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Abstract
Changing amplitude of the seasonal cycle of atmospheric CO2 (SCA) in the northern 
hemisphere is an emerging carbon cycle property. Mauna Loa (MLO) station (20°N, 
156°W), which has the longest continuous northern hemisphere CO2 record, shows 
an increasing SCA before the 1980s (p < .01), followed by no significant change 
thereafter. We analyzed the potential driving factors of SCA slowing-down, with 
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1  | INTRODUC TION

The seasonal amplitude of atmospheric carbon dioxide (CO2) mole 
fraction (hereafter SCA) refers to the peak-to-trough magnitude of 
the detrended seasonal cycle of CO2 for each calendar year. It re-
sults primarily from the convolution of seasonal variations in atmo-
spheric transport and of seasonal variations in terrestrial CO2 fluxes 
fixed by photosynthesis and released by respiration and disturbances 
(Bacastow, Keeling, & Whorf, 1985; Keeling, Chin, & Whorf, 1996). 
Although the seasonality of ocean CO2 fluxes and fossil fuel emissions 
also affect the SCA, their contributions are expected to be much smaller 
(Graven et al., 2013; Keeling et al., 1996). As a result, the SCA is viewed 
as an integrated signal for studying the response of the terrestrial car-
bon cycle to global change (Bastos et al., 2019; Buermann et al., 2007; 
Dargaville et al., 2002; Forkel et al., 2016; Graven et al., 2013; Heimann 
et al., 1998; Keeling et al., 1996; Piao et al., 2018; Zeng et al., 2014).

A global network of more than 20 atmospheric CO2 monitoring 
stations was established in the 1980s. During the past three decades, 
data from this network have shown the SCA increases in the high 
northern latitudes, but does not increase at mid- and low-latitude sta-
tions (Forkel et al., 2016; Piao et al., 2018). A longer perspective on the 
SCA trend can be gained from observations made at the Mauna Loa 
station (MLO), located at 19.5°N, 155.6°W and an elevation of 3,397 m 
in the Pacific Ocean, which has been recording data since 1958 
(Keeling et al., 1996). Data from MLO show a significant increase in 
SCA before the 1980s, but this increment then slows down (Figure 1; 
Figure S1), with the trend after the 1980s being similar to other north-
ern mid-latitude stations (Graven et al., 2013). Less attention has been 
paid to this deceleration of SCA at MLO (Buermann et al., 2007) than 
the continuous SCA rise in the Arctic (Bacastow et al., 1985; Graven 

et al., 2013). Understanding the deceleration of SCA at MLO is import-
ant because the SCA trend is one of the few emergent properties used 
to constrain future projections of the global carbon cycle (Wenzel, 
Cox, Eyring, & Friedlingstein, 2016), and the deceleration of SCA at 
MLO may also offer some indications on whether the persistent in-
crease in SCA at higher latitudes will continue in the future (Bacastow 
et al., 1985; Keeling et al., 1996).

China, Grant/Award Number: 41530528; 
111 Project, Grant/Award Number: 
B14001; GENCI, Grant/Award Number: 
A0050102201; NASA, Grant/Award 
Number: NNX17AE74G

an ensemble of dynamic global vegetation models (DGVMs) coupled with an atmos-
pheric transport model. We found that slowing-down of SCA at MLO is primarily 
explained by response of net biome productivity (NBP) to climate change, and by 
changes in atmospheric circulations. Through NBP, climate change increases SCA at 
MLO before the 1980s and decreases it afterwards. The effect of climate change 
on the slowing-down of SCA at MLO is mainly exerted by intensified drought stress 
acting to offset the acceleration driven by CO2 fertilization. This challenges the view 
that CO2 fertilization is the dominant cause of emergent SCA trends at northern 
sites south of 40°N. The contribution of agricultural intensification on the decelera-
tion of SCA at MLO was elusive according to land–atmosphere CO2 flux estimated 
by DGVMs and atmospheric inversions. Our results also show the necessity to ad-
equately account for changing circulation patterns in understanding carbon cycle dy-
namics observed from atmospheric observations and in using these observations to 
benchmark DGVMs.

K E Y W O R D S

atmospheric circulation, climate change, land use change, Mauna Loa, seasonal CO2 amplitude, 
slowing-down

F I G U R E  1   Anomalies of atmospheric seasonal CO2 amplitude 
(SCA) at Mauna Loa (MLO). The observed anomaly in the SCA 
at MLO (black line) was derived from the Scripps CO2 Program 
during 1959–2018. The modeled SCA anomaly for 1959–2016 
was estimated from a global atmospheric transport model run 
(Simulation T1) with net biome productivity, fossil fuel CO2  
emission, and ocean-atmosphere CO2 exchange fluxes. Simulated 
SCA, driven by the net biome productivity from 12 DGVMs, was 
averaged using two approaches: arithmetic model averaging 
(AMA; blue line) and Bayesian model averaging (BMA; yellow line), 
respectively. The shaded areas represent the 1 SD uncertainty 
across models
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In this paper, we simulated the SCA trend at MLO in different time 
windows during 1959–2016 using an ensemble of land carbon cycle 
models, ocean carbon cycle models, and fossil fuel CO2 emissions data-
set with an atmospheric transport model. We separated the contribu-
tion of terrestrial and ocean carbon fluxes, land use emissions, fossil 
fuel emissions, and atmospheric circulation to the SCA trend and trend 
change. The effects of climate change and CO2 fertilization on the con-
tribution of terrestrial carbon fluxes were also quantified.

2  | MATERIAL S AND METHODS

2.1 | Datasets

2.1.1 | CO2 data

The weekly in situ CO2 mole fraction data at MLO for the period 
March 1958–December 2018 were obtained from the Scripps CO2 
Program (http://scrip psco2.ucsd.edu/data/atmos pheric_co2/mlo; 
Keeling et al., 2001). Since calculation of the CO2 amplitude should 
only use full-year records, only data for the period January 1959–
December 2018 were used in this study. We also used monthly CO2 
dry air mole fractions data for other sites from the NOAA ESRL 
Carbon Cycle Cooperative Global Air Sampling Network (ftp://aftp.
cmdl.noaa.gov/data/trace_gases /co2/flask /surfa ce/; Dlugokencky 
et al., 2018). In all, 20 sites with data for at least 25 years in northern 
latitudes were used.

2.1.2 | Palmer Drought Severity Index

Palmer Drought Severity Index (PDSI) is a widely used standardized 
index to describe drought severity. Lower values of PDSI indicate 
drier conditions (Dai & Trenberth, 2002). We used the self-calibrat-
ing PDSI provided by the Climatic Research Unit (CRU), University of 
East Anglia (https://cruda ta.uea.ac.uk/cru/data/droug ht/; Osborn, 
Barichivich, Harris, Van Der Schrier, & Jones, 2017; Van Der Schrier, 
Barichivich, Briffa, & Jones, 2013). Monthly PDSI for the period 
1901–2016 was calculated from the CRU TS 3.26 monthly climate 
data which has a spatial resolution of 0.5° × 0.5°.

2.1.3 | Dynamic global vegetation models

Land–atmosphere CO2 exchange (net biome productivity, NBP) was 
provided by 12 dynamic global vegetation models (DGVMs; Table S1). 
All the model simulations were performed following the TRENDY 
inter-comparison protocol for the common period of 1901–2016 
(TRENDYv6) using the same climate drivers obtained from CRU-
NCEP v8 (Harris, Jones, Osborn, & Lister, 2014; Wei et al., 2014), at-
mospheric CO2 values from a combination of ice core records and 
atmospheric observations, and land use change from the HYDE 
dataset (Le Quéré et al., 2018). Simulations were performed for three 

scenarios (S1, S2, and S3) to facilitate isolating the effects of increas-
ing CO2 mole fraction, climate change, and land use change (Sitch 
et al., 2015). In S1, only atmospheric CO2 mole fraction changed with 
time, while climatology without any trend was used as climate forc-
ing and other factors were kept constant. In S2, both atmospheric 
CO2 mole fraction and climate varied over time, while S3 considered 
varying atmospheric CO2 mole fraction, climate, and land use. The 
varying climate accounts for the historical change of radiation, pre-
cipitation, surface air temperature, surface pressure, air humidity, and 
wind speed. The 12 DGVMs use some (depending on the require-
ment of model inputs) of these climate variables to drive the simu-
lation of NBP. Consequently, the effects of CO2, climate, and land 
use could be estimated from S1, S2–S1, and S3–S2, respectively. 
Monthly NBP, gross primary productivity (GPP), and total ecosystem 
respiration (TER) in S1, S2, and S3 and soil moisture in S2 were used 
in this study. Note that we used the soil moisture output from all of 
the models except for CLASS-CTEM due to the missing soil moisture 
output. Climate forcing of the DGVMs was provided by CRU-NCEP 
v8, which is a globally gridded (0.5° × 0.5°) dataset based on meteoro-
logical observations and climate reanalyses (Harris et al., 2014; Wei 
et al., 2014), for the period 1901–2016. This dataset also provided 
values of monthly mean temperature, total rainfall, and downward 
shortwave radiation for the period May–September for the analyses 
of the correlation between climate variables and carbon fluxes (NBP, 
GPP, and TER).

2.1.4 | Fossil fuel CO2 emissions

The gridded monthly fossil fuel CO2 emission data from the Carbon 
Dioxide Information Analysis Center (CDIAC) spanning the period 
between 1959 and 2013 was used in this study, as it is also used 
by the Global Carbon Project for estimating fossil fuel emissions. 
The fossil fuel emissions include emissions from solid, liquid, and gas 
fuels, and the seasonal cycles were estimated using a proportional-
proxy method (Andres, Gregg, Losey, Marland, & Boden, 2011). For 
21 countries (covering about 80% of total global emissions), fossil 
fuel CO2 emission data were obtained from available monthly fos-
sil fuel consumption data. For the other countries, for which such 
monthly data were not available, the seasonal cycle of fossil fuel 
emissions was represented by the available data in view of climatic 
and economical similarities (also geographic proximity for several 
countries). For some years, there were gaps in the data, and to 
fill these, Monte Carlo methods were used to create values from 
years with known monthly fractions (Andres et al., 2011). Since the 
CDIAC data were only available until 2013, they were extrapolated 
to 2016 using global fuel consumption data provided by the Open-
source Data Inventory for Anthropogenic CO2 for 2014–2016 (Oda, 
Maksyutov, & Andres, 2018). To assess the impacts of uncertainties 
associated with estimates of fossil fuel emissions on the SCA trend 
change, we also used two alternative gridded fossil fuel CO2 emis-
sion datasets: Community Emissions Data System (CEDS) (Hoesly 
et al., 2018) and Peking University (PKU) (Wang et al., 2013).

http://scrippsco2.ucsd.edu/data/atmospheric_co2/mlo
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/
https://crudata.uea.ac.uk/cru/data/drought/
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2.1.5 | Ocean–atmosphere CO2 exchange

The ocean–atmospheric CO2 exchange was simulated by the 
PlankTOM5 model combined with the Nucleus for European Modelling 
of the Ocean (NEMO) model (Buitenhuis, Rivkin, Sailley, & Le Quéré, 
2010). PlankTOM5 is a biogeochemical model forced by compounds 
in rivers, sediments, and dust (Aumont, Maier-Reimer, Blain, & 
Monfray, 2003; Cotrim da Cunha, Buitenhuis, Le Quéré, Giraud, & 
Ludwig, 2007); NEMO is a global ocean general circulation model, 
forced by daily wind and precipitation data from the National Center 
for Environmental Prediction (NCEP) reanalysis (Kalnay et al., 1996). 
To assess the impacts of uncertainties associated with ocean fluxes 
on the SCA trend change, we also used six other ocean models from 
the global carbon project (Le Quéré et al., 2018), namely, CCSM-BEC, 
CSIRO, MPIOM, NEMO-PISCES_CNRM, NorESM, and RECOM.

2.1.6 | Global atmospheric transport model

We estimated the atmospheric CO2 mole fraction at MLO by forc-
ing the global atmospheric transport model of the Laboratoire de 
Météorologie Dynamique version 5 (Hourdin et al., 2006; Locatelli 
et al., 2015; LMDZv5) with the inputs of land–atmosphere CO2 
exchange, fossil fuel CO2 emissions, and ocean–atmosphere CO2 
exchange fluxes. The Laboratoire de Météorologie Dynamique 
Zoom (LMDZ) transport model was run on a 1.875° × 3.75° (lati-
tude × longitude) horizontal grid, with 39 layers between the surface 
and the top of the atmosphere. LMDZ was nudged to European Centre 
for Medium-Range Weather Forecasts (ECMWF) reanalyzed winds, 
and was run in an offline mode in which transport mass fluxes were 
read from pre-computed archives from the same model rather than 
computed online. The physical convection scheme used in this study 
is also used in the LMDZ5A model in the CMIP5 experiments. Note 
that the time span of each ECMWF wind product did not cover the 
whole study period of 1959–2016. Therefore, we used two ECMWF 
reanalysis products covering different periods, that is, ERA-20C for 
1959–2010 and ERA-Interim for 1979–2016 (https://www.ecmwf.
int/en/forec asts/datasets). The ERA-20C and ERA-Interim products 
differ in their spatial resolution, model orography, assimilated data, 
assimilation methodology, etc., so that the wind fields in ERA-20C 
and ERA-Interim are also different (Poli et al., 2016). We compared 
the modeled CO2 seasonal amplitudes during 1980–2010 from simu-
lations using ERA-20C and ERA-Interim wind datasets. Figure S2 
shows that the modeled CO2 seasonal amplitudes are very close to 
each other and are not sensitive to the choice of the ECMWF prod-
uct. Therefore, for each transport simulation (see below for details), 
we combined the modeled CO2 seasonal amplitudes using ERA-20C 
for 1959–1979 and those using ERA-Interim for 1980–2016 to form 
a full time series of modeled SCA from 1959 to 2016. The analysis of 
the southern boundary of the Hadley cell shows no drastic change in 
the combination of the two-reanalysis products (Figure S3).

We were careful to ensure that the use of the two different 
wind field products did not lead to a trend change of SCA. First, 

we verified that the SCA values calculated with the different wind 
fields were consistent for the overlapping time period (1980–2010) 
when both wind field datasets were available (Figure S2). Second, 
we found that the change in the trend of SCA was also detected 
when the ERA-20C transport was used (Figure S4). Moreover, when 
we changed the start year for using ERA-Interim to a year in the late 
1980s or early 1990s, such as 1990, we found that the SCA trend 
change still occurred in the 1980s (Figure S4). The matrices of SCA 
trend change (the orange patches in Figure S4) did not move to 1990 
to match the change in the ERA-Interim start year. These results in-
dicate that the contribution of the change in atmospheric circulation 
to the SCA trend change is not induced by use of the two wind field 
products to generate the single SCA time series.

To estimate the robustness of the trend change of SCA induced 
by the atmospheric circulation, we used reanalyzed wind fields, 
from both ECMWF and NCEP (Kalnay et al., 1996; Kistler, Kalnay, 
Collins, Saha, & White, 2001) in the transport simulations. However, 
the Simulation T1 used time-varying fluxes and NCEP R1 wind field 
forcing (T1NCEP) simulated a SCA trend of 0.01 ppm/year (p = .05), 
largely underestimating the observed SCA increase of 0.04 ppm/
year (p < .01) during 1959–1984 (Figure S5a), and much lower than 
the simulated SCA trend from the Simulation T1 (0.03 ppm/year, 
p < .01) forced with the ECMWF wind field (T1). This result illus-
trates the fact that circulation changes in the data-sparse period be-
fore the 1980s are more uncertain than in recent decades (Fujiwara 
et al., 2017) and the SCA trend seems to be highly sensitive to the 
atmospheric circulation changes. The differences in the wind field 
between ECMWF and NCEP R1 before the 1980s may come from 
many sources, such as forecast models, input datasets, and data as-
similation systems for example. Although it is difficult and beyond 
our scope to evaluate the reanalyzed wind fields, we hypothesize 
that differences in the input sea surface temperature (SST) could 
be an important driver for wind field differences between the two 
reanalyses: The HadISST used by ECMWF represents a major im-
provement over its predecessor GISSST, which is used by NCEP R1, 
in forcing tropical atmospheric circulations (Rayner et al., 2003). 
Differences between HadISST and NCEP R1 are mainly found be-
fore the 1980s (Rayner et al., 2003). Since the observed change in 
the SCA trend can only be reproduced by the simulation using the 
wind products from ECMWF (T1), and not by the simulation using 
NCEP R1 (T1NCEP), the analysis of the impact of atmospheric circula-
tion in this study is based only on the ECMWF data. We also simu-
lated CO2 mole fraction to estimate SCA for other 20 sites covering 
a range of northern latitudes.

2.2 | Analysis approach

2.2.1 | Design of transport experiments

To separate the effects of six factors that can affect the CO2 sea-
sonal amplitude trends: changes of atmospheric CO2 (“CO2”), cli-
mate (“CLIM”), land use (“LU”), fossil fuel (“FF”), ocean carbon flux 

https://www.ecmwf.int/en/forecasts/datasets
https://www.ecmwf.int/en/forecasts/datasets
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(“Ocean”), and atmospheric circulation (“Wind”), seven transport 
simulations (T1–T7) were designed, using global transport models 
coupled with DGVMs (Table 1). The first (T1) used time-varying S3 
monthly NBP, fossil fuel CO2 emissions, and ocean–atmosphere CO2 
exchange, coupled with the use of time-varying wind fields in the 
LMDZv5. The T1 simulation thus integrates the effects of all six fac-
tors. The second simulation (T2) is driven by time-varying S1 monthly 
NBP and constant fossil fuel CO2 emissions and ocean–atmosphere 
CO2 exchange, coupled with the LMDZv5 transport model with vari-
able winds, which reflects the combined effects of “CO2” and “Wind.” 
The third simulation (T3) is driven by time-varying S2 monthly NBP, 
while the other factors remain the same as in T2. T4 is driven by 
time-varying S3 monthly NBP, with the other factors kept the same 
as in T3. Simulation T5 is forced by historical varying wind, but uses 
constant CO2 fluxes (land–atmosphere CO2 exchange, fossil fuel 
CO2 emissions, and ocean–atmosphere CO2 exchange) with values 
from 1959. In Simulations T6 and T7, only fossil fuel CO2 emissions 
and ocean–atmosphere CO2 exchange are varying, respectively, 
both coupled with the varying winds in LMDZv5. Therefore, the dif-
ference between two specific simulations indicates the effect of one 
factor. That is, the effects of these factors atmospheric CO2 (“CO2”), 
climate (“CLIM”), land use (“LU”), fossil fuel (“FF”), and ocean carbon 
flux (“Ocean”) can be calculated by T2–T5, T3–T2, T4–T3, T6–T5, and 
T7–T5, respectively. The effect of atmospheric transport (“Wind”) is 
simply obtained from T5.

To investigate the impact of fossil fuel emissions on the change in 
the trend of SCA, we run additional T5 and T6 simulations with three 
gridded fossil fuel CO2 emission maps: CDIAC (used in the reference 
simulation), CEDS, and PKU. In these additional simulations, we only 
used LPX for the land NBP fluxes. For the ocean, we used seven 
models from the global carbon project, namely, CCSM-BEC, CSIRO, 
MPIOM, NEMO-PISCES_CNRM, NEMO-PlankTOM5 (used in the 
reference simulation), NorESM, and RECOM. We ran additional T5 
and T7 simulations using different ocean fluxes.

To investigate the impact of agriculture on the SCA at MLO, we 
conducted additional experiments using a cropland mask for the year 
2014 from MODIS (MCD12C1 v006; https://lpdaac.usgs.gov/produ 
cts/mcd12 c1v00 6/). In each grid box of the transport model, if the 
fraction of cropland is larger than 30% (in most grid boxes, cropland 
is the dominant land cover type), the grid box is treated as “cropland.” 
For the 12 DGVMs, we run additional simulations (TC) where the 
fluxes in the cropland grid boxes cycle with the 1959 monthly fluxes, 
while the fluxes in the other grid boxes are the same as for Simulation 
T1. Therefore, the modeled SCA trend from TC simulation is not con-
tributed by the cropland, that is, agricultural flux. The difference be-
tween the T1 and TC simulations is the DGVMs' simulated impact of 
agriculture. In addition, we also investigate the impact of agriculture, 
based on inversion results, namely, Jena_s57X (Rödenbeck, Zaehle, 
Keeling, & Heimann, 2018a), Jena sEXT (Rödenbeck et al., 2018a), 
Jena s85 (Rödenbeck, Zaehle, Keeling, & Heimann, 2018b), and 
CAMS (https://apps.ecmwf.int/datas ets/data/cams-ghg-inver sions 
/) using the same cropland mask. Jena_s57X and Jena_sEXT cover 
the period from 1957 to the present day, while Jena_s85 and CAMS 

only start in 1985 and 1979, respectively. We run the transport 
model, both with the actual fluxes provided by the inversions (TI), 
and with the fluxes in the cropland grid boxes cycling through the 
1959 monthly fluxes while the fluxes in the other grid boxes are the 
same as in Simulation TI (TIC). Since atmospheric inversions were 
driven by atmospheric CO2 observations, which convoluted all land–
atmosphere CO2 exchange, if agricultural intensification contributes 
to SCA trend, it should be manifested by the contribution of NBP 
over agricultural zone to SCA change, represented by difference be-
tween TI and TIC.

2.2.2 | Estimation of SCA and SCA trend

The SCA derived from the MLO observatory and simulated data 
was calculated using a standard tool, CCGCRV (Thoning, Tans, & 
Komhyr, 1989). The long-term curves and annual oscillation of at-
mospheric CO2 were first obtained by fitting a function to the raw 
data. The function consists of a quadratic polynomial for the long-
term trend, and four harmonics for the annual cycle. Then a 50-day 
cutoff value short-term filter and a 667-day cutoff value long-term 
filter were applied to the residuals between the raw data and the 
fitted function so that any short-term variations or annual cycles 
that are still present in the residuals after fitting the function are 
removed (Thoning et al., 1989). The detrended seasonal cycle is ob-
tained by adding the filtered residuals using the short-term cutoff 
value to the annual cycle. The peak-to-trough amplitude was calcu-
lated as the difference between the maximum and the minimum CO2 
mole fraction of the CO2 seasonal cycle in each calendar year. In 
general, the maximum and minimum of the CO2 seasonal cycle at 
MLO appeared in May and at the end of September or early October, 
respectively, which is consistent with the results of previous stud-
ies (Buermann et al., 2007; Graven et al., 2013). As we focus on the 
change of SCA, the anomalies of SCA rather than actual values were 
used in the analysis.

To ensure that the observed slow-down in the increasing trend 
of SCA was not an artifact introduced in some way by the specific 
tool used to extract the seasonal trend, we repeated the SCA time 
series extraction process using two other algorithms: Seasonal trend 
decomposition using LOESS (STL, where LOESS is an abbreviation 
for locally weighted scatterplot smoothing, available at https://stat.
ethz.ch/R-manua l/R-devel /libra ry/stats /html/stl.html) and HPspline 
(Pickers & Manning, 2015). STL uses a moving average algorithm to 
fit the seasonal cycle, whereas the HPspline algorithm involves fit-
ting data to a harmonic function, a polynomial equation, and a stiff 
cubic spline. The full details of the three algorithms, and of their 
different performances in extracting long-term trends and seasonal 
cycles, are discussed in a previous study (Pickers & Manning, 2015). 
The use of STL or HPspline to extract the SCA time series did not 
lead to any change in the observed deceleration of the SCA at MLO 
(Figure S6).

We tested the impacts of different breakpoints and anomalous 
years on the estimation of SCA trend. Different breakpoints from 

https://lpdaac.usgs.gov/products/mcd12c1v006/
https://lpdaac.usgs.gov/products/mcd12c1v006/
https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/
https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html
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1983 to 1986 and exclusion of anomalous years were considered. 
Anomalous years are identified as El Niño years (i.e., 1983–1984, 
1987–1988, 1997–1998, and 2015–2016), La Niña years (i.e., 1970–
1971, 1974–1975, and 2010–2011), and years when there are large 
volcanic eruptions (i.e., 1963, 1980, 1982, 1991, and 2011). In this 
sensitivity test, we remove SCA of all possible combinations of 
anomalous years (from any single year to all the years) in trend der-
ivation (Figure 2). The frequency distribution of trends is obtained 
from 5,000 bootstrap analyses. In addition, we fit linear trends to 
the SCA at MLO, using at least a 20-year time span, with different 
combinations of start years (ranging from 1959 through 1997), and 
end years (ranging from 1978 through 2016; Figure 3).

2.2.3 | CO2 source region (footprint) analysis

To identify the CO2 flux regions that affect the change of SCA 
at MLO, we calculated the sensitivity of the monthly mean CO2 
mole fraction in September at MLO to land–atmosphere/ocean–
atmosphere CO2 exchange between May and September (footprint) 

using the adjoint code of LMDZv5 (Chevallier et al., 2005). Because 
the seasonal amplitude is computed as the difference between the 
monthly mean CO2 mole fraction in September and that in May, 
which is a result of the cumulative sink of the terrestrial and oceanic 
biosphere during this period, this footprint represents the amount by 
which the monthly mean CO2 mole fraction will drop from the May 
CO2 mole fraction, when the land–atmospheric/ocean–atmospheric 
CO2 exchange decreases by 1 kg C m−2 hr−1 (here decrease means a 
larger sink in the biosphere) for each day from May to September. 
The adjoint code analytically computes the partial derivatives of all 
processes within LMDZv5 following the chain rule and thus allows 
us to obtain partial derivatives of monthly mean CO2 mole fraction 
with respect to the land–atmosphere/ocean–atmosphere CO2 ex-
change for all grid points. The footprints in units of mole fraction 
(ppm) per unit flux (kg C m−2 hr−1) were computed every year for 
all global grid-point fluxes of the transport model at the daily scale 
since May 1st. We then summed the footprints for all the days from 
May 1st to September 30th in each year between 1959 and 2016 to 
get a total footprint of the flux regions affecting the CO2 drawdown, 
and hence the SCA, at MLO from May to September. The main CO2 

F I G U R E  2   Distribution of observed 
seasonal CO2 amplitude (SCA) trends at 
Mauna Loa before and after the 1980s 
and of relative change of SCA trend 
between two periods. In panel (a), the 
histograms indicate the results of SCA 
trend merging distributions with different 
breakpoints (1983–1986). In panel (b), 
relative change of SCA trend is the ratio of 
calculated difference between SCA trend 
after the 1980s and SCA trend before the 
1980s to SCA trend before the 1980s. 
Anomalous years are randomly removed 
in the trend estimation
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source regions estimated using LMDZv5 are similar to those found 
using TM2 (Kaminski, Giering, & Heimann, 1996).

To examine whether the identified terrestrial CO2 source re-
gions are indeed the regions mostly responsible for the trend change 
of SCA at MLO, we perform a separate transport experiment: 
Simulation T8. In T8, we keep the NBP of lightly contributing re-
gions (those with mean surface flux sensitivity less than 150 ppm 
per kg C m−2 hr−1) constant at their 1959 values throughout the 
1960–2016 simulation period, while allowing the NBP of the more 
heavily contributing regions (with mean surface flux sensitivity 
larger than 150 ppm per kg C m−2 hr−1) to vary according to the NBP 
simulated by the 12 DGVMs. By comparing T8 and T2, we found 

that the identified source regions almost fully explain the SCA trend 
change at MLO between 1959–1984 and 1985–2016. On the other 
hand, in some regions, the reversal of trend of NBP driven by cli-
mate change (NBPclim) can also contribute the trend change of SCA 
at MLO (Figure 4f). To better understand the contribution of regions 
where the climate change induced reversal of the NBP trend to the 
trend change of SCA at MLO, we performed another transport ex-
periment: T9. In this case, NBP only varied over pixels with NBPclim 
trend reversal (NBP trend decreases under the impact of climate 
change) between 1959–1984 and 1985–2016, with the NBP of other 
pixels kept constant at their 1959 values throughout the 1960–2016 
simulation (Figure 4f). The contribution of NBPclim trend reversal 

F I G U R E  3   Matrices of seasonal CO2 
amplitude (SCA) trend at Mauna Loa 
(MLO). The matrices of the SCA trend 
at MLO during periods with different 
combinations of start and end year are 
shown in panel (a; observations) and (b; 
model ensemble with Bayesian model 
averaging [BMA]). Panels (c)–(h) show the 
trend matrices based on BMA at MLO 
under the effects of six different factors. 
In each panel, the magnitudes of the 
trends are shown in the upper left part 
and the corresponding p values are shown 
in the lower right part. The individual 
effects of change in climate (“CLIM”; c), 
atmospheric CO2 (“CO2”; d), land use 
(“LU”; e), fossil fuel (“FF”; f), ocean-air 
carbon flux (“Ocean”; g), and atmospheric 
transport (“Wind”; h) on trends of 
SCA were estimated from transport 
simulations by an atmospheric transport 
model fed with land/ocean carbon fluxes
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regions to the trend change of SCA at MLO can be derived by com-
paring Simulation T9 and Simulation T2. To quantify potential con-
tribution from the NBPclim trend reversal regions of South America, 
we performed another transport experiment T9S.Am to estimate the 
contribution of NBP trend in NBPclim trend reversal regions of South 
America to the SCA trend change at MLO. In this transport experi-
ment, similar with Simulation T9, we allowed NBP of south America 
where NBPclim trend has decreased since the 1980s to vary, and kept 
NBP of other land area constant at their 1959 values throughout 
1960–2016 simulation period. By comparing T9S.Am and T2, we ob-
tained the contribution from NBPclim trend reversal regions of South 
America to SCA trend change at MLO.

To evaluate whether the oceanic contribution to seasonal CO2 
mole fraction at MLO has changed, due to changes in the atmospheric 
circulation during the period 1959–2016, we calculated the area 

weighted sum of sensitivity of CO2 at MLO to the ocean flux (ocean 
footprint) and that to the land flux (land footprint), respectively. The 
ratio of the ocean footprint to the land footprint is calculated for the 
period 1959–2016 for the following regions: the entire globe, the 
footprint regions where the mean surface flux sensitivity was larger 
than 150 ppm per kg C m−2 hr−1, and for each latitudinal band.

2.2.4 | Model weights in the averaging

The model average was derived using two approaches: arithmetic 
model averaging (AMA) and Bayesian model averaging (BMA). In AMA, 
each model was given equal weight, without considering the ability 
of each model to accurately reproduce the observations. In BMA,  
in contrast, the weight assigned to each model (listed in Table S1)  

F I G U R E  4   Spatial pattern of the trend in net biome productivity (NBP) of the carbon uptake period (May–September) during 1959–1984 
and 1985–2016. Panels (a) and (b) show the mean footprint for Mauna Loa (MLO) during the two periods and panel (c) shows its change. 
Modeled trends in NBP under the effect of climate change (“CLIM”; d, e), rising CO2 mole fraction (“CO2”; g, h) and land use change (“LU”; j, k) 
were estimated by the multi-model averaged results using Bayesian model averaging (BMA) from factorial simulations by 12 dynamic global 
vegetation models. Changes in the trends of NBP between the two time periods under the effect of CLIM, CO2, and LU are shown in panels 
(f), (i), and (l), respectively. In panels (d)–(l), white scatters indicate that the signs of the NBP trend derived from less than eight models are 
consistent with the BMA trend. For better clarity, the sign was plotted on a 1° grid with each cell containing four 0.5° pixels. We compared 
the NBP trend between 1959–1984 and 1985–2016 because a piecewise regression (Toms & Lesperance, 2003; Wang et al., 2011) of SCA 
at MLO shows that the trend change occurs in 1984. The shaded area indicates terrestrial regions where the mean surface flux sensitivity is 
less than 150 ppm per kg C m−2 hr−1, and ocean. The gray areas over land in panels (d)–(l) indicate the regions where Normalized Difference 
Vegetation Index is lower than 0.1 [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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was determined by the ability of the model to reproduce the obser-
vations, with the sum of the weights being equal to one. In our case, 
models (Simulation T1), having higher correlations with the observa-
tions, were assigned with higher weights in the BMA scheme. The 
better the agreement of the amplitude anomalies of a model with the 
observed data, the greater the weight assigned. The optimal proba-
bility density function was calculated by Monte Carlo Markov chains 
(Vrugt, Diks, & Clark, 2008). Three models (LPX, ISAM, and CABLE) 
had high weights up to 90% (Table S1). To investigate the robustness 
of BMA, weights of simulated SCA using BMA were derived from 
other independent observations: the interannual variability of CO2 
amplitude and the mean CO2 seasonal cycle. Simulated SCA trend 
using BMA and the correlation between the observed SCA and sim-
ulated SCA were estimated. Uncertainties of the BMA-based SCA 
trends were estimated by 5,000 bootstrap estimates. First, a boot-
strap sample set of size 1,000 was composed of SCA trends from 12 
individual DGVMs. The number of samples for each model is based 
on its BMA weight. For example, the weight of CABLE is 0.12 (Table 
S1), so 120 samples were taken with the SCA trend estimated by the 
CABLE model. Then, we resample this bootstrap sample set 5,000 
times and calculate the standard deviation of those bootstrap esti-
mates. Note that when the trend of one model during 1959–1984 
was sampled, the trend of the same model during 1985–2016 was 
sampled simultaneously.

3  | RESULTS

3.1 | Observed and simulated SCA trend at MLO

SCA at MLO increased by 1.2 ppm over the past six decades (Figure 1), 
but the increasing trend is not homogeneous. The increasing trend 
was 0.04 ± 0.01 ppm/year (p < .01) from 1959 to the mid-1980s, but 
reduced by 50% to 0.02 ± 0.01 ppm/year (p > .05) from the mid-1980s 
to 2018 (Figure 1). To assess the robustness of the slow-down in 
SCA trend at MLO since the 1980s, we test the histograms of SCA 
trend before and after the 1980s considering different breakpoints 
(Figure 2; Figure S1). Although trend estimates might be affected by 
few extreme values, for example, the historically high values of SCA 
in 2015 and 2016 (Figure 1; Bastos et al., 2018), whether including 
these two extreme years does not change the conclusion that SCA 
trend at MLO slows down (Figure 2; Figure S1). This also holds true 
when SCA of the recent 2 years (2017 and 2018), whose SCA drops 
down below that of 2014, were excluded (Figures 1 and 2). To sys-
tematically estimate the impact of extreme values on trend estimates, 
we perform bootstrap analyses by randomly excluding anomalous 
years in deriving the trend. The SCA trend significantly slows down 
by 0.02 ± 0.01 ppm/year (p < .01) after the mid-1980s (Figure 2). We 
also fit linear curves to the SCA at MLO, using windows with at least 
20 years and as shown in Figure 3a, the SCA trend during the first 
three decades is significantly positive (>0.03 ppm/year, p < .01), but, 
after the 1980s, the trends become insignificantly different from zero, 
or even negative. In addition, three different methods to extract SCA 

from observed CO2 mole fraction at MLO (frequency-based time se-
ries decomposition [CCGCRV], seasonal trend decomposition using 
locally weighted scatterplot smoothing [STL], and time series decom-
position combining harmonic functions, polynomial and cubic spline 
[HPspline]) show similar slow-down of SCA trend at MLO since the 
mid-1980s (Figure S6). We conclude that the slow-down in the SCA 
trend at MLO is robust to potential artifacts induced by breakpoints, 
anomalous events, and methods to extract SCA.

To understand the mechanisms behind the deceleration of the 
SCA at MLO, we compiled gridded estimates of ocean CO2 fluxes, 
terrestrial CO2 flux (or NBP), and fossil fuel emissions, and computed 
the pertaining CO2 mole fraction using the LMDZv5 tracer transport 
model (Chevallier et al., 2005). Uncertainties in the spatiotemporal 
patterns of NBP, which control SCA, are addressed using monthly 
NBP from the TRENDYv6 DGVMs (Table S1; Le Quéré et al., 2018). 
This 12-model NBP ensemble contains factorial experiments exe-
cuted by each DGVM. Seven transport model simulations (T1–T7) 
were performed to isolate the contributions to SCA trends of the 
driving factors: terrestrial NBP (changes in atmospheric CO2, cli-
mate, and land use), fossil fuel emissions, ocean CO2 fluxes, and at-
mospheric circulation (Table 1; Table S2).

First, we examined whether SCA simulated using NBP derived 
from all factors (Simulation T1) can reproduce the observed SCA 
trend. To attribute the observed trend change, we used model en-
semble output calculated using BMA, which has been proved to 
result in more robust prediction than the arithmetic mean of the 
model ensemble (AMA). Unlike simple model averaging, our BMA 
ensemble gives more weight to those models better reproducing 
the observed variations in SCA (Figure 1; Figure S7). The BMA 
model ensemble of the 12 models can reproduce the deceleration 
of SCA since the 1980s (Figure 3b), and is also able to reproduce 
the latitudinal gradients of the observed SCA trend (Figure S8). 
The model weights in the BMA ensemble can also be derived 
based on the model's performance in reproducing either the de-
trended interannual variations of SCA or the mean seasonal cycle 
of atmospheric CO2 at MLO. In these two alternative methods of 
weight-deriving, using different characters of SCA, the alternative 
BMA ensembles perform similarly to the original BMA ensemble 
(Figure S9), illustrating the robustness of using BMA to hindcast 
and attribute the SCA change. Therefore, the BMA of the model 
ensemble was used to explore the contribution of each potential 
driving factor to the deceleration of SCA based on factorial trans-
port simulations (Table 1; Table S2).

3.2 | Drivers of SCA slowing-down

3.2.1 | Climate change

The impact of the response of NBP to climate change on SCA was de-
rived from the difference between Simulation T3 and Simulation T2 
(Table 1; Table S2). The BMA of the DGVMs shows that the trend in 
NBP response to climate change drove SCA to increase significantly 
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(>0.01 ppm/year, p < .05) from the 1960s to the 1980s, and that its 
effect then weakened or reversed (~0 ppm/year, p > .10; Figure 3c). 
This decrease in SCA trend driven by climate change is consistent 
with the observations (Figure 3). When examining the performance 
of individual DGVMs, we found that the three models that are most 
successful in reproducing the variations of SCA (R2 > .31), that is, the 
ones with larger weights in the BMA ensemble (Table S1), consist-
ently show a stall or decrease in climate-driven SCA since the 1980s 
(Figure S10).

To diagnose regions, and possible mechanisms, responsible for 
this climate-induced deceleration of SCA, we examine the change 
of NBP driven by climate change (NBPclim), over the land areas 
which play the most important role in the SCA at MLO: East Asia 
and western North America (Figure 4a,b). We found a significant 
reversal of the NBPclim trend over western North America and 
Eastern China (Figure 4d,e; Figure S11b). By performing another 
transport experiment (Simulation T9; Table 1), we found that 
the NBPclim trend reversal over these regions, which is partic-
ularly obvious in East Asia and western North America, can al-
most fully explain the climate change-induced slow-down in the 
SCA trend at MLO since the 1980s (Figure S11). Furthermore, 

we found that the reversal of the NBPclim trend over western 
North America is consistent with the aggravated drought stress 
on NBP there during the past two decades (Méndez & Magaña, 
2010; Schwalm et al., 2012). Indeed, trends in the PDSI (low val-
ues indicate drier conditions; Osborn et al., 2017; Van Der Schrier 
et al., 2013) and simulated soil moisture changed from increasing 
to decreasing over the western USA after the 1980s (Figure 5). 
Over most of Eastern and Northeast China, changes in PDSI and 
simulated soil moisture also consistently show intensified drought 
during the last three decades (Figure 5), in parallel with a faster 
warming trend and a stall or decrease in precipitation since the 
1980s (Figure S12). Despite relatively low surface flux sensitivity 
in South America, the significant reversal of NBP trend in South 
America may also contribute the deceleration of SCA at MLO 
(Figure 4). Using a sensitivity simulation (T9S.Am), we confirm the 
sizeable contribution (−0.01 ± 0.01 ppm/year) of regions where 
NBPclim trend reversed since the 1980s in South America to the 
decrease in SCA trend at MLO, which also coincides with the in-
tensified drought stress since the 1980s (Figure 5). As the activity 
of vegetation during the growing season can be largely influenced 
by moisture availability (Figure S13), such increasing drought 

F I G U R E  5   Trend of Palmer Drought Severity Index (PDSI) and simulated soil moisture in the carbon uptake period (May–September) 
during 1959–1984 and 1985–2016. The soil moisture used here is the average of TRENDY models using BMA. The time span in panel (a) 
and (b) is from 1959 to 1984, and that in panel (c) and (d) is from 1985 to 2016. Change in the trend of PDSI and soil moisture between 
1985–2016 and 1959–1984 is shown in panels (e) and (f), respectively. Shaded area indicates regions where mean surface flux sensitivity is 
less than 150 ppm per kg C m−2 hr−1 and ocean. The gray areas over land indicate the regions where Normalized Difference Vegetation Index 
is lower than 0.1. Lower PDSI indicates drier condition
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stress could have contributed to the decrease in photosynthetic 
uptake (GPP) since the 1980s (Figure S14), and thus of NBP over 
the footprint region of MLO (Figure 4f).

3.2.2 | Change in atmospheric circulations

In addition to NBP response to climate change, we find that changes 
in atmospheric circulation could also have contributed to the trend 
change of SCA at MLO by shifting the origin of the CO2. This mech-
anism is investigated using LMDZv5 transport model simulations 
with an inter-annual varying wind field and constant CO2 flux from 
1959 (Simulation T5; Table 1). From the 1960s to the 1980s, the 
changing atmospheric circulation contributed to the trends in SCA 
of between 0.01 and 0.02 ppm/year (Figure 3h). The change was 
due to a northward movement of the regions influencing MLO in 
the early 1980s (Figure S15). However, after the 1980s, the change 
in atmospheric circulation led to a significant decrease in the SCA at 
MLO (~−0.01 ppm/year; Figure 3h; Figure S15a). During 1959–1984, 
atmospheric circulation change contributed by 0.01 ppm/year to 
the SCA trend, while contributed by −0.01 ppm/year during 1985–
2016. Therefore, the impact of change in atmospheric circulation 
acts as strong as that of climate change on trend change of SCA at 
MLO. The negative contribution of the decadal variations in atmos-
pheric circulation is robust to patterns of NBP simulated by DGVMs, 
since eight of the 12 models, accounting for more than 95% of the 
weight in the BMA model ensemble, consistently suggest a circula-
tion-induced reduction in SCA (Figure S16). Two processes are po-
tentially responsible for the circulation-induced change in SCA. The 
first is the changing relative contribution of oceanic and terrestrial 
carbon fluxes to the CO2 mole fraction at MLO. We found that the 
contribution of land carbon fluxes to the CO2 mole fraction at MLO, 
particularly that between 30°N and 50°N, increased before the 
1980s (Figure S17), which would contribute to the increasing SCA 
at MLO, since a larger contribution from northern temperate ter-
restrial carbon fluxes induces a larger seasonal amplitude (Lintner, 
Buermann, Koven, & Fung, 2006; Piao et al., 2020). The second 
process is the north-south movement of the CO2 source regions 
of the MLO. To explore this process, we plotted the year-to-year 
variations in the wind field (Figure S15a). The results show a notice-
able southward movement of the CO2 source region (footprint) of 
MLO since the 1980s (Figure 4c; Figure S15a), probably caused by 
the expansion of the Hadley cell (Figure S3), making it less affected 
by higher northern latitudes. Since lower latitude lands have less 
seasonality in NBP (Figure S15b), the southward movement in the 
source regions, bringing more air mass from lower latitudes, tends 
to decrease the SCA at MLO, an effect which has been neglected by 
previous studies. In addition to the wind fields analyzed by ECMWF, 
we also explored the contribution of circulation changes using the 
wind fields from the NCEP R1 reanalysis (Kalnay et al., 1996; Kistler 
et al., 2001). Despite uncertainties in the wind field before the 
1980s, the circulation-induced trend of SCA since the mid-1980s 
is similar with different wind fields (Figure S5), partly supporting 

the wind field is indeed a driver to deceleration of SCA since the 
mid-1980s.

3.2.3 | CO2 fertilization effects

CO2 fertilization in the increase of SCA can be used to project fu-
ture photosynthesis (Wenzel et al., 2016). Increasing CO2 mole frac-
tion in the atmosphere was found to be a dominant driver for the 
increase in SCA at northern hemisphere sites south of 40°N (Forkel 
et al., 2016). We also found a contribution of increasing CO2 mole 
fraction to the SCA trend at MLO. The contribution of increasing 
CO2 mole fraction did not lead to a deceleration of the SCA, but 
instead slightly increased the positive trend of SCA over the past 
three decades (trend increased by 0.01 ppm/year during 1985–2016 
compared to that during 1959–1984; Figure 3d). The accelerated in-
crease in CO2 mole fraction enhanced the GPP but less affected the 
seasonality of respiration (Keenan et al., 2016), resulting in more cu-
mulative NBP during the net carbon uptake period and the increase 
in SCA trend since the 1980s.

3.2.4 | Land use change, ocean carbon fluxes, and 
fossil fuel emission

Based on the BMA ensemble of the DGVMs, we found that land 
use change makes no significant contribution to decadal variations 
of SCA at MLO (Figure 3e), with its magnitude of contribution is 
less than 0.001 ppm/year. Previous studies (Gray et al., 2014; Zeng 
et al., 2014) indicate that agricultural intensification, as a component 
of land use change, was a key driver of the SCA increase at MLO. 
Due to under-representation of cropland managements in current 
DGVMs, the DGVM simulated agricultural contribution to SCA 
trend at MLO is largely uncertain (Zhao et al., 2016). Here, we fur-
ther performed two additional transport experiments (TI and TIC) 
with NBP from long-term atmospheric inversion models to quantify 
the contribution of agriculture zones to SCA trend change at MLO 
(Table 1; Table S2). The results indicate that the contribution of ag-
riculture zones to SCA trend at MLO has ranged between 0.006 
and 0.008 ppm/year during 1959–1984 (16%–22% of the observed 
SCA trend), which did not change significantly during 1985–2014 
(between 0.004 and 0.007 ppm/year, 25%–44% of observed SCA 
trend; Figure 6). Thus, with the independent evidence from atmos-
pheric inversions, we confirm the role of agricultural intensification 
in the increase in SCA, but it has little contribution (<0.002 ppm/
year) to the deceleration of SCA at MLO (Figure 6).

The contributions from fossil fuel emissions and ocean carbon 
fluxes to SCA change at MLO are also not significant (Figure 3f,g; 
Figures S18 and S19). The magnitude of the contributions from fossil 
fuel emissions to the SCA trend before 1984 is less than 0.001 ppm/
year. The contribution from the ocean flux is less than 0.002 ppm/
year. After the mid-1980s, land use change and ocean fluxes still 
contributed little to the SCA trend at MLO. Fossil fuel emissions 



4474  |     WANG et Al.

could lead to a slightly larger increasing trend of SCA (0.004 ppm/
year) after the mid-1980s than before.

4  | DISCUSSION

The increase in SCA at MLO and Point Barrow (BRW) over the past 
six decades is a key fingerprint of the current perturbation of land 
carbon fluxes (Graven et al., 2013); however, the increase in SCA 
at MLO is not persistent. The differences in trends of SCA at low-
latitude MLO (19.5°N) and high-latitude BRW (71.3°N) over the re-
cent two to three decades imply that there are emerging regional 
differences in ecosystem responses to climate change. Climate 
change has negative impact on NBP of the temperate northern 
hemisphere due to intensified drought stress, which induced by an 
increased vapor pressure deficit associated with the faster warm-
ing trend and a stall or decrease in water supply from precipitation. 
Either the lack of drought stress (Nemani et al., 2003) or the lack of 
drought stress intensification in the higher northern latitudes can 
help to explain why the slow-down of the SCA trend took place 
in MLO but not in BRW, where the trend of seasonal amplitude 

was mainly contributed by the boreal and Arctic regions (Graven 
et al., 2013; Piao et al., 2017). Our findings of a stall in photo-
synthetic carbon uptake in East Asia and western North America 
suggest that climate change could have profoundly altered how ter-
restrial ecosystems over the temperate northern hemisphere re-
spond to external forcing. We might expect a stall in the future for 
the trends of photosynthesis and SCA at higher northern latitudes 
(e.g. BRW), if these northern ecosystems become more drought-
stressed. Indeed, a weakening positive, or even emerging negative, 
impact of temperature on SCA has been observed at BRW over 
the last three decades, and this change in impact of temperature 
is probably explained by the co-occurring drought with heatwave 
(Peñuelas et al., 2017).

Since increasing SCA at MLO was primarily before the 1980s, 
while contribution of agricultural intensification to SCA increase 
at MLO was estimated to mainly occur after the mid-1980s (Zeng 
et al., 2014), it put into question whether agricultural intensifica-
tion was indeed the dominant driver of SCA enhancement at MLO 
over past six decades. Our transport experiments based on NBP 
estimated from both DGVMs and atmospheric inversions do not 
support agricultural zones dominating SCA increment (Figure 6; 

F I G U R E  6   Contribution of agricultural intensification to seasonal CO2 amplitude (SCA) anomaly (b) and trend (c). Spatial distribution of 
cropland (yellow) is shown in panel (a). The contribution of cropland to SCA anomaly (red line) was estimated with two long-term inversion 
models, Jena_s57X and Jena_sEXT from the difference between simulation TI and TIC (panel b). The uncertainty of SCA anomaly from 
inversion models was estimated as the range of two models (b). Observed SCA trend (black bars) and SCA trend contributed by cropland from 
inversion models (red and orange bars) at Mauna Loa for two periods, 1959–1984 and 1985–2014 are shown in panel (c). Change of SCA trend 
indicates trend in 1985–2014 minus that in 1959–1984. The uncertainty of the SCA trend was estimated as the standard error of the linear 
regression coefficient, and the uncertainty of change in SCA trend was estimated using bootstrap analysis. The white areas over land in panel 
(a) indicate the regions where Normalized Difference Vegetation Index is lower than 0.1
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Figure S20), though the estimates are partly limited by the prior land 
flux used in atmospheric inversions and the incomplete representa-
tion of agriculture practices in DGVMs. We also indicate that CO2 
fertilization may not always be the most prominent factor driving 
the SCA trend. Climate change-induced intensified drought stress 
in temperate northern ecosystems explains a large part of decelera-
tion of SCA at MLO since the 1980s. For high-latitude sites, climate 
change has exerted strong influence on the change of SCA through 
many other effects, like the structure change of biosphere (Forkel 
et al., 2016; Fung, 2013), reduced residence time (Jeong et al., 2018), 
seasonal compensation (Liu et al., 2020), and increased winter respi-
ration (Commane et al., 2017).

Analysis of the SCA trend and its change over the past six de-
cades is one of a few ways to detect changes in the global carbon 
cycle from long-term CO2 records (Ballantyne, Alden, Miller, Tans, 
& White, 2012; Wang et al., 2014). These diagnostics from the mea-
surements, and the models' skill in reproducing them, can improve 
our understanding of the ecosystem response to climate change, 
and provide useful benchmarks for DGVMs, as long as the impact 
of atmospheric transport can be accurately considered. Additional 
long-term records at different latitudes from denser measurement 
networks over different continents could improve our capability 
to detect potential changes in the state of the carbon cycle (e.g., 
Peñuelas et al., 2017), reduce uncertainties in the regions and pro-
cesses that contribute to the change, and enhance the signal-to-
noise ratio for detecting decadal variations of the carbon cycle. 
They would allow us to more accurately attribute and project the 
evolution of the carbon cycle in a warmer world with higher at-
mospheric CO2 mole fraction, higher surface temperatures, and 
increasing frequency and intensity of droughts (Cai et al., 2014; 
IPCC, 2013).

In summary, with an ensemble of DGVMs coupled with an atmo-
spheric transport model, we perform transport experiments to hind-
cast the change of SCA and isolate the effects of major factors and 
regions driving this change. We found the deceleration of SCA since 
the mid-1980s largely resulted from the response of land carbon cycle 
to climate change and from changes in atmospheric circulation. Climate 
change increased SCA at MLO before the 1980s but decreased it after-
wards, which is probably associated with the intensified drought stress 
since the 1980s over the temperate Northern Hemisphere. The critical 
role of change in atmospheric circulations highlights the long-dismissed 
necessity to adequately account for changing circulation patterns in 
understanding carbon cycle change from atmospheric observations 
and benchmarking of the DGVMs, whose accuracy in hindcasting car-
bon cycle change remains to be further improved.
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