these FACE sites,
SDGVM was found to strongly underpredict canopy nitrogen and consequently Vcmax, so canopy N and the
Vcmax to leaf N relationship was prescribed based on observed data (see supporting information). Also,
photosynthetically active radiation (PAR) was strongly overpredicted by SDGVM and so SDGVM was driven
with the mean of the annual PAR cycle.
2.3.11. TECO
The Terrestrial Ecosystem model (TECO) is an hourly time step ecosystem model [Weng and Luo, 2008],
simulating water, C, and N cycles. TECO was designed to simulate C flows in response to environmental
change at specific sites [Weng and Luo, 2008, 2011]. Disturbance is not normally simulated by the
TECO model.

Where data were not available, default parameterizations for evergreen needleleaf and deciduous
broadleaf PFTs were used with phenology parameterized to reproduce observations. The model was
initialized with the initial C storage in the slow turnover pools (i.e., woody biomass and slow SOM) that it met
the observed initial plant and soil C after 1 year.
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2.4. Model Analysis
2.4.1. Goodness-of-Fit Statistics
We employ a number of metrics to assess and interpret model goodness of fit (GOF). To assess model GOF
we use three metrics: model efficiency (EF), root-mean-square error (RMSE), and the coefficient of
determination (r2). Most GOF metrics include the sum of squares of the prediction error (SSPE) calculated as

SSPE ¼
Xn

i¼1

oi � pið Þ2 (1)

where oi is the ith observation, pi is the ith model prediction, and n is the total number of paired observation-
model comparisons. Model efficiency EF [Nash and Sutcliffe, 1970] is defined as

EF ¼ 1� SSPE
Xn

i¼1

oi � oð Þ2
(2)

where ō is the mean of the observations across all n time steps. EF tells us how well the predictions fit the
observations using the mean of the observations as a benchmark. An EF value of one represents a perfect
fit, and an EF above zero indicates that the simulation model predictions are a better predictor of the
observed values than the mean of the observed values. The root-mean-square error (RMSE) is calculated as

RMSE ¼ 1
n

SSPEð Þ0:5 (3)

where n is the total number of comparisons between observed and predicted data. RMSE quantifies the
mean absolute error between the predictions and observations. The coefficient of determination (r2)
measures the proportion of variance in the observations explained by the predictions, i.e., how well the
variability in the observations is captured by the predictions.

The above metrics assess GOF, but they do not provide information on the sources of this error. To
account for different sources of predictive error, we use Theil’s inequality coefficients [Smith and Rose, 1995;
Paruelo et al., 1998] to decompose the variance between the observations and the modeled data, i.e., the
SSPE, into three components resulting from model bias (Ubias), difference from one in the slope of observed
to predicted relationship (Uslope), and from random differences or nonlinearity in the relationship (Uerror).
Ubias describes the proportion of model error resulting from a bias (mean error equation (6) below) and is
calculated as

Ubias ¼ n o� pð Þ2
SSPE

(4)

where p is the mean of the predictions. Uslope describes the proportion of model error resulting from a
difference in the slope from one, most likely due to different sensitivity of the model to environmental
drivers compared to observations and is calculated as

Uslope ¼
β � 1ð Þ2

Xn

i¼1

pi � pð Þ2

SSPE
(5)

where β is the slope of an ordinary least squares (OLS) linear regression of the observed on the predicted
values. The observed (O) against predicted (P) regression slope was calculated using OLS linear regression
with the “lm” function in R [R Core Development Team, 2011], and this tells us whether variability in
predictions is greater or less sensitive to drivers of variability than the observations. Uerror is the proportion of
error assigned to random errors or nonlinear systematic errors (such as phase changes in seasonal cycles)
and is calculated as the regression residual sum of squares divided by the SSPE. To assess the magnitude of
model bias, we calculate the mean error (ME) between observations and predictions:

ME ¼ 1
n

Xn

i¼1

oi � pi (6)

OLS linear regressions assume that only the dependent variable is measured with any uncertainty;
consequently, observations should be regressed on predictions and regression of predicted values on
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observed values results in biased coefficients [Piñeiro et al., 2008]. For this reason, we derive linear regressions
of observed values to predicted values and use observed minus predicted values in equations (5)–(7).
Unfortunately this means that interpretation of themetrics can be nonintuitive as negativemodel bias means
that predictions are greater than observations and vice versa. And the slope coefficient of an OLS linear
regression (β) describes biases in variability with a slope below one, indicating that a model is more sensitive
to drivers of variability than the observations, and vice versa. Most GOF statistics do not provide any
assessment of statistical confidence [Moriasi et al., 2007], and it is therefore difficult to assess whether GOF of
one model is statistically different from another, or even if it is statistically different from the observations.
Confidence intervals for EF, RMSE, and ME were calculated by bootstrapping. A distribution of values was
generated by randomly resampling the data with replacement 1000 times and calculating a value for each
resampled data set. The “boot” function [Canty and Ripley, 2012] in R [R Core Development Team, 2011] was
used to resample the data, and confidence intervals were based on the percentiles of the bootstrapped
distributions. When referred to below, statistical significance is at P< 0.05.
2.4.2. Structural Analysis for Interpretation of Transpiration and NPP
LAI is used to scale leaf-level calculations of water and C fluxes to the canopy in all models. LAI is simulated
primarily by two processes, one that predicts the peak LAI and the other predicting the dynamics of LAI, or
phenology. To analyze the model structures that determine rates of transpiration, following Schäfer et al.
[2002] transpiration was decomposed into two components: (1) the transpiration per unit leaf area index
(T/LAI) and (2) LAI. We further decomposed LAI into the peak LAI (LAIpeak) and the phenological state as a
proportion of LAIpeak (LAIphen):

T ¼ T=LAI : LAI ¼ T=LAI : LAIphen : LAIpeak (7)

The decomposition allows model transpiration to be corrected for biases in model LAI by replacing either, or
both, modeled LAIphen and LAIpeak by observed values. This simple decomposition assumes that transpiration
is proportional to LAI, which is an oversimplification that breaks down when the difference between
modeled and observed LAI are large. Nevertheless, this approach is useful for attributing differences among
models in transpiration to differences in the LAI components. Examining differences in the assumptions
that lead to modeled LAIpeak and LAIphen then allows us to identify some of the reasons for different
predictions among the models.

Following Zaehle et al. [2014], we also use the simple decomposition of NPP into component variables,
N uptake (Nup) and N use efficiency (NUE). NUE is defined as NUE=NPP/Nup, such that NPP=Nup × NUE.
The decomposition separates the N constraint on NPP into the stoichiometric constraint (NUE, the N required
for growth), and the N uptake constraint (the N available for growth).
2.4.2.1. Modeling Peak LAI
Peak LAI depends on leaf growth, leaf turnover (litterfall) rate, and specific leaf area (SLA). Often turnover
plays a lesser role in determining peak LAI than leaf allocation and growth due to differential timing of
these two processes. For some models LAI is the primary variable, and leaf allocation is adjusted to maintain
or achieve a target LAI. The models in this synthesis use either fixed partitioning coefficients, allometric
scaling, or an optimization approach to simulating LAI or leaf growth.

Using fixed partitioning coefficients, “fractions of the assimilated carbon [are] allocated to each organ”
[Franklin et al., 2012]. Leaf growth is simulated by multiplying total C available for growth (i.e., NPP) by a
foliage partitioning coefficient. CABLE, CLM4, and GDAY used fixed coefficients. SLA was a prescribed
model parameter with the exception of CLM4 where SLA increases linearly with canopy depth leading to
an exponential increase in LAI with leaf C. Both GDAY and CLM were parameterized with observed
leaf partitioning coefficients. CABLE applied PFT default, fixed coefficients that varied according to
phenological phase.

Allometric scaling is when “relationships between organs […] vary with individual size but not with the
environment” [Franklin et al., 2012]. ED2, LPJ-GUESS, and O-CN all use allometric scaling, maintaining a
prescribed constant LAI:sapwood area ratio at maximal foliar development, according to the pipe-model
hypothesis [Shinozaki et al., 1964]. The pipe model implies a functional relationship whereby sapwood area
must be sufficient to supply the canopy water demand resulting from a given LAI. The mass of wood needed
to maintain a given sapwood area increases with tree height; therefore, the leaf mass:wood mass ratio
decreases with tree height. Therefore, peak LAI is constrained by increasing wood growth demands as trees
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increase in size. Using the pipe model, peak LAI is also sensitive to the rate of sapwood turnover to
heartwood. ED2 simulates LAI as a function of DBH within each cohort, scaling to the stand scale by stem
density and cohort land area. LPJ-GUESS parameterized LAI:sapwood area ratios with observations while
O-CN used PFT defaults. These models typically also assume a functional balance between leaf and root
mass, such that the requirement for uptake of water and nutrients, which scales with root mass, increases
with leaf mass, and resource limitation.

SDGVM optimizes peak LAI based on the principle that over 1 year the sum of leaf C and annually integrated
respiration of the lowest LAI layer should not exceed annually integrated C assimilation of that layer.
DAYCENT, EALCO, and ISAM constrained peak LAI using observed values. Thus, the hypotheses used to
simulate LAI include fixed partitioning coefficients of NPP based on general PFT relationships (CABLE),
fixed partitioning coefficients with a linear decrease in SLA through the canopy (CLM4), the pipe model
(ED2, LPJ-GUESS, and O-CN), and an optimization to maximize canopy C export (SDGVM).
2.4.2.2. Modeling LAI Phenology
Phenology is determined by the interaction of budburst, leaf growth rate, and leaf turnover rate. Budburst
(or initiation of needle growth) was simulated using either an empirical calibration of phenology with climatic
data or passively, i.e., no specific model structure controlling timing and the dynamics of leaf biomass are
an emergent property of leaf growth and litterfall. For evergreen PFTs, CLM4, and GDAY simulated
phenology passively, while LPJ-GUESS assumed no seasonal variation in LAI. For evergreen PFTs, ED2, and
O-CN only simulated active timing of litterfall, rapid needle growth occurs in the spring when C assimilation
increases and when the LAI:sapwood area ratio is below the target.

In contrast to simulation of evergreen PFTs, deciduous leaf C dynamics in CLM4 and GDAY were entirely
controlled by phenology; all C for leaf growth comes from C stored in the previous year and the timing leaf
growth and litterfall were entirely determined by active phenology routines. CABLE, CLM4, GDAY, LPJ-GUESS,
and SDGVM represented budburst and senescence in seasonally deciduous PFTs (and for evergreens in
CABLE and SDGVM) using algorithms calibrated with satellite-derived phenology and climate observations
(variously cumulative growing degree days—GDD, day length, and soil temperature) [White et al., 1997; Botta
et al., 2000; Smith et al., 2001; Zhang et al., 2004; Picard et al., 2005]. DAYCENT, EALCO, O-CN, and TECO
calibrated a formulation of budburst with site observations based on either running mean air temperature,
GDD, or GDD and soil temperature, respectively. For this study ED prescribed deciduous phenology but is
more generally based on GDD. ISAM used daily LAI as a model input (repeating 2007 in 2008). TECO initiates
leaf growth with stored C, then leaf C allocation is a fixed fraction of C allocated to growth, which is a
function of available C and temperature, until maximum LAI is reached. TECO simulates maximum LAI as a
function of tree height; therefore, peak LAI is either the achieved maximum or is an emergent property of the
dynamics of leaf growth and turnover.

3. Results
3.1. Simulation of Annual NPP and Transpiration at Ambient CO2

Model predictions of annual NPP and transpiration under ambient CO2 are compared against
measurements in Figures 3a–3d, and many models were within the bounds of observational uncertainty.
Clear outliers were CLM4 and SDGVM, which strongly overpredicted NPP at both sites, ED2 which
overpredicted NPP at Duke and underpredicted NPP at Oak Ridge, and ISAMwhich underpredicted NPP at
Duke. A majority of models captured either the magnitude or the interannual variability in observed
annual NPP, and EALCO and LPJ-GUESS captured both (Figures 3a and 3b). There was no evidence to
suggest that NPP was better captured by models which better represent light interception and
canopy scaling by numerically solving C assimilation in each of a number of canopy layers (EALCO, ED2,
LPJ-GUESS, SDGVM, and TECO—Figure 2).

Several models (EALCO, ED2, GDAY, O-CN, SDGVM, and TECO) captured the decline in NPP at Oak Ridge
from 2003/4 to 2007 (Figure 3b) but most of these models (with the exception of O-CN and GDAY) also
showed an increase in NPP from 2007 to 2008, which was not consistent with the data. Models that show a
general NPP decline but an increase in 2008 (ED2, SDGVM, and TECO) may have not simulated the strength of
N limitation by the end of the experiment at Oak Ridge [Norby et al., 2010] or may also have missed carry-over
effects from the strong drought in 2007 [Warren et al., 2011b].
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For annual transpiration at Duke (Figure 3c), most models were within the observed range of uncertainty
though there was a general overprediction in the later years of the experiment. SDGVM consistently
overpredicted annual transpiration, while GDAY, ISAM, and TECO consistently underpredicted annual
transpiration (Figure 3c). At Oak Ridge, the mean model prediction of annual transpiration was generally low
biased when compared against the 4 years of data (Figure 3d). However, the mean results from a wide range
of model results.

Goodness-of-fit (GOF) statistics of model predictions with data are shown in Figures 4 (Duke) and 5 (Oak
Ridge). For annual NPP, the model efficiency (EF) 95% confidence intervals (95% CIs) for most models
contained zero (Figures 4a and 5a), indicating that those models were no statistically better or worse than the
mean (across years) of the observations as predictors of annual NPP. That is, the models captured the mean
annual NPP or some of the interannual variability but not both—to be better than the mean of the
observations as a predictor of those observations might be considered a minimum standard for model
performance. However, the EF confidence intervals were wide, indicating that for a given model there were
large year-to-year differences in prediction accuracy. RMSE and ME CIs were also wide; however, statistical

Figure 3. (a, b) Annual net primary production (NPP; g C m�2 y�1), (c, d) annual transpiration (mm y�1), and (e, f ) daily
mean LAI (m2m�2) at Duke in Figures 3a, 3c, and 3e and Oak Ridge in Figures 3b, 3d, and 3f for the ambient treatments.
The mean of all model results is represented by the thick black line. Model results are represented by the colored lines,
observed results by the black circles with the 95% confidence interval (CI) shaded in grey. Where data are present for
limited years, the 95% CIs are shown by error bars (see Figure 3d), where no error bars are visible, they are within the space
occupied by the data point. Observations in Figure 3e show both the pine LAI (lighter grey shading and grey circles) and the
whole stand LAI (i.e., including broad-leaved LAI). For clarity, LAI points are shown only every 5 days.
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differences between the models and observations were more apparent in these measures of error.
Therefore, overall model errors in annual NPP were detectable, but 11 years of data were insufficient to
accurately assess model ability to capture interannual variability in NPP using EF. Higher-frequency
transpiration data were available so discussion of transpiration GOF is deferred to daily transpiration in
the section below.

A notable exception from large EF uncertainty in annual NPP was EALCO at Oak Ridge which had a highly
significant, high EF (Figure 5a). The spin-up method for EALCO resulted in high initial soil organic matter in
rapidly cycling pools which declined over time and decreased N availability, resulting in declining NPP.
The declining trend of NPP in EALCO was overlain by accurate reproduction of interannual variability;
however, EALCO did not submit results for 2008 which separated models with a decreasing NPP trend into
those driven by climate and those by declining N availability.

Many of the models RMSE 95% CIs were overlapping with or just outside of the 95% CI of the annual NPP
observations (Figures 4b and 5b). The strong biases of CLM4, ED2, and SDGVM were reflected by significantly
negative EF (Figures 4a and 5a) and large RMSE (Figures 4b and 5b). Theil’s coefficients (Figures 4f and 5f)
show these errors to result from large mean error (ME) biases (±300 gC m�2 y�1—Figures 4d and 5d). At
Duke, ISAM, GDAY, O-CN, and TECO also had MEs (Figures 4d and 4f) which led to poor prediction of
annual NPP, reflected in high RMSEs (Figure 4b). Despite negative EF scores, CLM4 and SDGVM captured a

Figure 4. (a–f ) Goodness-of-fit (GOF) measures for all models andmultimodel mean at reproducing ambient CO2 annual NPP, (g–l) daily transpiration, and (m–r) daily
LAI (pine-only LAI) at Duke. GOF statistics are model efficiency (EF), root-mean-square error (RMSE), coefficient of determination (r2), mean error (ME), slope bias
(slope), and Theil’s coefficients. Negative EF values were normalized by dividing by the most negative EF value. The horizontal lines on the RMSE plots indicate
the mean over time of the observed 95% confidence interval. Note that observed values were regressed on predicted values so a positive magnitude bias indicates
a negative model bias, and a sensitivity bias >1 indicates that the model was under sensitive to drivers of interannual variability in the observations. Theil’s
coefficients assign the proportion of model error accounted for by mean error (ME; orange), slope bias (slope; yellow), and nonsystematic error (grey).
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significant amount of interannual variability at Duke (and Oak Ridge for SDGVM), reflected in the significant
(P< 0.05) r2 values (Figures 5c and 6c).

NPP results from many integrated processes and can be viewed as something of a composite variable that
integrates multiple processes. It is possible that compensating biases exist whereby biases of opposite sign in
component processes can offset each other when combined into the composite variable which results in
spuriously high GOF. Different conclusions of model skill can be drawn by analyzing some of the component
processes of NPP compared to NPP alone. Figure 6 shows the decomposition of NPP into two component
variables—N uptake (Nup) and N use efficiency (NUE)—[Zaehle et al., 2014] in the ambient treatment at both
sites. Two of the three models that best captured NPP at Oak Ridge (EALCO and O-CN) overpredicted Nup and
underpredicted NUE, resulting in good predictions of NPP. In other words, the models that correctly
simulated the magnitude of observed NPP were doing so with compensating biases in component variables.
CABLE at Duke and GDAY at Oak Ridge most accurately captured all three variables NPP, Nup, and NUE. C and
N dynamics are the focus of another study within the FACE-MDS [Zaehle et al., 2014].

All of these models represent N uptake and NUE in different ways. NUE is determined by tissue C:N
stoichiometry and the partitioning of new growth between various tissues with different C:N stoichiometries.
Various assumptions are made on the flexibility of tissue stoichiometry, varying from fixed, to flexible
within prescribed bounds, to flexible [Zaehle et al., 2014]. Partitioning assumptions are also diverse, as
touched upon above and discussed in detail in De Kauwe et al. [2014]. A caveat for comparisons to
observations of NUE and N uptake are that themeasurements are not independent and depend upon scaling
assumptions and sampling uncertainty. Nevertheless, the variability in the predictions of NUE shows that
the modeling assumptions that determine NUE are crucial in predicting NPP.

Figure 5. Goodness of fit (GOF) measures for annual NPP, daily transpiration, and daily LAI at Oak Ridge. See Figure 4 caption for details.
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3.2. Simulation of Daily Transpiration and LAI at Ambient CO2

3.2.1. Duke Forest
At Duke, there were significant modeled errors in both the magnitude and timing of daily transpiration
(Figures 4, 5, and 7 and Table 4). Many models (CABLE, CLM4, EALCO, LPJ-GUESS, O-CN, and SDGVM)

Figure 6. Simulated mean annual net primary production (NPP; orange), nitrogen uptake (Nup; red), and nitrogen use
efficiency (NPP/Nup; yellow) for 1998 to 2005 (a) at Duke and for 1999 to 2008 (b) at Oak Ridge. All data are normalized by
the observed mean values for the same averaging period.

Figure 7. The difference between modeled transpiration and observed transpiration at (a) Duke (1998–2007) and (b) Oak
Ridge (1999, 2004, 2007, and 2008). Monthly mean difference (points) and interquartile range of the difference (error bars).
Grey-shaded area represents the 95% CI of the observations.
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overestimated transpiration over the year or during the peak season, while TECO consistently underestimated
transpiration through the year, and ISAM underestimated transpiration in the spring (Table 4).

The comparisons with LAI data at Duke Forest were confounded by the broadleaf component of the forest
(predominantly in the understory) that significantly contributed to the whole stand LAI (Figure 3e and see
McCarthy et al. [2007]). Models represented the mixture of evergreens and broadleaves in multiple ways as a
result of different representations of forest structural heterogeneity, and only ED2 represents vertical
structure of different PFTs within the forest stand. The variability across models in representation of the PFT
heterogeneity at Duke invariably confounds the comparison to observations; therefore, the discussion of
transpiration in relation to LAI at Duke is deliberately limited as comparing the representations of forest
structure is beyond the scope of this analysis. Interestingly ED2, which resolved vertical stand structure and
individual tree distribution, overpredicted peak LAI despite detailed parameterization of stand structure,
DBH, and LAI:DBH. The LAI overprediction was caused by higher than observed NPP (Figures 3a and 4d)
which led to overprediction of DBH growth and thus through the DBH:LAI relationship, LAI.

In some models (CLM4, O-CN, and SDGVM) the high summer transpiration biases at Duke (Figure 7a) were
matched by high summer biases in stand LAI (Figure 3e). The remaining models with high summer
transpiration bias (CABLE, EALCO and LPJ-GUESS) also had high LAI biases when compared to the pine LAI
only (Figure 3e), suggesting that perhaps the pines, which comprised most of the canopy leaf area (i.e., not
including the understory), were the primary contributors to stand transpiration. None of the models (ED2,
GDAY, ISAM, and TECO; Table 4) with low biased daily transpiration showed a low LAI bias. By contrast,
all models that showed high biases in transpiration in spring, summer, and autumn (CABLE, CLM4, DAYCENT,
LPJ-GUESS, O-CN, and SDGVM) also exhibited high biases in LAI.
3.2.2. Oak Ridge Forest
Many models at Oak Ridge underpredicted daily transpiration over the whole season or during the peak
season (see CABLE, DAYCENT, ED2, GDAY, ISAM, and TECO in Figure 7b). TECO had a low, midseason LAI
bias but in contrast with transpiration biases, LAI biases were a result of non-systematic error caused by a
general low bias, a shifted peak LAI followed by a late season high bias. For DAYCENT the low mid-season

Table 4. Seasonal Biases in Transpiration and LAI at Duke and Oak Ridgea

Duke Oak Ridge

Model Variable Spring Summer Autumn Winter Spring Summer Autumn Winter

CABLE Transpiration •/+ + + • +/� - �/+ +
CLM4 + + • • + + + •
DAYCENT •/+ • • • +/� - �/+ •
EALCO •/+ + + • + • •/+ •
ED2 •/- • • • •/- - - •
GDAY • - • • • - -/• •
ISAM - • - • •/- - -/• •
LPJ-GUESS + + •/+ • + • •/- •
O-CN •/+ + • • •/+ • • •
SDGVM + + •/+ • + • - •/+
TECO - - - • •/- - - •

CABLE LAI • + + •/+ +/� - �/+ +
CLM4 + + + + •/+ + + •
DAYCENT + + + + •/+ • + +/•
EALCO •/+ + •/+ • • •/+ + •
ED2 + + + + • •/+ • •
GDAY + • + + - -/• • •
ISAM •/- •/- • • • • • •
LPJ-GUESS + + + + + • •/- •
O-CN + + + + •/+ • +/� •
SDGVM + + + + + • - •/+
TECO + + + + •/- - �/+ •

aBiases were judged based on the GOF statistics presented in Figures 4 and 5 and the comparisons to data in
Figures 3e and 3f and Figures 7a and 7b. Cross symbol refers to a high bias, • no bias, and - a low bias. A combination
of symbols indicates that the model exhibited a combination of those biases in that season.
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transpiration bias was not matched by a
low mid-season LAI bias (Figure 3f). With
both positive and negative transpiration
biases (Figure 7b), DAYCENT
transpiration errors were a result of
nonsystematic error (Figure 5l), while LAI
biases were strongly affected by a large
ME caused by very late onset of
senescence (Figure 3f). In contrast to
transpiration biases, LAI simulations by
ISAM and ED2 had a slope bias below
one and a negative ME.

CLM4 was the only model to simulate a
high transpiration bias over the whole
season at Oak Ridge (Table 4 and
Figure 7b) and CLM4 showed the
strongest LAI bias of all models
(Figure 3f). CLM4 maintained a
significant LAI bias in the midseason
(Figures 3f, 5p and 5r) while transpiration
biases were reduced (Figure 7b), CLM4

also had higher transpiration errors during the early season and showed early initiation of budburst. CABLE
simulations of transpiration and LAI were high biased throughout the winter season (Table 4).CABLE, CLM4,
DAYCENT, GDAY, LPJ-GUESS, O-CN, and SDGVM showed significant early- and late-season errors in
transpiration at Oak Ridge (Figure 7b). Theil’s coefficients show that nonsystematic error was a major source
of error between predictions and observations of daily transpiration in the deciduous Oak Ridge Forest
(Figure 5l). Nonsystematic error includes both random error and error caused by phase or period shifts in the
seasonal cycles which changes the sign of the error over the course of the year. LPJ-GUESS and SDGVM
showed a clear phase shift in predicted daily transpiration demonstrated by the opposing sign of the errors in
the spring and autumn, LAI predictions of these two models were also out of phase with the observations
(Figure 3f). O-CN showed a smaller phase shift with errors most pronounced in the early season as were
the LAI errors (Figure 3f). EALCO showed some small transpiration errors in the early and late season that
were also apparent in LAI predictions.

DAYCENT showed positive transpiration errors in the early and late seasons, i.e., an increase in transpiration
period, and the LAI seasonal cycle was also of increased period. However, transpiration errors were larger
in the spring, while LAI error was more pronounced in the autumn. Transpiration errors in GDAY were
negative in both the spring and autumn (Figure 7b), while LAI was only smaller than observed in the spring
(Figure 3f). ED2 showed some early season high bias in LAI that was not matched by transpiration errors.
3.2.3. Correction of Transpiration Error for LAI Error
We used a simple conceptual model (equation (7)) as an aid to detect and quantify transpiration errors
caused by biases in phenology and biases in peak LAI. The simple model assumes that the relationship of
transpiration to LAI is linear, which is a simplification but one that is useful and has been used previously [e.g.,
Schäfer et al., 2002]. Because the duel (conifer plus hardwood) stand structure at Duke was not represented
by the majority of models, we only apply the correction of transpiration for LAI biases (as described by
equation (7)) at Oak Ridge (Figure 8). Reductions in RMSE represent improvements in the simulation of daily
transpiration once corrected for the components of the LAI bias, while increases in the RMSE mean that
correction for LAI biases make transpiration errors worse indicating compensating errors between simulating
the biophysics of transpiration (transpiration per unit leaf area) and LAI.

At Oak Ridge, CABLE, DAYCENT, ED2, ISAM, and TECO showed negative midseason errors in transpiration.
CABLE and TECO also simulated a low peak LAI, which when corrected for slightly improved simulations of
transpiration (Figure 8). Although correction for peak LAI in CABLE reduced midseason transpiration errors,
it also increased the winter errors; therefore, there was an interaction when correcting for both peak LAI
and phenology that improved transpiration simulation by 22%. In contrast, TECO transpiration errors were

Figure 8. Root-mean-square error in daily transpiration predictions at
Oak Ridge, uncorrected (black bars), corrected for phenology bias (red
bars), corrected for maximum LAI bias (yellow bars), and corrected for
both phenology and maximum LAI (orange bars). RMSE values are
normalized to the uncorrected value.
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extremely negative (Figure 7b) and while
correction of peak LAI improved simulation
of transpiration over the year, correction for
phenology made simulations worse. So
when corrections were combined there was
little change in TECO transpiration error
indicating an extremely low bias in
simulating the biophysics of transpiration
in TECO.

Correction for the small peak and
phenology LAI biases in ED2, GDAY, and
ISAM increased the transpiration RMSE by
~28–40% (albeit against a lower baseline
RMSE, Figure 5h). Although the errors in the
mean seasonal LAI cycle were small
(Figure 3f), there was interannual variability
in both phenology and peak that caused
LAI errors (for ISAM which prescribed LAI
this was because 2007 LAI was used
repeated in 2008). The increase in
transpiration RMSE when corrected for LAI
suggests that LAI biases in ED2, GDAY, and

ISAM were compensating biases in the simulation of the biophysics of transpiration.

CLM4 transpiration errors were improved once corrected for LAI phenology bias and peak LAI bias
individually. However, correction for both LAI biases simultaneously did not further improve the RMSE
(Figure 9), suggesting that the phenology bias (when LAI errors were largest) caused transpiration errors but
that the overall high LAI bias was compensating a low bias in the simulation of transpiration per unit leaf area.

For some models with an early-season transpiration bias (CABLE, LPJ-GUESS, and SDGVM), correction of
transpiration for the LAI phenology bias improved the simulation of transpiration by up to ~40% (Figure 8).
LPJ-GUESS and SDGVM both showed a late-season low transpiration bias and LAI bias. In LPJ-GUESS,
senescence was too rapid, while senescence in SDGVM was initiated too early (Figure 3f). The correction of
transpiration for LAI biases (modeled T/LAI multiplied by observed LAI) only works if modeled transpiration is
nonzero, which was not the case in the late season for these models. Therefore, accurate simulation of LAI
phenology in both LPJ-GUESS and SDGVM would likely improve transpiration simulation even more that
suggested by the reduction in RMSE once corrected for LAI phenology bias.

Transpiration errors of DAYCENT and O-CN were not improved when corrected for phenology bias, despite
positive errors in both transpiration and LAI during the spring. Both models also had negative transpiration
errors during the late season (day 250–300) but positive LAI errors over the same period; therefore,
early season transpiration errors were reduced by LAI phenology correction in the early season but were
increased during the late season. There was little change in EALCO transpiration RMSE when corrected for LAI
because both phenology and peak LAI were prescribed.

4. Discussion

Many of the models reproduced annual NPP, and daily transpiration, in ambient CO2 conditions with a
reasonable degree of accuracy. However, we have shown that for some models, accuracy in prediction of
both annual NPP and daily transpiration was achieved by biases of opposing sign in component variables—
NUE and N uptake for NPP and transpiration per unit LAI and LAI for transpiration—what we call
compensating biases in component processes. If we had drawn conclusions of model performance based
only on the GOF statistics in Figures 4 and 5, we would have missed the compensating biases and could have
had false confidence in many of the models. Without analyzing N uptake and NUE, EALCO would have been
considered the most accurate predictor of NPP; however, Figure 6 shows that overall GDAY was a more
accurate predictor of NPP and its component variables under ambient CO2 conditions. For a full analysis of

Figure 9. LAI as a function of NPP as hypothesized by CLM4, parameter-
ized for the default and Oak Ridge broadleaf deciduous PFTs, the default
and Duke temperate evergreen needleleaf PFTs, and C4 grasses.
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the compensating biases in the C and N component processes of NPP in response to elevated CO2, see
Zaehle et al. [2014].

The underlying principle of multimodel benchmarking is to find the “best” or most predictively accurate
models given experimental data as a benchmark. Many variables are composites of other variables, for
example, NPP is the product of nitrogen use efficiency and nitrogen uptake [Zaehle et al., 2014], or biases in
Vcmax parameterizations can be compensating biases in the representation of photosynthesis and canopy
scaling [Bonan et al., 2011]. Therefore, it is possible, and we have shown, that accurate GOF for one variable
can result from compensating biases among component variables, variables which one may not be able to
test for GOF due to unavailable data. We advise caution in interpretation of GOF metrics where potential
compensating biases are impossible to assess or could be overlooked, as this could lead to false confidence in
model performance.

Based on the EF statistic, as predictors of annual NPP, most of the models were statistically indistinguishable
from themean of the observations. However, uncertainty in NPP EF for most models was large indicating that
11 years of annual data were insufficient to accurately assess model ability (GOF) at simulating interannual
variability. In part, the uncertainty in evaluating model performance at simulating annual NPP was due to
variable model sensitivities to drought convolved with the impact of and subsequent recovery from
stochastic events; such as an ice storm at Duke [McCarthy et al., 2006b] and a severe wind event at Oak Ridge
[Warren et al., 2011b]. Stochastic events and subsequent recovery were not simulated by the models. There
was some evidence to suggest that models captured observed reductions in NPP in response to drought (see
2002 at Duke and 2007 at Oak Ridge; Figures 3a and 3b), although there was a broad range of responses in
these years across the models. Sensitivity of the models to drought results from variable representations of
soil water dynamics, the form of the physiological response function, and whether C assimilation, stomatal
conductance or both are affected. Modeled C and water fluxes are sensitive to the soil water stress
assumptions [e.g., De Kauwe et al., 2013; Powell et al., 2013] and model-data synthesis could help to progress
our understanding of how to accurately represent soil water stress. Without assessing the uncertainty in EF,
had the models been ranked according to EF, we would have missed the conclusion that the uncertainty was
too large to really distinguish one model from another. To avoid false confidence in models’ abilities to
predict an ecosystem function it is critical to fully understand the competing models’ structures and the
hypotheses which they represent. Often, understanding deviations of complex model results from those of a
simple, tractable model can help to identify important component processes as demonstrated by the simple
relationship proposed between transpiration and LAI (for another example, see De Kauwe et al. [2013]). Once
competing hypotheses have been identified, appropriate analyses can be developed to compare competing
hypotheses to the data (for an example, see Zaehle et al. [2014] and Rastetter et al. [1992]).

Further, reducing the generality of interpretations of GOF accuracy to broader regional or global scales is that
models were initialized using site-specific data, including disturbance/land use history, soil characteristics,
and plant traits. We do not have these data for every model grid square at larger spatial scales, abstracting
most of the models from their normal mode of operation in which representative PFT traits and natural
successional processes are assumed.

In this study, LAI, in particular phenology, was best simulated bymodels that used some form of calibration to
site data, which in turn facilitated accuracy in the simulation of transpiration (Table 4 and Figures 3 and 7).
However, it is not desirable nor possible to use site data to calibrate regional or global model simulations and
the applicability of global trait relationships [e.g., Kattge et al., 2009] or simulating adaptive traits [e.g., Pavlick
et al., 2013; Scheiter et al., 2013] could also be tested. Global databases of land use history are becoming
available, and land use change in global C cycle simulations has been shown to reduce the twentieth century
land C sink [Gerber et al., 2013]. While beyond the scope of this current set of simulations, a sensitivity analysis
of the models used in this intercomparison to various components of site history would make a useful study.

4.1. The Relationship of LAI and Transpiration

We have shown that biases in LAI—both in the peak and phenology—result in biases in the simulation of
transpiration. For example, SDGVM simulates early onset of leaf growth and senescence (Figure 3), and this
leads to similar seasonal transpiration biases (Figure 7). As another example, CABLE does not explicitly
represent stored C in plants; rather, the LAI over the winter months for deciduous forests represents stored C
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for spring leaf growth. This formulation predictably leads to transpiration biases over the winter months
in deciduous PFTs.

LAI is a key ecosystem property and model variable that scales leaf gas exchange to the canopy and
determines light capture (absorbed photosynthetically active radiation—APAR) and the biophysical
interaction with the atmosphere [Richardson et al., 2010, 2013]. Correction of LAI biases will lead to improved
simulation of transpiration (Figure 8) which in models (e.g., CABLE) coupled to atmospheric circulation
models will improve the representation of the biophysical feedback of the land surface on the climate
system. However, we have also demonstrated that some models had compensating biases in the simulation
of transpiration, these compensating biases must be resolved before improvement LAI simulation accuracy
will result in improved transpiration accuracy. In the following sections we examine the model hypotheses
that determine peak LAI and LAI phenology and assess these competing hypotheses based on the
experimental observations. Many models calibrated either peak LAI or LAI phenology to observations. As
calibration is not a predictive method, we do not discuss these models in detail in the relevant
sections below.
4.1.1. Peak LAI
For modeling peak LAI, the biological theories represented by the models are fixed partitioning coefficients
and SLA (CABLE, DAYCENT, and GDAY), the pipe model (O-CN, LPJ-GUESS, and to an extent ED2), optimization
for canopy C export (SDGVM), and fixed partitioning combined with a linear increase in SLA through the
canopy (CLM4). Both CLM4 and SDGVM overpredicted LAI, while O-CN and LPJ-GUESS made a
reasonable approximation.

CABLE, DAYCENT, and GDAY all use the partitioning coefficient approach (see above). The ability of these
models to reproduce peak LAI depended on accurate simulation of NPP and whether they used site data to
parameterize SLA and leaf partitioning coefficients. At Oak Ridge, GDAY simulated peak LAI close to the
observations (Figure 3f) using partitioning coefficients and SLA parameterized with the site data. As turnover
at the site was minimal prior to peak LAI (and did not occur until peak LAI was reached in GDAY), accurate
simulation of NPP resulted in the accurate simulation of peak LAI. CABLE was a poorer predictor of peak LAI at
Oak Ridge because generic plant functional type (PFT) parameters were employed.

CLM4 also uses the partitioning coefficient approach but strongly overpredicted LAI due to the assumption of
a linear increase in SLA through the canopy [Thornton and Zimmermann, 2007]. A linear increase in SLA
means that each additional LAI layer is less costly in terms of leaf C than the previous layer. Thus, as NPP
increases, leaf C increases at the same rate, but LAI increases at an exponential rate (Text S1 in the supporting
information). CLM4 was parameterized with site data for SLA at the top of the canopy, the rate of increase of
SLA through the canopy, and leaf C partitioning. However, the overprediction of NPP led to an even greater
overprediction of peak LAI.

The default mode of CLM4 increases wood partitioning as a function of NPP, and all other parameters
necessary to simulate allocation and LAI are fixed so that LAI can be written as a function of NPP (Text S1). The
relationship between LAI and NPP for broad classes of CLM4 PFTs is shown in Figure 9, demonstrating that
overprediction of LAI is likely to be a common feature of CLM4 especially for broadleaf deciduous PFTs.

While increasing SLA with canopy depth is a valid assumption [Norby and Iversen, 2006;White and Scott, 2006;
Lloyd et al., 2010], the formulation of CLM4 leads to overprediction of LAI within the range of forest NPP
(Figure 9). Constraining SLA to amaximum value [White and Scott, 2006] would limit the overprediction of LAI.
The pipe model imposes area:volume scaling between leaf area and sapwood volume which would also
constrain LAI at high productivity, though this would require representation of tree structure in CLM4.

SDGVM strongly overpredicts peak LAI. LAI in SDGVM maximizes canopy C export by targeting an annual
C balance (assimilation-respiration-leaf C construction costs) of zero in the lowest LAI layer. The optimization
is sensitive to model parameterization of canopy N scaling and dark respiration, which may have been
misrepresented. Also, the optimization does not account for the structural C necessary to support the lowest
LAI layer (as posited by the pipe model) nor supporting root tissue [McMurtrie and Dewar, 2013], which could
be missing costs from the optimization calculation that could help to constrain LAI.

O-CN and LPJ-GUESS employ the pipe model to simulate allocation, of which peak LAI is an emergent
property, and both models accurately reproduced peak LAI at Oak Ridge. Using the pipe model, LAI is
sensitive to the LAI:sapwood area ratio, sapwood turnover, and SLA. Other than SLA, both O-CN and
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LPJ-GUESS used default PFT parameters. The reasonable reproduction of Oak Ridge LAI by both models
suggests that with accurate simulations of NPP, the pipe model assumption is relatively robust, constraining
LAI within the bounds of the observations (Figure 3f).It is well established that there is a relationship between
leaf area and sapwood area as proposed by the pipe model [Shinozaki et al., 1964; Oohata and Shinozaki,
1979] although the exact nature of the relationship is still the subject of some debate [McDowell et al., 2002;
Schneider et al., 2011].
4.1.2. LAI Phenology
CLM4, ED2, and GDAY all simulate phenology passively (as described in the methods) for evergreen PFTs. In
GDAY passive phenology resulted in no seasonal cycle in pine LAI at Duke (Figure 3e) and restricted
amplitude of the cycle for CLM4 and ED compared with observations. The restricted amplitude of CLM4, ED2,
and GDAY resulted from a constant needle turnover rate, in contrast to the observations, which showed
distinct seasonality with a senescent phase during the late season (Figure 3e and see McCarthy et al. [2007]).
LPJ-GUESS assumes no variability in evergreen LAI over the year, in clear contrast to the observations. The
remaining models used similar methods to simulate phenology at both sites so we discuss them
in combination.

In contrast to the observations at Oak Ridge, CABLE simulates a canopy with a LAI between 1 and 2 during the
winter months as a reserve to initiate physiological activity in the following spring. Predictably, the
overprediction of winter LAI led to overprediction of winter transpiration (Figures 7 and 8). Prioritized
partitioning of NPP in TECO at Oak Ridge caused the timing of peak LAI in TECO to be delayed until
immediately before senescence. Timing of the peak LAI was delayed because the initial, rapid leaf growth
phase was not sufficiently long to achieve the peak LAI. The delay was exacerbated by the default SLA in
TECO being ~20% lower than observations, slowing the accumulation of LAI.

At Oak Ridge the sweet gums were of a more northerly provenance and hence had delayed budburst
compared to local trees, somewhat confounding the evaluation of the timing of leaf growth. However,
LPJ-GUESS (at Oak Ridge) and SDGVM (at both sites) initiated budburst extremely early in the year (Figures 3e
and 3f). The SDGVM phenology formulation uses a cumulative growing degree day (GDD) formulation that
was evaluated in Siberia [Picard et al., 2005], which may not be more generally applicable to temperate
regions. GDAYand CLM4 accurately reproduced the timing of budburst at Oak Ridge using the formulation of
White et al. [1997], most likely because the formulation was calibrated using North American data. CABLE also
reproduced budburst accurately using the satellite formulation of Zhang et al. [2004].

CABLE, CLM4, and GDAY all accurately reproduced the timing of leaf growth initiation and senescence;
however, there were notable differences in rates of leaf growth and senescence which lead to marked
differences in their ability to reproduce the seasonality of LAI at Oak Ridge (Figure 3). The only difference
between GDAYand CLM4was the parameterization of the duration of the leaf growth and senescence season
but had important consequences for reproducing the timing of transpiration. Timing of senescence in
SDGVM occurs when leaves reach a fixed age and therefore early senescence was tied to early budburst.

At Oak Ridge most models prescribed or calibrated LAI phenology (DAYCENT, EALCO, O-CN, and TECO) in
some way with observations. And if not calibrated at the site scale to empirical data, phenology schemes
were calibrated at the regional or global scale. While several of the regional calibrations of satellite
observations of greenness to climate data [White et al., 1997; Zhang et al., 2004] captured phenology at the
two sites reasonably, such calibrations are limited in their mechanistic representation of leaf growth initiation
in spring. And a large suit of models have been shown to perform poorly at a wider range of sites in
North America [Richardson et al., 2012]. A primary reason for deciduous phenology is the avoidance of frost
damage to leaves [Woodward, 1987] and a growing degree day (GDD) formulation of budburst assumes that
the risk of frost is simply a function of GDDs. However, this assumption may not be valid in the warm humid
climate of the southeastern U.S., and perhaps multiple environmental indicators may be employed to predict
frost risk, and hence budburst, more accurately.

4.2. Potential Consequences for Simulating Responses to Elevated CO2

LAI biases have been shown to be important in modeled GPP biases [Richardson et al., 2012; Schaefer et al.,
2012], and LAI biases are also likely to affect the magnitude and seasonality of the GPP response to
elevated CO2 (eCO2). Low LAI ecosystems have more opportunity to increase the fraction of absorbed
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photosynthetic radiation (fAPAR) as fAPAR saturates as LAI increases. FACE experiments have shown that the
peak LAI response [Norby and Zak, 2011] and the response of fAPAR [Norby et al., 2005] to eCO2 are higher in low
LAI systems. Low LAI systems are also likely to have a greater response to eCO2 [Ewert, 2004] as a higher fraction
of the canopy is light saturated. Light-saturated photosynthesis is more sensitive to eCO2 because at light
saturation eCO2 relieves substrate limitation of the Calvin-Benson cycle which increases the carboxylation rate
of ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) [Farquhar et al., 1980]. However, at Duke NPP
responses to CO2 were strongly related to LAI responses [McCarthy et al., 2006a], and more generally, NPP
response to eCO2 in low LAI systems was often directly proportional to the response of fAPAR [Norby et al.,
2005], suggesting that the NPP response in low LAI systems could be mostly explained by the increase in LAI.

Despite reasonable predictions of the magnitude of NPP by many models (Figures 3a and 3b), they achieved
such projections with considerable inaccuracies in their underlying N cycle simulations (Figures 6c and 6d).
For example, almost every model strongly overpredicted N uptake at Oak Ridge, including the model
with the best reproduction of NPP (EALCO). Similar results were observed for transpiration. Correcting
transpiration in GDAY, ED2, and ISAM for LAI resulted in worse simulation of transpiration which suggests that
the LAI bias was compensating a transpiration bias of opposite sign.

The problems that the models have simulating ecosystem state and dynamics at ambient CO2 are likely to
affect their performance at simulating ecosystem response to elevated CO2. N cycling interacts with C cycling
and plays a major role in the response to eCO2 of the Duke and Oak Ridge forests [McCarthy et al., 2010; Norby
et al., 2010; Drake et al., 2011; Garten et al., 2011] and the models used in this study to simulate these
ecosystems [Zaehle et al., 2014]. For example, the lower than observed NUE simulated by many of
the models (Figures 4c and 4d) results in the simulated forest using and sequestering more N which may
exacerbate the strength of the simulated N limitation under eCO2 [Zaehle et al., 2014].

Similarly, model biases at simulating transpiration are likely to bias ecosystem responses to eCO2 via the effect
of CO2 decreasing stomatal conductance. Decreased stomatal conductance is likely to increase soil water
content which is likely to impact transpiration and primary productivity [Schäfer et al., 2002;McCarthy et al., 2010;
Morgan et al., 2011; De Kauwe et al., 2013]. In summary, model development is still necessary to reduce model
uncertainty in simulating ecosystem C, N, and water dynamics in ambient CO2 conditions to provide an accurate
baseline from which to make confident predictions of terrestrial ecosystem dynamics on a rising CO2 Earth.

4.3. Concluding Remarks

Models are tools that can be used to interpret terrestrial ecosystem dynamics in response to observed or
manipulated environmental change. They are also requisite tools for making projections associated with future
environmental change. As a measure of the quality of these tools, we assess their ability to predict some key
aspects of current terrestrial ecosystems or the biosphere—e.g., carbon fluxes and water fluxes. We have shown
that model accuracy in key ecosystem properties is sometimes achieved with compensating biases which are
likely to bias model predictions of ecosystem dynamics in response to environmental change. Compensating
biases demonstrate that we cannot use GOF statistics alone asmetrics for the predictive ability of amodel. The use
of GOF statistics without consideration of compensating biases could result in over confidence in a model’s
predictive ability which could ultimately result in misguided environmental policy.

To provide a more useful approach to interpretation of model results, we advocate the comparison of
models, to each other, and with experimental data, based on their underlying hypotheses and assumptions
(Figure 1). The model-data synthesis method draws multimodel intercomparisons into the scientific method
of hypothesis, prediction, and experiment. Finally, we encourage a more iterative process of model
intercomparison and experimental data synthesis to help identify, and therefore facilitate reductions in,
uncertainty in model predictions to further our understanding of the biosphere.
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