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Abstract The 2019 extreme positive Indian Ocean dipole drove climate extremes over Indian Ocean rim
countries with unclear carbon-cycle responses. We investigated its impact on net biome productivity (NBP)
and its constituent fluxes, using the Global Carbon Assimilation System (GCASv2) product, process-based
model simulations from TRENDYV9, and satellite-based gross primary productivity (GPP). By distinguishing
two separate regions, the India-Africa and Asia-Pacific, GCASv2 indicated enhanced terrestrial carbon uptake
of 0.23 + 0.20 PgC and release of 0.38 + 0.15 PgC, respectively, during September—December (SOND)
2019. These NBP anomalies had comparable magnitudes to those following the 2015 extreme EI Nifio which,
however, caused the consistent carbon release in both regions. The TRENDYV9 model ensemble confirmed
these NBP responses, albeit with smaller magnitudes. These regional NBP anomalies were related to soil
moisture variations with a dominant role of GPP. Understanding the impact of IOD provides new insights into
mechanisms driving interannual variations in regional carbon cycling.

Plain Language Summary The extreme Indian Ocean Dipole (IOD) can drive climate extremes,
such as floods, heatwaves, droughts, and wildfires, over the Indian Ocean rim countries. However, responses of
regional terrestrial carbon cycling to IOD remained unclear. We used the net biome productivity (NBP) from an
atmospheric inversion and multiple terrestrial biosphere models to demonstrate an enhanced terrestrial carbon
uptake and release over the India-Africa and Asia-Pacific regions, respectively, during the extreme positive IOD
(September—December) in 2019. These IOD-induced regional NBP anomalies showed comparable magnitudes
but different patterns to those following the 2015 extreme El Nifio. Along with the more frequent extreme

10D under future greenhouse warming, IOD will be an important mechanism driving interannual variations in
regional carbon cycling.

WANG ET AL.

1 of 11

85U8017 SUOWIWOD BAIER.D) 3|qedt|dde 8y} Aq peusenob 818 sajo1e VO ‘SN JO Sa|n1 1oj AR1q1T8UIIUO /8|1 UO (SUORIPUOD-PUE-SULBIALIOY A8 1M Ale.q 1 UljuO//SANY) SUORIPUOD pUe SULB | 84} 89S *[2202/TT/9T] Uo Aiqiauliuo AB|im ‘ubedweyd eueqin 1y sioul||l JO AiSAIN Ad 0S600T 192202/620T 0T/10p/wod’ A im Areaqijputuo'sgndnBe//sdny wouy pepeojumoq ‘gz ‘220z ‘L008rr6T


https://orcid.org/0000-0001-7359-1647
https://orcid.org/0000-0003-1744-7565
https://orcid.org/0000-0003-1821-8561
https://orcid.org/0000-0002-8682-1293
https://orcid.org/0000-0001-9246-9671
https://orcid.org/0000-0003-0779-2496
https://orcid.org/0000-0002-4051-3228
https://orcid.org/0000-0003-4278-1020
https://orcid.org/0000-0002-9493-8600
https://orcid.org/0000-0002-2571-2114
https://orcid.org/0000-0001-9833-8154
https://orcid.org/0000-0003-1141-3022
https://orcid.org/0000-0002-0622-6903
https://orcid.org/0000-0002-8861-8192
https://orcid.org/0000-0001-5602-7956
https://doi.org/10.1029/2022GL100950
https://doi.org/10.1029/2022GL100950
https://doi.org/10.1029/2022GL100950
https://doi.org/10.1029/2022GL100950
https://doi.org/10.1029/2022GL100950
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022GL100950&domain=pdf&date_stamp=2022-11-15

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2022GL100950

1. Introduction

The Indian Ocean Dipole (IOD) is an ocean-atmosphere coupled mode of variability that can directly influence
climate variations on interannual timescales over the regions surrounding the Indian Ocean (Ashok et al., 2004;
Behera et al., 2006; Cai et al., 2011; Saji & Yamagata, 2003; Saji et al., 1999). The climate impacts of IOD are
known to be different from those induced by the El Nifio-Southern Oscillation (ENSO) (Ashok et al., 2004; Cai
et al., 2011; Saji & Yamagata, 2003). In a positive IOD (denoted as “pIOD”), the sea surface temperature (SST)
initially cools off Sumatra-Java, enhancing the southeasterly trade winds. The anomalous southeasterly winds in
turn reinforce the initial cooling through the enhanced upwelling and shoaling of the thermocline but accumu-
late the warm SST over the equatorial western Indian Ocean (Saji et al., 1999). These altered circulations in the
ocean and atmosphere can cause climate extremes, such as floods, heatwaves, droughts, and wildfires (Ashok
et al., 2003; Behera et al., 2005; Cai et al., 2009; Kim et al., 2019; Ummenhofer et al., 2009), over the Indian
Ocean rim countries (IORC), exerting the concurrent and lagged abiotic stresses on regional ecosystems and
terrestrial carbon fluxes.

More recently, an extreme pIlOD event, one of the strongest in the last four decades, occurred in 2019 (Figure S1
in Supporting Information S1). It contributed to the megabushfires over the temperate forests in eastern Australia,
releasing large amounts of carbon dioxide (CO,) (Boer et al., 2020; Byrne et al., 2021; van der Velde et al., 2021;
Wang et al., 2020). Concurrently, the Nifio 3.4 index in 2019 barely satisfied the criterion for El Nifio (Figure S1
in Supporting Information S1). Hence the 2019 extreme pIOD event is a unique case that allows for the separation
of the impact of the pIOD on the terrestrial carbon cycle from other atmospheric modes affecting the IORC in
the carbon satellite era.

The impact of the IOD on the terrestrial carbon cycle is not well understood compared with the intensive studies
of the ENSO-related terrestrial carbon dynamics (Bastos et al., 2018; Kim et al., 2017; Liu et al., 2017; Wang
et al., 2016; Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018; Wang, Zeng, Wang, Jiang, Chen, et al., 2018; Zeng
etal., 2005). A limited number of studies (Wang et al., 2021; Williams & Hanan, 2011) based on model-simulated
and satellite-derived gross primary productivity (GPP) have shown that the IOD could cause large anomalies in
land photosynthesis over the IORC. Importantly, although uncertainties exist in future multimodel projections,
extreme plOD events are projected to become more frequent with global warming (Cai et al., 2014, 2020; Wang
et al., 2021). Stronger modulations of the IOD on variations in GPP are suggested with increases in the explained
variance by up to 10% over central and eastern Africa, Sumatra, and western and southeastern Australia in the
future based on future projections of 10 Earth System Models (Wang et al., 2021).

Here, we investigated the impact of the extreme pIOD in 2019 on terrestrial net biome productivity (NBP) and
its constituent fluxes over the IORC, based on the posterior fluxes optimized by the Global Carbon Assimila-
tion System Version 2 (GCASv2) (Jiang et al., 2022, 2021), simulations from twelve state-of-the-art Terrestrial
Biosphere Models (TBMs) that participated in the TRENDYv9 multimodel intercomparison (Sitch et al., 2015),
two satellite-derived global GPP products, and the relevant climate data sets.

2. Materials and Methods
2.1. Global Carbon Assimilation System Version 2 (GCASv2)

GCASv2, an updated version of GCASV1, has the ability to assimilate the satellite-observed XCO,. Its structure,
implementation, and differences from GCASv1 have previously been described in detail (Jiang et al., 2021).
GCASV2 adopted the assimilation technique of the ensemble square root filter (EnSRF) algorithm (Whitaker &
Hamill, 2002) to assimilate the GOSAT ACOS XCO, version 9.0 Level 2 Lite product (O’Dell et al., 2012) within
a 1-week window and generated the posterior results (both land and ocean fluxes) at 1° X 1° with prescribed
carbon emissions induced by fossil fuel and wildfires from 2010 to 2019 (Jiang et al., 2022). The transport
model in GCASv2 is the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) (Emmons
et al., 2010). It was driven by the GEOS-5 meteorological fields with a horizontal resolution of 1.9° x 2.51° and
56 vertical layers. The prior surface carbon fluxes include (a) fossil fuel carbon emissions, which were calcu-
lated as the average of the Carbon Dioxide Information Analysis Center product (Andres et al., 2011) and the
Open-source Data Inventory of Anthropogenic CO, emission product (Oda et al., 2018); (b) ocean carbon fluxes,
which were from the pCO,-Clim prior of CT2019B derived from the climatology of seawater pCO2 (Takahashi
et al., 2009); (c) land carbon fluxes (net ecosystem exchange [NEE]), which were simulated by using the Boreal
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Ecosystem Productivity Simulator (Chen et al., 1999), a process-based and remote sensing data-driven ecosys-
tem model; and (d) wildfire carbon emissions, which were from the Global Fire Emissions Database version 4.1
(GFEDv4) (van der Werf et al., 2017). For this study, we performed additional validations at several surface flask
sites across the study regions, showing the good performance of GCASv2 (Table S1 and Figure S2 in Support-
ing Information S1), and made a comparison with the ensemble NBP anomalies from OCO-2 v10 MIP LNLG
experiment (Byrne et al., 2022) in September—December (SOND) 2019, showing that except over the Indo-China
peninsula, they have basically consistent anomalous NBP patterns and comparable magnitudes over other regions
of the IORC (Text S1 and Figure S3 in Supporting Information S1).

2.2. TRENDYvV9 Simulations

We analyzed simulations from 12 state-of-the-art TBMs involved in the TRENDYV9 experiment, excluding some
models that did not provide the relevant variables and three models (CLM5.0, SDGVM, and VISIT) whose
NBP anomalies in SOND 2019 showed the lowest pattern correlation coefficients with the multimodel ensem-
ble result over the IORC. Models in this study include CABLE-POP (Haverd et al., 2018), CLASSIC (Melton
et al., 2020), IBIS (Yuan et al., 2014), ISAM (Meiyappan et al., 2015), ISBA-CTRIP (Delire et al., 2020), LPJ
(Poulter et al., 2011), LPX-Bern (Lienert & Joos, 2018), OCN (Zaehle & Friend, 2010), ORCHIDEE (Krinner
et al., 2005), ORCHIDEE-CNP (Goll et al., 2017), ORCHIDEEvV3 (Vuichard et al., 2019), and YIBs (Yue &
Unger, 2015) (Table S2 in Supporting Information S1). More detailed descriptions of these models have been
provided in a previous study (Friedlingstein et al., 2020). The same experimental protocol was followed by these
models in the TRENDY project, with the S3 run used here. In the S3 run, all the time-varying drivers—including
the global atmospheric CO,, climate, land use, gridded atmospheric N deposition, and N fertilizers—were taken
into account to force the models (Sitch et al., 2015). In this study, the relevant variables were consistently interpo-
lated into a horizontal resolution of 1° X 1° by using the first-order conservative remapping scheme (Jones, 1999).

2.3. GOSAT Level 3 XCO, Product

The GOSAT Level 3 global CO, distribution product version 02.90 (O’Dell et al., 2012) was used in this study
to infer the atmospheric XCO, anomalies related to the surface anomalous carbon fluxes. The FTS SWIR
Level 3 CO, product was constructed by interpolating, extrapolating, and smoothing the FTS SWIR Level 2
column-averaged mixing ratios of CO, with the kriging method on a monthly basis. This product has a time
period starting from June 2009 and a horizontal resolution of 2.5° x 2.5°.

2.4. Satellite-Derived GPP Products

We adopted two satellite-based global terrestrial GPP products to decompose the posterior NBP into its constit-
uent fluxes in the carbon assimilation system: the GOSIF GPP (Li & Xiao, 2019b) and FluxSat GPP (Joiner
et al., 2018). We used their average and standard deviation to represent the GPP anomalies and uncertainties
induced by the pIOD in 2019 over the India-Africa and Asia-Pacific regions.

The GOSIF GPP product was generated based on the global, fine-resolution Orbiting Carbon Observatory-2
(OCO-2)-based SIF product (GOSIF) (Li & Xiao, 2019a) and linear relationships between solar-induced fluo-
rescence (SIF) and GPP across a wide variety of biomes at both site and grid cell levels. The GOSIF product is
provided at 0.05° and each 8 days across the globe from 2000 to 2020. The FluxSat version 1 GPP product was
generated by using satellite-based geometry-adjusted reflectances from the MODIS and SIF from the Global
Ozone Monitoring Experiment 2 (GOME-2) within a simplified light-use efficiency framework without any
meteorological inputs. The monthly FluxSat GPP product used here had a 0.5° spatial resolution since 2000.

2.5. Climate Data Sets

Land precipitation and surface air temperature were obtained from the version 4.05 of the Climatic Research Unit
(CRU) Time Series (TS) monthly high-resolution gridded data set at 0.5° spatial resolution (Harris et al., 2020).
The root zone soil moisture was from the NASA's Global Land Data Assimilation System (GLDAS) Noah land
Surface Model L4 monthly V2.1 data set (GLDAS_NOAHO025_M) at 0.25° spatial resolution (Rodell et al., 2004).
And the root depth in Noah depends on the vegetation types. The SST and U and V winds at 50 and 200 hPa were
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adopted from the ERAS reanalysis data set (Hersbach et al., 2020). The ERAS data set was produced by using
4D-Var data assimilation and model forecasts in CY41R2 of the ECMWEF Integrated Forecast System, with 137
hybrid sigma/pressure levels in the vertical and 31 km horizontal resolution.

2.6. Velocity Potential and Divergent Winds

To investigate the climate extremes-related atmospheric circulation adjustments caused by the extreme pIOD in
2019, we here adopted the concepts of velocity potential and divergent winds at 200 hPa to illustrate the atmos-
pheric vertical motion and divergence, following the previous analysis (Wang et al., 2021). According to the

Helmholtz theorem, the horizontal velocity vector (v) can be decomposed into irrotational (v, divergent winds)

and nondivergent (v,,) parts:

[N

v=;I+;W=VH;(+kaHw, M)

where y is the velocity potential, y is the stream function, and V y is the horizontal vector differential operator.

The k represents the unit vector directed vertically. Taking the divergence of Equation 1, we can obtain the
following equation:

V2y = V- v = Div, )

where Div is the horizontal divergence. Solving this Poisson's equation, we can derive the velocity potential and
then the divergent winds.

2.7. Anomaly Calculation

As a result of the short-term period (10 years) of the posterior results from GCASv2, we derived the anomalies
of all the carbon fluxes by removing their climatology calculated from 2010 to 2019. For the GOSAT L3 XCO,
product, we first detrended the monthly XCO, at each grid, which is largely caused by anthropogenic fossil fuel
emissions, simply by removing the corresponding zonal average. We then calculated the XCO, anomalies used in
this study by removing their climatology calculated from 2010 to 2019.

3. Results and Discussion

3.1. Pattern of NBP Anomalies Induced by the 2019 Extreme pIOD Associated With Its Climate Drivers

The posterior NBP anomalies averaged from SOND 2019 in GCASv2 showed contrasting behaviors over the
IORC, exhibiting enhanced carbon uptake (positive values) over western, eastern, and central Africa and India,
but enhanced carbon release (negative values) over southern Africa, East Asia, the Indo-China peninsula, Indo-
nesia, and Australia (Figure 1a). TRENDYv9 multimodel ensemble NBP anomalies suggested a similar spatial
pattern, although the magnitudes differed in some regions (Figures 1a and 1b). For instance, the enhanced carbon
uptake indicated by the TRENDYV9 ensemble NBP was weaker than the GCASv2 NBP over eastern Africa but
was stronger over India (Figures 1a and 1b). However, patterns of NBP anomalies in TBMs showed a large inter-
model spread (Figure S4 in Supporting Information S1) despite following the same experimental protocol, likely
caused by differences in model structures and parameters (Rogers et al., 2014; Sitch et al., 2015).

From the perspective of atmospheric CO, concentration, persistent anomalies in surface carbon sources and sinks
can result in regional atmospheric CO, concentration anomalies. Satellite-observed XCO, concentrations can
directly detect anomalies in terrestrial carbon fluxes in local or upwind regions to some extent (Figure 1c), despite
the interference from atmospheric advection and divergence. Obvious reductions in the GOSAT L3 XCO, anom-
alies occurred over the vast areas to the north of Lake Victoria in Africa (Figure 1c), which corresponded well
with enhanced terrestrial carbon uptake in this region associated with the prevailing southeasterly winds in the
lower troposphere (Figure 1a). By contrast, there were clear increases in the XCO, anomalies over East Asia, the
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a GCASv2 NBP and winds at 950 hPa

Anomalies in September to December 2019
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Figure 1. Patterns of terrestrial carbon flux, atmospheric XCO,, and climate anomalies averaged from September to December (SOND) 2019. (a) Posterior net biome
productivity (NBP; positive indicates a flux from the atmosphere to the land) optimized by the Global Carbon Assimilation System Version 2.0 (GCASv2) and winds
at 950 hPa (arrows). (b) Ensemble NBP anomalies simulated with multiple models involved in TRENDYV9. The units of NBP and winds in (a and b) are gC m~2 d~!
and m s~!, respectively. (c) GOSAT L3 XCO, anomalies over lands in ppm. (d) Surface air temperature anomalies and sea surface temperature over the tropical Indian

Ocean (k) associated with the anomalies of velocity potential (contours) and divergent winds at 200 hPa (arrows) with respective units of 10° m? s

“landms~. (e)

Precipitation anomalies (mm d~!). (f) Global Land Data Assimilation System root zone soil moisture anomalies (kg m~2). The green and orange boxes in (f) represent
the two land regions of India-Africa and Asia-Pacific used to calculate the total terrestrial carbon fluxes and anomalies. The cross-hatched areas represent variations in
SOND stronger than +1—¢ during the time period of 2010-2019.

Indo-China peninsula, Sumatra, Kalimantan Island, and western parts of Australia (Figure 1c), and the increases
in XCO, anomalies in these regions were consistent with the enhancement of carbon release (Figure 1a).

These NBP anomalies over the IORC can be largely accounted for by the anomalous weather and climate induced
by the extreme pIOD in 2019. The warm pole of the extreme pIOD over the equatorial western Indian Ocean
favored active convection (Figure 1d), resulting in high precipitation over western, eastern, and central Africa and
India (Figure le). More precipitation led to a wetter land surface (Figure 1f), more evapotranspiration, and thus
more evaporative cooling and lower near-surface air temperature (Figure 1d) as a result of the control of ther-
modynamics and the hydrological cycle on the surface energy balance over the tropics (Zeng & Neelin, 1999).
The cool and wet conditions enhanced terrestrial carbon uptake over these regions (Figures la and 1b) likely
due to strengthened terrestrial photosynthesis (Wang et al., 2021; Zeng et al., 2005; Zscheischler et al., 2014),
reduced soil respiration, and inhibition of wildfires (Kim et al., 2019). By contrast, atmospheric subsidence
prevailed over East Asia, the Indo-China peninsula, Indonesia, and Australia due to the cold pole of the pIOD
over the southeastern equatorial Indian Ocean (Figure 1d). This caused a reduction in precipitation (Figure le),
higher temperatures (Figure 1d), and thus widespread heatwaves and droughts (Figures 1d and 1f). These
climate extremes, a multivariate compound event, can potentially reduce photosynthesis by stomatal and xylem
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regulation (Bastos et al., 2021; Konings et al., 2017; Peters et al., 2018; Wang et al., 2021), increase vegetation
mortality (Senf et al., 2020; Stovall et al., 2019), increase soil respiration (Anjileli et al., 2021), and promote wild-
fires (Boer et al., 2020; Wang et al., 2020), hence enhancing anomalous carbon release there (Figures 1a and 1b).

In the developing phase of the pIOD during June—August (JJA) 2019 (Figure S5c in Supporting Information S1),
the enhanced convection and subsidence associated with the plOD were weaker than those during SOND 2019
(pIOD peaked in October) (Figure 1d). Nevertheless, it had already to some extent enhanced precipitation over
Africa north of the Equator and India, and reduced precipitation over southern China, the Indo-China peninsula,
Sumatra, Kalimantan Island, and southeastern Australia (Figure S5d in Supporting Information S1). Compared to
the precipitation pattern in March—-May (MAM) 2019, which was largely influenced by the weak El Nifio event in
2018 (Figure S5b in Supporting Information S1), these changes in precipitation in JJA 2019 indicate the gradual
transition from the control of El Nifio to the control of pIOD, which also manifested in changes of NBP. Increased
carbon uptake over the Africa north of the Equator and western coast of India could be found in both of the
GCASvV2 and TRENDYV9 ensemble result (Figures S6¢ and S6d in Supporting Information S1). An obvious
carbon release was found over southern China in JJA (Figures S6¢ and S6d in Supporting Information S1) which
was associated with decreased precipitation (Figure S5d in Supporting Information S1), differing from the weak
uptake there in MAM (Figure S6b in Supporting Information S1) caused by the El Nifio-induced more precipita-
tion (Figure S5b in Supporting Information S1). Additionally, there was an obvious reduction in carbon release
over Australia from MAM to JJA (Figure S6 in Supporting Information S1). These changes in NBP anomalies
from MAM to JJA make us more confident that NBP anomalies in SOND 2019 focused in this study were mainly
induced by the extreme pIOD event (Figures 1a and 1b).

3.2. Seasonal Variations of Total Regional NBP Anomalies

Given that the 2019 extreme plOD had differential impacts on the terrestrial carbon sources and sinks over the
IORC (Figures 1a and 1b), we simply separated these regions into two parts: the India-Africa and Asia-Pacific
regions (Figure 1f).

Over the India-Africa region, the seasonal variation in GCASv2 NBP showed net carbon uptake from August to
October and net carbon release in other months (Figure 2a). In 2019, the anomalous carbon release relative to the
average from 2010 to 2019 occurred before August, followed by the anomalous carbon uptake, with the averaged
anomalies of —0.06 + 0.15 PgC in JJA and 0.23 + 0.20 PgC in SOND (Figure 2a). The TRENDYVY ensemble
showed carbon uptake from June to October and carbon release in other months (Figure 2c), which was somewhat
different from the GCASv2 (Figure 2a). The anomalies in 2019 (0.02 + 0.07 PgC in JJA and 0.11 + 0.15 PgC
in SOND) based on TRENDYV9 were slightly weaker than those in GCASv2 (Figures 2a and 2c). These posi-
tive anomalies in the total NBP in SOND were linked to the enhanced carbon uptake over western, eastern, and
central Africa and India (Figures 1a and 1c). The 2015 extreme El Nifio caused anomalous carbon release in the
tropics with no obvious lagged response (Bastos et al., 2018; Liu et al., 2017; Wang, Zeng, Wang, Jiang, Wang,
& Jiang, 2018). By comparison, in 2015, GCASv2 showed nearly neutral anomalies (—0.01 + 0.15 PgC) in JJA
and obvious carbon release (—0.28 + 0.19 PgC) in SOND (Figure 2a), and the TRENDYV9 ensemble indicated
carbon release of —0.11 + 0.09 PgC in JJA and —0.14 + 0.11 PgC in SOND (Figure 2c). Both products showed
the comparable magnitudes but different signs of carbon anomalies in SOND induced by the 2019 extreme pIOD
and 2015 extreme El Nifio events (Figures 2a and 2c), which can be clearly seen from their different spatial
patterns of NBP and climate anomalies in these two events (Figure 1 and Figures S7 and S8 in Supporting Infor-
mation S1). It suggests that, in addition to ENSO events, IOD events can also play an important part in influenc-
ing regional carbon cycling.

Over the Asia-Pacific region, GCASv2 and TRENDYVY showed similar seasonal variations in NBP and both
showed net carbon uptake from April to October, although the magnitudes differed (Figures 2b and 2d). Carbon
anomalies in 2019 showed enhanced carbon release in all months, which was consecutively influenced by the
lagged effects (Wang et al., 2016) of the weak El Nifio in 2018 and the extreme pIOD in 2019 (Figures S1 and S6 in
Supporting Information S1). The anomalous carbon release was —0.18 + 0.12 PgC in JJA and —0.38 + 0.15 PgC
in SOND in GCASv2, and —0.08 + 0.08 PgC in JJA and —0.23 + 0.20 PgC in SOND in the TRENDYV9 ensem-
ble, respectively (Figures 2b and 2d). By comparison, the 2015 extreme EI Nifio event also caused anomalous
carbon release in SOND (somewhat weaker than those in 2019), with anomalies of —0.28 + 0.16 PgC in GCASv2
and —0.18 + 0.12 PgC in the TRENDYV9 ensemble, respectively (Figures 2b and 2d).
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Figure 2. Seasonal variations in total net biome productivity (NBP) and its anomalies over the India-Africa and Asia-Pacific regions. The posterior total NBP
anomalies in 2015 and 2019 optimized by Global Carbon Assimilation System for the (a) India-Africa and (b) Asia-Pacific regions. The error bars in (a and b) are the
uncertainties calculated from the optimization process. The TRENDYV9 ensemble NBP in 2015 and 2019 for the (c) India-Africa and (d) Asia-Pacific regions. The
error bars in (¢ and d) represent the standard deviation among different models. The light gray shaded areas represent the standard deviation of the NBP for each month
from 2010 to 2019. The light orange and blue shaded areas in the subplots represent June—August and September—December.

In addition, the historical variations in the NBP during SOND, in general, had stronger partial correlation
coefficients (pcor) with the root zone soil moisture (controlling the effect of temperature) than with tempera-
ture (controlling the effect of soil moisture) for both the India-Africa and Asia-Pacific regions, except that the
TRENDYV9 ensemble had equivalent pcor with the root zone soil moisture and temperature over the India-Africa
region (Table S3 in Supporting Information S1). This indicates that soil moisture played a more important role
in these regional NBP variations, in agreement with the findings of previous studies (Humphrey et al., 2018;
Humphrey et al., 2021; Wang, Zeng, Wang, Jiang, Chen, et al., 2018; Zscheischler et al., 2014), as would also be
expected in tropical regions.

3.3. Biological Mechanisms

The carbon balance over land is represented by NBP = NEP — D = GPP — TER — D, where NEP denotes net
ecosystem productivity, D is the carbon release induced by both natural and anthropogenic disturbances such
as wildfires, harvests, grazing, and land cover change, and TER is the total ecosystem respiration. We decom-
posed NBP anomalies during SOND in 2019 into its different constituent fluxes. In GCASv2, we optimized
the terrestrial NEE or -NEP and ocean carbon flux using satellite CO, column data, while D mainly represents
the prescribed carbon emission induced by wildfires. In this study, we used the average of GOSIF GPP (Li &
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Figure 3. Anomalies in the net biome productivity (NBP) and its constituent
fluxes during September—December 2019. (a) Terrestrial carbon fluxes over
the India-Africa region. (b) Terrestrial carbon fluxes over the Asia-Pacific
region. The constituent fluxes of the NBP in the TRENDYV9 ensemble were
simulated with the intermodel spread (standard deviation among different
models; error bars). The term D is the residual between simulated net
ecosystem productivity (NEP) and NBP, which includes fluxes of simulated
wildfires, grazing, harvest etc. In GCASv2, the uncertainties in the NBP

and NEP (error bars) are calculated from the optimization process. D is only
composed of the fluxes of wildfires based on the Global Fire Emissions
Database without uncertainties, we supposed. The gross primary productivity
(GPP) is the average of the GOSIF GPP and FluxSat GPP with their standard
deviation as uncertainties. The total ecosystem respiration is calculated as the
difference between the satellite-derived GPP and the GCASv2 optimized NEP.

Xiao, 2019b) and FluxSat GPP (Joiner et al., 2018), two satellite-based GPP
products, to calculate the GPP anomalies. TER is therefore derived as the
difference between the satellite-derived GPP and optimized NEP.

Over the India-Africa region (Figure 3a), the enhanced NEP (0.14 + 0.20 Pg
C) accounted for 60.87% of the enhanced NBP (0.23 + 0.20 Pg C) in GCASv2
induced by the wet and cool conditions during SOND (Figures 1d-1f). The
increase in the NEP resulted from the stronger enhancement in the GPP
(0.92 + 0.04 PgC) than in the TER (0.77 + 0.23 PgC). In the TRENDYV9
ensemble results, the enhanced NEP (0.12 + 0.15 PgC) accounted for
103.97% of the variation in the NBP, with the enhancement in the NEP simi-
larly caused by the stronger enhancement in the GPP (0.57 + 0.35 Pg C) than
in the TER (0.46 + 0.22 PgC).

Over the Asia-Pacific region (Figure 3b), the anomalies in the D and NEP
accounted for 59.17% and 40.83% of the reduced NBP (—0.38 + 0.15 PgC)
in GCASvV2 caused by the dry and heat compounds (Figures 1d-1f), respec-
tively. A stronger reduction in the GPP (—0.36 + 0.08 PgC) than in the TER
(—0.20 % 0.23 PgC) appeared to cause the reduction in the NEP. The reduc-
tion in the NEP estimated by the TRENDYV9 ensemble (—0.18 + 0.16 PgC)
was comparable with the magnitude in GCASv2, but the reduction in the
NEP accounted for a much larger fraction of the variation of the NBP in
the TRENDYV9 ensemble (79.18%) than in GCASv2. The anomalies in the
GPP (—0.40 + 0.42 PgC) and TER (—0.21 + 0.31 PgC) in the TRENDYv9
ensemble had comparable magnitudes to the estimates in the satellite-derived
GPP and calculated TER.

Quantitatively, the GPP had the largest variations among these three
processes (GPP, TER, and D) over both of India-Africa and Asia-Pacific
regions and dominated the enhanced terrestrial carbon uptake and release
over the India-Africa and Asia-Pacific regions, respectively (Figure 3). The
reductions in the GPP and TER simulated in the TRENDYV9 ensemble had
large intermodel spreads due to their different model structures and param-

eters; their individual estimates are illustrated in Tables S4 and S5 in Supporting Information S1. Furthermore,
the carbon flux anomaly mainly induced by wildfires (D) was substantially underestimated in the TRENDYv9
ensemble results (Figure 3). We found that this substantial underestimation in D anomalies still existed although
we derived the magnitude by only using the models that explicitly included the fire modules (Tables S2, S4, and
S5 in Supporting Information S1). This indicated that the underestimation in D anomalies was largely caused
by the absence and underrepresentation of wildfire in the models (Table S2 in Supporting Information S1). If
the magnitudes of the wildfire-induced carbon anomalies simulated by the TRENDYV9 ensemble were close
to the magnitudes derived from satellites (van der Werf et al., 2017), as used in GCASv2, then the magnitudes
of the total NBP anomalies over the two regions would have been comparable between GCASv2 and the

TRENDYV9 ensemble (Figure 3).

4. Conclusions

We in this study comprehensively investigated the impact of the 2019 extreme pIOD on terrestrial NBP and

its constituent fluxes, and quantitatively compared it with the impact of the 2015 extreme El Nifio during
SOND. GCASv2 posterior NBP and TRENDYV9 multimodel ensemble NBP anomalies basically showed
similar pIOD-induced spatial patterns, exhibiting enhanced carbon uptake over western, eastern, and central

Africa and India, but enhanced carbon release over southern Africa, East Asia, the Indo-China peninsula,
Indonesia, and Australia. It caused an enhanced total terrestrial carbon uptake of 0.23 + 0.20 PgC in GCASv2
and 0.11 + 0.15 PgC in TRENDYV9 ensemble over the India-Africa region, and the enhanced total release of
0.38 + 0.15 PgC in GCASv2 and 0.23 + 0.20 PgC in TRENDYV9 ensemble over the Asia-Pacific region, respec-
tively. We further revealed that these regional NBP anomalies were more closely related to soil water availability

with a dominant role of GPP. Importantly, these two data sets showed comparable magnitudes to those following
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the 2015 extreme El Nifio event although this event led to the consistent release of carbon in both India-Africa
and Asia-Pacific regions. This suggests that, other than ENSO events, IOD events can also drive variations in the
regional terrestrial carbon cycling. Along with more frequent extreme pIOD events in future greenhouse warm-
ing, it may also modulate the long-term land carbon accumulations (Cai et al., 2014; Park et al., 2020).

Data Availability Statement

Land precipitation and surface air temperature from CRU TS v. 4.05 are available at https://crudata.uea.ac.uk/
cru/data/hrg/. GLDAS-2.1 soil moisture is maintained at the NASA Goddard Earth Science Data and Information
Services Center (GES DISC) with the web site at https://disc.gsfc.nasa.gov/datasets. Winds at 950 and 200 hPa
from ERAS are available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-lev-
els-monthly-means?tab=form. GOSIF GPP and FluxSat GPP products are provided at https://globalecology.unh.
edu/data/GOSIF-GPP.html and https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/, respectively. The TRENDY
DGVMs data are available at https://sites.exeter.ac.uk/trendy. GCASv2 output are available at https://zenodo.org/
record/5829774.
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