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Abstract
South	 and	Southeast	Asia	 (SSEA)	has	been	a	hotspot	 for	 land	use	 and	 land	 cover	
change	(LULCC)	in	the	past	few	decades.	The	identification	and	quantification	of	the	
drivers	of	LULCC	are	crucial	for	improving	our	understanding	of	LULCC	trends.	So	far,	
the	biophysical	and	socioeconomic	drivers	of	forest	change	have	not	been	quantified	
at	the	regional	scale,	particularly	for	SSEA.	In	this	study,	we	quantify	the	biophysical	
and	socioeconomic	drivers	of	forest	change	on	a	country-by-country	basis	in	SSEA	
using	an	integrated	quantitative	methodology,	which	systematically	accounts	for	pre-
viously	published	driver	information	and	regional	datasets.	We	synthesize	more	than	
200	publications	to	identify	the	drivers	of	the	forest	change	at	different	spatial	scales	
in	SSEA.	Subsequently,	we	collect	spatially	explicit	proxy	data	to	represent	the	identi-
fied	drivers.	We	quantify	the	dynamics	of	forest	and	agricultural	land	from	1992	to	
2015	 using	 the	 Climate	 Change	 Initiative	 (CCI)	 land	 cover	 data	 developed	 by	 the	
European	Space	Agency	(ESA).	A	geographically	weighted	regression	method	is	em-
ployed	to	quantify	the	spatially	heterogeneous	drivers	of	forest	change.	Our	results	
show	that	socioeconomic	drivers	are	more	important	than	biophysical	drivers	for	the	
conversion	of	forest	to	agricultural	land	in	South	Asia	and	maritime	Southeast	Asia.	
In	contrast,	biophysical	drivers	are	more	important	than	socioeconomic	drivers	for	
the	conversion	of	agricultural	land	to	forest	in	maritime	Southeast	Asia	and	less	im-
portant	 in	 South	Asia.	Both	biophysical	 and	 socioeconomic	drivers	 contribute	 ap-
proximately	 equally	 to	 both	 changes	 in	 the	 mainland	 Southeast	 Asia	 region.	 By	
quantifying	the	dynamics	of	forest	and	agricultural	land	and	the	spatially	explicit	driv-
ers	of	their	changes	in	SSEA,	this	study	provides	a	solid	foundation	for	LULCC	mod-
eling and projection.
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1  | INTRODUC TION

Terrestrial	ecosystems	have	been	strongly	impacted	by	human	ac-
tivities	through	changes	in	land	use	and	land	cover	(LULCC).	Since	

preindustrial	time	(ca.	1750)	more	than	50%	of	the	global	land	sur-
face	has	changed	(Goldewijk,	Beusen,	Doelman,	&	Stehfest,	2017).	
LULCC	 impacts	 the	 water	 cycle,	 the	 carbon	 cycle,	 climate,	 and	
greenhouse	gas	(GHG)	emissions	(Foley,	Defries,	&	Asner,	2005).	
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For	example,	in	2008–2017,	annual	GHG	emissions	from	land-use	
change	was	 1.5	±	0.7	GtC/yr,	 accounting	 for	 ~13%	of	 the	 global	
anthropogenic	GHG	emissions	(Le	Quere	et	al.,	2018).	Many	stud-
ies	have	provided	spatially	explicit	LULCC	datasets	for	quantifying	
the	impact	of	LULCCs	on	different	fluxes	(Goldewijk	et	al.,	2017;	
Houghton	 et	 al.,	 2012;	Meiyappan	 &	 Jain,	 2012;	 Ramankutty	 &	
Foley,	1999).

In	the	future,	social	development	and	economic	opportunities	
could	drive	people	to	further	change	the	land	(Lambin	et	al.,	2001).	
Changes	in	biophysical	conditions,	such	as	climate,	soil,	and	water	
conditions,	may	also	result	 in	 land	use	change	(Mustard,	Defries,	
Fisher,	&	Moran,	2012).	Large	uncertainties	exist	in	future	LULCC	
projections	 (Prestele	et	 al.,	 2016),	 partly	due	 to	 a	 limited	under-
standing	of	the	spatial	variation	in	socioeconomic	and	biophysical	
drivers.	Quantifying	the	socioeconomic	and	biophysical	drivers	of	
LULCC	could	improve	the	projections	of	future	land	use	patterns	
(Feddema	et	al.,	2005;	Meiyappan,	Dalton,	O'Neill,	&	Jain,	2014).	
Some	 studies	 have	 quantified	 LULCC	 drivers	 at	 different	 spa-
tial	 scales.	For	example,	Mon,	Mizoue,	Htun,	Kajisa,	and	Yoshida	
(2012)	used	a	logistic	regression	model	to	conclude	that	the	defor-
estation	was	negatively	correlated	with	elevation	and	distance	to	
the	nearest	town	in	three	reserved	forests	in	Myanmar.	However,	
the	 results	 of	 these	 studies	 are	 not	 evaluated	 against	 published	
case	studies.	While	there	are	some	studies	synthesizing	published	
case	studies	in	an	effort	to	generalize	LULCC	drivers	(van	Vliet	et	
al.,	2016),	these	studies	are	typically	qualitative	rather	than	quan-
titative.	 Very	 few	 studies	 combine	 quantitative	 LULCC	 drivers	
with	information	from	case	studies.

South	and	Southeast	Asia	(SSEA)	has	one	of	the	largest	areas	of	
tropical	forests	(FAO,	2015)	and	is	the	most	populous	region	of	the	
world	(Cervarich	et	al.,	2016).	Although	both	deforestation	and	af-
forestation	(or	reforestation)	processes	are	observed,	the	net	for-
est	area	decreased	from	319	million	ha	in	1990	to	292	million	ha	
in	2015	(FAO,	2015).	The	drivers	of	these	changes	are	diverse,	in-
cluding	socioeconomic	factors,	such	as	the	increasing	population	
and	economic	growth	(Lopez	&	Galinato,	2005;	Shehzad,	Qamer,	
Murthy,	Abbas,	&	Bhatta,	2014),	and	biophysical	factors,	such	as	
climate	 change	 (Islam,	Miah,	&	 Inoue,	 2016).	However,	 a	 quanti-
tative	spatially	explicit	analysis	of	 the	 relationships	between	 the	
biophysical	and	socioeconomic	drivers	and	LULCC	at	the	regional	
scale	in	SSEA	is	still	lacking.

Therefore,	the	objective	of	this	study	is	to	quantify	the	spatially	
explicit	 relationships	 between	 the	 biophysical	 and	 socioeconomic	
drivers	and	LULCC	at	the	regional	scale	in	SSEA.	To	carry	out	such	
analysis	for	the	16	countries	in	the	SSEA	region	(Bangladesh,	Bhutan,	
Brunei,	Cambodia,	India,	Indonesia,	Laos,	Malaysia,	Myanmar,	Nepal,	
Pakistan,	Philippines,	Singapore,	Sri	Lanka,	Thailand,	and	Vietnam),	
we	synthesized	country-specific	 case	 studies	 to	 identify	 the	major	
LULCC	drivers	 in	SSEA	and	used	a	 spatially	explicit	 satellite-based	
LULCC	dataset.	In	this	study,	we	specifically	focused	on	two	import-
ant	LULCC	activities,	namely	from	forest	to	agricultural	land	and	from	
agricultural	land	to	forest	(we	use	“forest	change”	to	refer	specifically	
to	these	two	changes	in	this	paper).	To	our	knowledge,	this	study	is	

the	first	effort	to	incorporate	case	study	synthesis	and	quantitative	
analysis	to	quantify	the	biophysical	and	socioeconomic	drivers	of	for-
est	change	in	SSEA.	The	results	provide	an	insight	into	the	complex	
LULCC	processes	and	could	contribute	to	modeling	and	projection	of	
LULCC	in	SSEA.	Moreover,	this	study	can	serve	as	a	scientific	basis	
for	stakeholders	to	improve	land	management	in	SSEA	countries.

2  | MATERIAL S AND METHODS

Our	methodology	 to	quantify	 the	drivers	of	 forest	 change	 can	be	
broken	 down	 into	 seven	 steps:	 (a)	 identify	 the	 drivers	 of	 forest	
change	by	analyzing	cases	studies,	 (b)	collect	different	biophysical	
and	 socioeconomic	 proxy	 data	 to	 represent	 the	 identified	 drivers	
of	 forest	 change,	 (c)	 compile	 satellite-based	 LULCC	data,	 (d)	 iden-
tify	the	concentrated	regions	of	forest	change	using	Getis-Ord	Gi*	
hotspot	analysis	technique,	(e)	employ	principal	component	analysis	
(PCA)	to	account	for	multi-collinearity	existing	in	the	proxy	data,	(f)	
use	 a	 Geographically	Weighted	 Regression	 (GWR)	model	 to	 build	
the	 spatially	 explicit	 relationships	 between	 the	 proxy	 and	 forest	
change	area,	and	(g)	determine	the	relative	importance	of	each	proxy	
driver	category	using	the	Johnson's	relative	weight	(JRW)	method.	
The	Getis-Ord	Gi*	analysis	(step	4)	was	conducted	in	ArcMap	10.6	
(Redlands,	 CA,	 2017).	 All	 other	 steps	 were	 performed	 in	 Matlab	
2017	(Natick,	MA,	2017).	For	the	GWR	analysis,	we	used	the	Matlab	
Spatial	Econometrics	Toolbox	 (LeSage	&	Pace,	2009).	Each	step	of	
the	methodology	was	described	in	brief	in	the	following	sections.	A	
detailed	description	of	the	individual	steps	with	a	sample	calculation	
can	be	found	in	the	Supplementary	Section	Text	S1.

2.1 | Synthesis of the site level case studies

In	this	study,	we	collected	213	publications	(including	65	case	stud-
ies	for	India	synthesized	by	Meiyappan	et	al.	(2017))	to	identify	the	
drivers	 of	 forest	 change	 at	 different	 spatial	 and	 temporal	 scales.	
We	 ran	 an	 advanced	 search	 in	 all	 databases	 available	 in	Web	 of	
Science	with	 the	query	expression	 “TI	=	(Drivers	OR	determinants	
OR	causes	OR	dynamics)	AND	TS	=	(Country	name	AND	land*)	AND	
TS	=	(crop*	OR	*forest*	OR	agricul*	OR	defor*	OR	degrad*)”	for	all	
16	SSEA	countries.	 There	were	 in	 total	 565	publications	 that	met	
the	query	 conditions.	By	 looking	 through	 the	 titles	 and	 abstracts,	
we	manually	 excluded	 240	 publications	 that	 did	 not	mention	 any	
LULCC	 drivers.	We	 carefully	 read	 the	 remaining	 325	 publications	
and	 excluded	 112	 publications	 that	 studied	 the	 drivers	 of	 LULCC	
other	 than	 forest	 change.	Finally,	we	determined	213	publications	
that	discussed	either	qualitatively	or	quantitatively	drivers	for	forest	
area	gain	or	forest	area	loss.	We	used	the	criterion	“total	forest	area	
loss	and	total	forest	area	gain”	rather	than	the	explicit	changes	from	
forest	to	agricultural	 land	and	vice	versa	because	very	few	studies	
have	explicitly	investigated	the	drivers	for	the	latter	case	(especially	
the	changes	from	agricultural	land	to	forest).

When	analyzing	the	213	case	studies,	we	recorded	the	LULCC	
type	 (forest	 area	 loss	 or	 forest	 area	 gain),	 the	 study	 area	 (the	
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coordinates	of	the	geometric	center	for	the	study	area	at	different	
spatial	scale),	timespan,	and	frequency	of	the	drivers	mentioned	in	
the	publications.

We	identified	the	major	drivers	by	the	following	method.	If	the	
case	 study	 stated	 important	 drivers,	we	 recorded	 all	 of	 these	 im-
portant	 drivers	 mentioned	 in	 each	 publication	 (some	 publications	
discussed	multiple	drivers).	Otherwise,	we	treated	each	of	the	men-
tioned	drivers	 as	major	 drivers.	 In	 order	 to	 generalize	 the	 drivers,	
we	combined	some	of	the	drivers	that	were	closely	related.	Detailed	
information	is	provided	in	Table	1.

2.2 | Spatial proxy data of the drivers for 
forest change

After	identifying	the	drivers	from	the	synthesis	of	case	studies,	we	
collected	 16	 biophysical	 and	 17	 socioeconomic	 proxy	 datasets	 to	
represent	 these	drivers	 (Table	2).	All	of	 these	proxies	are	 spatially	
gridded	 data,	 which	 are	 used	 to	 build	 the	 quantitative	 relation-
ships	 between	 the	 drivers	 and	 the	 forest	 change.	 These	 proxies	
have	different	 spatial	 and	 temporal	 resolutions	 (Table	2).	We	kept	
the	original	spatial	resolution	of	each	driver.	For	example,	we	used	

TA B L E  1  Generalization	of	the	identified	drivers	and	their	corresponding	proxy	data

Drivers identified from case studies Collected proxy data Remarks

•	 Terrain	(topographical	conditions) Terrain	index  

•	 Soil	and	other	environmental	
conditions

Soil	chemical	composition,	depth,	drainage,	fertility,	
and	texture

 

•	 Water	availability Distance	to	waterbodies  

• Climate Mean,	rate	of	change,	and	standard	deviation	of	
annual precipitation

 

Mean,	rate	of	change,	and	standard	deviation	of	
annual temperature

 

Mean	annual	potential	evapotranspiration  

•	 Fire Mean	burned	area	fraction  

•	 Other	natural	disaster Distance	to	landslide	events  

• Population
•	 Labor

Mean	and	rate	of	change	in	urban	population	density The	labor	amount	is	directly	related	to	
population.Mean	and	rate	of	change	in	rural	population	density

•	 Urbanization Mean	and	rate	of	change	in	urban	area	fraction

•	 Migration Migration  

•	 Livestock
•	 Grazing

Chicken,	Cattle,	Sheep,	Pig,	Goat	and	Duck	counts Grazing	activities	are	correlated	with	livestock.

•	 Accessibility
•	 Transportation
•	 Infrastructure

Market	accessibility	index Market	accessibility	index	considers	accessibil-
ity	and	infrastructure,	particularly	the	
transportation	condition.

•	 Market	influence	(price)
• Economy development
• Plantation
•	 Agroforest
•	 Agriculture	expansion

GDP per capita Plantation,	agroforest	development,	and	
agriculture	expansion	are	related	to	market	
and	economy.	All	of	them	can	be	reflected	by	
GDP per capita.

•	 Mining	(industry) Distance	to	mining	facilities  

• Poverty
•	 Income	dependency	on	forest
•	 Livelihood
• Benefit

Poverty	index The	dependency	on	forest,	livelihood	and	
benefit	are	all	closely	related	with	poverty.

•	 Shifting	agriculture	(swidden)
•	 Forest	management	(policy)
•	 Globalization	(international	trade)
•	 Fuel	wood	(logging	and	charcoal)
•	 Tourism
• Culture
•	 Technology
•	 Farm	size
• Natural regeneration
•	 Education	or	social	awareness
•	 Aquaculture

 Spatially	explicit	proxy	data	are	not	available.
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0.5°	×	0.5°	CRU	TS	climate	data,	which	is	relatively	coarse	compared	
to	 the	0.1°	×	0.1°	 resolution	of	 the	 forest	 change	data.	 Therefore,	
when	we	extracted	the	climate	data	values	using	the	coordinates	of	
the	0.1°	×	0.1°	grids	of	LULCC	data,	the	0.1°	×	0.1°	grids	in	the	same	
0.5°	×	0.5°	grid	cell	all	had	the	same	value.	As	a	result,	our	analysis	
may	miss	some	detailed	driver	information	at	small	scales.	However,	
because	the	region	investigated	is	much	larger	than	0.5°	×	0.5°,	the	
climate	data	still	have	spatial	gradients	for	the	GWR	analysis.

If	the	proxy	datasets	do	not	change	with	time	(e.g.,	terrain,	soil	
properties)	or	are	available	in	the	literature	for	only	one	time	period	
(e.g.,	 distances	 to	waterbodies,	 landslide	events,	 and	mining	 facili-
ties,	as	well	as	market	accessibility	index),	we	use	them	directly	in	the	
quantitative	analysis	(step	6).	If	the	proxies	are	time-series	data	(e.g.,	
burned	 area	 fraction,	 precipitation,	 temperature,	 rural	 and	 urban	
population	density,	and	urban	area	fraction),	we	use	the	means	and	
dynamics	(rate	of	change	and	standard	deviation)	of	them	in	step	6.	
Migration	data	are	available	at	the	decadal	time	scale	covering	from	
1970	to	2000;	we	used	the	1990	to	2000	data	as	it	is	closest	to	our	
study	period	in	step	6.

2.3 | Land use data

We	 used	 the	 European	 Space	 Agency	 Climate	 Change	 Initiative	
(ESA-CCI)	 satellite	 data	 for	 land	 cover	 dynamics	 of	 forest	 and	 ag-
ricultural	land	from	1992	to	2015.	The	original	product	categorized	
land	cover	into	22	classes	(level	1)	(Defourny,	Moreau,	&	Bontemps,	
2017).	Our	study	used	the	corresponding	IPCC	classes	(Defourny	et	
al.,	2017)	of	agricultural	land	and	forest.	We	derive	the	spatial	data	
of	 the	 forest	 change	by	overlaying	 the	1992	and	2015	 land	 cover	
maps	from	the	ESA-CCI	data	(300	×	300	m	resolution).	Then	we	ag-
gregated	the	forest	change	maps	to	0.1°	×	0.1°	(~10	km	×	10	km)	and	
determined	 the	 fractions	of	 the	 changed	area	 from	 forest	 to	agri-
cultural	 land	and	agricultural	 land	to	forest	 in	each	0.1°	×	0.1°	grid	
(Figure	S1).	The	0.1°	×	0.1°	resolution	represents	a	tradeoff	between	
the	 finer	 resolution	 of	 the	 LULCC	 data	 (300	m)	 and	 the	 relatively	
coarser	 resolution	 data	 for	 biophysical	 and	 socioeconomic	 proxy	
data	 (from	0.1°	×	0.1°	to	0.5°	×	0.5°).	We	also	calculated	the	coun-
try-specific	areas	of	these	two	changes.

The	areas	changed	between	1992	and	2015	due	to	the	conver-
sion	 of	 forest	 to	 agricultural	 land	 and	 vice	 versa	 are	 185,468	km2 
and	89,398	km2	when	calculating	based	on	1992	and	2015	data.	On	
the	other	hand,	the	areas	changed	are	191,277	km2	and	97,298	km2 
when	accumulating	the	yearly	area	changes	of	these	two	land	change	
activities	over	 the	period	1992–2015	 (Figure	S3).	The	areas	based	
the	former	method	are	96.96%	and	91.88%	of	the	results	from	the	
latter	method,	indicating	that	forest	change	data	estimated	based	on	
1992	and	2015	years	of	data	are	able	to	capture	the	major	informa-
tion	for	this	time	period.

2.4 | Hotspot analysis

The	purpose	of	the	hotspot	analysis	was	to	exclude	the	regions	with	
smaller	 areas	 of	 forest	 and	 its	 change	 in	 the	 driver	 analysis.	 The	

inclusion	of	such	low	value	regions	might	dilute	the	importance	of	
the	major	drivers.	We	used	the	Getis‐Ord Gi*	analysis	technique	to	
identify	the	hotspot	regions	for	the	changes	from	forest	to	agricul-
tural	land,	and	agricultural	land	to	forest.	This	technique	identifies	
statistically	 significant	 spatial	 clusters	of	high	 (hot	 spots)	 and	 low	
(cold	 spots)	 values	of	 changes	 (Ord	&	Getis,	 1995).	A	 statistically	
significant	hot	spot	has	a	greater	area	of	LULCC	and	is	surrounded	
by	 other	 regions	with	 great	 areas	 of	 LULCC.	We	marked	 regions	
with	>3	 standard	deviations	 (at	 99%	confidence	 level)	 as	 hotspot	
regions.	We	 analyzed	 the	 hotspot	 regions	 in	 each	 country	 at	 the	
district	level.

2.5 | Principle component analysis (PCA)

Multi-collinearity	 is	a	common	problem	in	 land	change	modeling	
where	 one	 or	 more	 explanatory	 (or	 proxy)	 data	 are	 dependent	
on	each	other.	A	high	degree	of	multi-collinearity	results	 in	high	
standard	errors	and	spurious	coefficient	estimates.	We	employed	
the	PCA	method	to	account	for	the	multi-collinearity.	We	selected	
the	PCs	with	cumulative	contribution	rates	(to	the	total	variation	
of	 all	 proxy	 data)	 greater	 than	 85%	 (Deng,	 Wang,	 Deng,	 &	 Qi,	
2008).

2.6 | Geographically weighted regression (GWR)

The	 GWR	model	 constructs	 a	 distinct	 relationship	 between	 each	
LULCC	 pixel	 and	 concomitant	 driver	 proxy	 data	 by	 incorporating	
pixels	falling	within	a	certain	bandwidth	of	the	center	LULCC	pixel	
(Charlton,	 Fotheringham,	 &	 Brunsdon,	 2009).	 Here	 we	 used	 the	
adaptive	Gaussian	kernel	to	determine	the	bandwidth,	and	the	local	
extent	 to	 estimate	 the	 regression	 coefficients.	 The	 optimal	 band-
width	size	of	the	kernel	was	determined	by	means	of	comparison	of	
Akaike	 Information	Criterion	 (AIC)	with	different	bandwidth	 sizes.	
We	conducted	the	GWR	in	the	identified	hotspot	districts	of	each	
country.

2.7 | Johnson's relative weight (JRW)

The	 GWR	 results	 can	 represent	 the	 positive	 or	 negative	 impact	
of	 each	 individual	 proxy	 driver,	 as	well	 as	 its	 relative	magnitude.	
However,	 it	 is	difficult	to	evaluate	the	combined	effects	of	differ-
ent	driver	categories	(see	the	six	categories	in	Table	2).	In	order	to	
generalize	the	forest	change	drivers	from	different	categories,	we	
used	the	Johnson's	Relative	Weight	(JRW)	method	to	quantify	the	
relative	importance	of	each	individual	proxy,	and	then	summed	up	
the	importance	coefficients	of	all	driver	categories.	The	JRW	analy-
sis	first	generates	a	series	of	orthogonal	variables	that	are	the	linear	
combinations	of	all	original	proxy	data,	and	then	conducts	the	re-
gression	analysis	by	using	the	generated	orthogonal	variables	(this	
procedure	is	the	same	as	the	PCA	analysis	in	step	5).	Then,	the	Eq.	
S5	is	used	to	determine	the	relative	importance	of	the	original	proxy	
data	 (Chao,	 Zhao,	 Kupper,	 &	 Nylander-French,	 2008;	 Johnson,	
2000).



     |  5XU et al.

TA
B

LE
 2

 
Pr
ox
y	
va
ria
bl
es
	o
f	t
he
	id
en
tif
y	
dr
iv
er
s

 
C

at
eg

or
y

Pr
ox

y 
va

ria
bl

e
Te

m
po

ra
l 

re
so

lu
tio

n
Sp

at
ia

l r
es

ol
ut

io
n

U
ni

t
So

ur
ce

Bi
op
hy
si
ca
l	

va
ria
bl
es

I
Te
rr
ai
n,
	s
oi
l,	

an
d 

w
at

er
1.

Te
rr
ai
n

C
on
st
an
t

5′
	×
	5
′	

(~
10
	k
m
	×
	1
0	
km
)

C
at
eg
or
ic
al
	d
at
a	
in
to
	7
	

gr
ad
ie
nt
	c
la
ss
es

G
lo
ba
l	A
gr
o-
ec
ol
og
ic
al
	Z
on
es
	

(G
A
EZ
)	v
3.
0	
(F
is
ch
er
,	N
ac
ht
er
ga
el
e,
	

&
	P
rie
le
r,	
20
12
)

2.
-	6
.

So
il	
ch
em
ic
al
	c
om
po
si
tio
n,
	

de
pt
h,
	d
ra
in
ag
e,
	fe
rt
ili
ty
,	a
nd
	

te
xt
ur
e

7.
D
is
ta
nc
e	
to
	w
at
er
bo
di
es

5′
	×
	5
′

km
C
al
cu
la
te
d	
fr
om
	G
lo
ba
l	L
ak
es
	a
nd
	

W
et
la
nd
s	
D
at
ab
as
e	
(G
LW
D
)	l
ev
el
	2
	

da
ta
	(L
eh
ne
r	&
	D
ol
l,	
20
04
)

II
C

lim
at

e
8.
	-	
10
.

M
ea
n,
	ra
te
	o
f	c
ha
ng
e,
	a
nd
	

st
an
da
rd
	d
ev
ia
tio
n	
of
	a
nn
ua
l	

pr
ec

ip
ita

tio
n

Ye
ar
ly

0.
5°  ×

 0
.5

°
° C
,	° C

/y
ea

r
C
lim
at
ic
	R
es
ea
rc
h	
U
ni
t	(
C
RU
)	T
S	

4.
01

11
.	-
	1
3.

M
ea
n,
	ra
te
	o
f	c
ha
ng
e,
	a
nd
	

st
an
da
rd
	d
ev
ia
tio
n	
of
	a
nn
ua
l	

te
m

pe
ra

tu
re

m
m
,	m
m
/y
ea
r

14
.

M
ea
n	
an
nu
al
	p
ot
en
tia
l	

ev
ap
ot
ra
ns
pi
ra
tio
n

m
m

III
N

at
ur

al
 

di
sa
st
er

15
.

M
ea
n	
bu
rn
ed
	a
re
a	
fr
ac
tio
n

Ye
ar
ly
	(1
99
7–
20
14
)

0.
25

°  ×
 0

.2
5°

%
G
lo
ba
l	F
ire
	E
m
is
si
on
s	
D
at
ab
as
e	
4.
1	

(G
ig
lio
,	R
an
de
rs
on
,	&
	W
er
f,	
20
13
)

16
.

D
is
ta
nc
e	
to
	la
nd
sl
id
e	
ev
en
ts

C
on
st
an
t

5′
	×
	5
′

km
C
al
cu
la
te
d	
fr
om
	G
lo
ba
l	L
an
ds
lid
e	

C
at
al
og
	(K
irs
ch
ba
um
,	A
dl
er
,	H
on
g,
	

H
ill
,	&
	L
er
ne
r-
La
m
,	2
01
0)

So
ci

oe
co

no
m

ic
 

va
ria
bl
es

IV
Po

pu
la

tio
n 

an
d 

ur
ba
ni
za
tio
n

17
.	-
	1
8.

M
ea
n	
an
d	
ra
te
	o
f	c
ha
ng
e	
in
	

ur
ba
n	
po
pu
la
tio
n	
de
ns
ity

Ye
ar
ly

5′
	×
	5
′

in
ha
bi
ta
nt
s/
km

2 ,	
in
ha
bi
ta
nt
s/
km

2 ·y
ea

r
H
YD
E	
3.
2	
(K
le
in
	G
ol
de
w
ijk
,	B
eu
se
n,
	

D
oe
lm
an
,	&
	S
te
hf
es
t,	
20
17
	)

19
.	-
	2
0.

M
ea
n	
an
d	
ra
te
	o
f	c
ha
ng
e	
in
	

ru
ra
l	p
op
ul
at
io
n	
de
ns
ity

21
.	-
	2
2.

M
ea
n	
an
d	
ra
te
	o
f	c
ha
ng
e	
in
	

ur
ba

n 
ar

ea
 fr

ac
tio

n
%
,	%
/y
ea
r

23
.

M
ig
ra
tio
n

D
ec

ad
al

 
(1
97
0–
20
00
)

0.
5°  ×

 0
.5

°
N
um
be
r	o
f	m
ig
ra
nt
s/

km
2

G
lo
ba
l	E
st
im
at
ed
	N
et
	M
ig
ra
tio
n	

G
rid
s	
By
	D
ec
ad
e,
	v
1	
(d
e	
Sh
er
bi
ni
n	

et
	a
l.,
	2
01
2)

V
Li
ve
st
oc
k

24
.	-
	2
9.

C
hi
ck
en
,	C
at
tle
,	S
he
ep
,	P
ig
,	

G
oa
t	a
nd
	D
uc
k	
co
un
ts

C
on
st
an
t

1 
km

 ×
 1

 k
m

H
ea
d/
km

2
G
rid
de
d	
Li
ve
st
oc
k	
of
	th
e	
W
or
ld
	

(G
LW
)	v
er
si
on
	2
	(R
ob
in
so
n	
et
	a
l.,
	

20
14
)

(C
on

tin
ue

s)



6  |     XU et al.

3  | RESULTS

3.1 | Synthesis of the case study

The	 case	 studies	 regarding	 the	 drivers	 of	 forest	 loss	 and	 gain	 are	
spread	across	all	countries,	and	have	diverse	spatial	scales,	from	vil-
lage	to	national	scale	(Figure	S5).	There	are	173	studies	(81%	of	the	
total	collected	studies)	studying	drivers	based	on	field	surveys,	 in-
terviews	and	literature	reviews.	Meanwhile,	40	studies	(19%	of	the	
collected	studies)	have	used	quantitative	approaches,	such	as	linear	
regression,	logistic	regression,	system	dynamics	modeling,	and	cel-
lular	automata	modeling	to	reveal	 the	drivers	of	LULCC.	However,	
most	of	these	quantitative	studies	are	at	smaller	spatial	scales	(vil-
lage	 to	 state	 and	 province	 level)	 (31	 studies).	 There	 are	 only	 nine	
quantitative	studies	at	the	national	scale.

We	 identify	 the	 drivers	 of	 forest	 change	 from	 collected	 case	
studies	(Figure	1	and	Table	1).	The	biophysical	drivers	include	terrain	
or	 topographical	conditions	 (e.g.,	elevation,	altitude,	and	 the	slope	
of	 land),	 soil	 conditions	 (e.g.,	 soil	 fertility,	 texture,	 and	 moisture),	
water	availability,	climate	(e.g.,	temperature,	precipitation,	and	their	
changes),	fire,	and	other	natural	disasters	(e.g.,	landslide).	The	socio-
economic	drivers	mainly	relate	to	population	growth,	urbanization,	
livestock	or	grazing	(e.g.,	overgrazing),	market	influence	or	economy	
development	(e.g.,	GDP	per	capita,	access	to	market),	plantation	or	
agroforest	development,	 agricultural	 expansion,	mining	and	 indus-
try,	 accessibility	and	 infrastructure	 (e.g.,	 transportation,	electricity	
connection),	logging	and	fuelwood,	and	poverty.

Fire	 and	 other	 natural	 disasters	 and	 terrain	 are	 the	 most	 fre-
quently	mentioned	biophysical	drivers	of	forest	area	loss	(deforesta-
tion).	 For	 example,	 in	 India	 and	 Indonesia,	 the	 two	 countries	with	
the	largest	forest	area,	a	majority	of	studies	suggest	terrain	and	fire	
and	 other	 natural	 disasters	 as	 the	 major	 biophysical	 drivers.	 Our	
synthesis	of	site-level	case	studies	also	identifies	population,	planta-
tion,	agricultural	expansion,	accessibility,	and	infrastructure,	as	well	
as	fuelwood	and	logging	as	the	important	socioeconomic	drivers	of	
deforestation.

There	 are	 fewer	 studies	 on	 the	 drivers	 of	 forest	 area	 gain	 (af-
forestation	and	reforestation)	than	on	deforestation.	Among	them,	
most	studies	have	focused	on	socioeconomic	drivers.	The	frequently	
mentioned	 socioeconomic	 drivers	 include	 accessibility,	 poverty,	
economy,	 and	 livestock	 and	 biophysical	 drivers	 include	 climate	
and	terrain.	The	major	drivers	of	 forest	change	at	different	spatial	
and	temporal	scales	are	described	in	more	detail	in	Supplementary	
Section	Text	S2,	Figures	S6	and	S7.

3.2 | Forest change

The	country-specific	and	spatial	distribution	of	converting	from	for-
est	to	agricultural	land	and	agricultural	land	to	forest	over	the	time	
period	1992–2015	is	shown	in	Figure	2	and	Figure	S4.	Malaysia	and	
Philippines	experienced	 large	areas	of	deforestation,	as	well	as	af-
forestation,	 over	 1992–2015.	 Cambodia	 and	 Singapore	 had	 more	
deforestation	than	afforestation. 
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The	conversion	from	forest	to	agricultural	 land	and	agricultural	
land	to	forest	co-exist	in	many	regions	(Figure	S4).	The	hotspot	re-
gions	of	the	two	changes	over	the	period	1992–2015	are	mainly	con-
centrated	 in	Kalimantan,	 Sumatra,	 East	 India,	 and	 the	Hindu	Kush	
Himalayan	regions	(Figure	3).

3.3 | Quantification of the drivers

3.3.1 | Forest to agricultural land

Here,	we	 show	national	 averages	 of	 the	 standardized	 coefficients	
with	 their	 standard	 deviations	 from	 the	 GWR	 analysis	 (Figure	 4).	
Overall,	 the	 impacts	 of	 various	 drivers	 in	 different	 countries	 are	
quite	heterogeneous.	A	single	driver	has	different	effects	on	differ-
ent	countries.	For	example,	the	distance	to	waterbodies	(variable	7	
in	Figure4a)	can	have	a	positive,	negative,	or	nearly	no	(~zero	values)	
effect	on	the	change	from	forest	to	agricultural	land.	In	general,	the	
distance	to	waterbodies	(variable	7),	mean	annual	precipitation	(vari-
able	8),	mean	burned	area	fraction	(variable	15),	goat	count	(variable	
28),	 and	GDP	per	 capita	 (variable	31)	 are	 the	 important	drivers	 in	
most	countries,	but	their	impacts	differ	across	countries.

In	order	to	generalize	the	results,	we	use	the	relative	importance	
to	combine	the	impacts	from	different	driver	categories.	Terrain,	soil,	
and	water	(category	I)	and	livestock	(category	V)	are	the	most	domi-
nant	driver	categories;	they	are	the	most	important	driver	categories	
in	six	 (i.e.,	Bhutan,	Laos,	Malaysia,	Myanmar,	Nepal,	Sri	Lanka,	and	
Vietnam)	and	three	countries	 (i.e.,	Cambodia,	 India,	and	 Indonesia)	
respectively	(Figure	5a).	On	the	other	hand,	natural	disasters	(cate-
gory	III)	have	the	least	impacts	in	most	countries	(11	countries).

The	importance	of	biophysical	drivers	is	relatively	lower	(the	im-
portance	of	 socioeconomic	drivers	 is	 higher)	 in	 some	South	Asian	
countries	 such	 as	 Bangladesh,	 Nepal,	 and	 Pakistan	 and	 maritime	

Southeast	 Asian	 countries	 Philippines	 and	 Indonesia,	 mainly	 be-
cause	 of	 lower	 JRWs	 of	 the	 terrain,	 soil,	 and	water	 (I)	 and	 higher	
JRWs	 of	 the	 urbanization	 and	 population	 (IV)	 and	 economy	 (VI).	
Socioeconomic	 and	 biophysical	 drivers	 have	 approximately	 equal	
importance	 in	some	countries	 in	Mainland	Southeast	Asia,	such	as	
Malaysia,	Laos,	Thailand,	and	Vietnam	(Figure	5a).

3.3.2 | Agricultural land to forest

For	 the	 conversion	 from	 agricultural	 land	 to	 forest,	 mean	 burned	
area	 fraction	 (variable	 15),	 migration	 (variable	 23),	 and	 poverty	
index	 (variable	 33)	 are	 the	 most	 important	 drivers	 in	 most	 coun-
tries	(Figure	4b).	Migration	(variable	23)	has	a	strong	negative	effect	
on	this	change	(standardized	coefficient	<−0.4)	in	India,	but	smaller	
(mostly	positive)	effects	in	other	countries.	Similarly,	pig	count	(vari-
able	27)	has	a	strongly	positive	effect	on	this	change	in	India	(stand-
ardized	coefficient	>0.4).	These	two	drivers	are	the	most	important	
for	 changes	 from	 agricultural	 land	 to	 forest	 in	 India.	We	 observe	
smaller	impacts	of	these	drivers	(small	absolute	value	of	the	stand-
ardized	coefficients)	on	the	change	from	agricultural	 land	to	forest	
than	the	change	from	forest	to	agricultural	land.	Some	variables	have	
nearly	negligible	impacts	in	most	countries,	such	as	rate	of	change	
of	annual	precipitation,	 standard	deviation	of	annual	 temperature,	
chicken	count,	and	market	accessibility	index	(variables	9,	13,	24,	and	
30).

Terrain,	soil,	and	water	(category	I)	is	the	most	important	driver	
category	in	five	countries	(Bhutan,	Cambodia,	Indonesia,	Laos,	and	
Sri	Lanka),	while	livestock	(category	V)	is	the	most	important	category	
in	four	countries	(i.e.,	Brunei,	India,	Myanmar,	and	Nepal)	(Figure	5b).	
For	example,	the	relative	importance	of	terrain,	soil,	and	water	con-
dition	 (I)	 in	 Indonesia	 is	as	high	as	40.36%,	highlighting	the	 impor-
tance	of	the	favorable	environmental	conditions	for	forest	regrowth.	

F I G U R E  1  Frequency	distribution	
of	the	major	drivers	identified	from	the	
synthesis	of	case	studies	in	South	and	
South	East	Asia	(SSEA)	countries.	The	
drivers	mentioned	more	than	10	times	
(sum	of	the	frequencies	for	both	forest	
area	loss	and	gain)	are	plotted	here.	Other	
identified	drivers	could	be	found	in	Table	
1
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Natural	disasters	(category	III)	has	the	least	influence	in	most	coun-
tries	(11	countries).

For	 changes	 from	 agricultural	 land	 to	 forest,	 biophysical	 driv-
ers	 are	 less	 important	 than	 socioeconomic	 drivers	 in	 Bangladesh,	
Bhutan,	 India,	 Pakistan,	 and	Nepal	(Figure	 5b).	 The	 importance	 of	
biophysical	 and	 socioeconomic	 drivers	 are	 approximately	 equal	
in	 most	 mainland	 Southeast	 Asia	 countries,	 including	 Cambodia,	
Malaysia,	Myanmar,	Philippines,	and	Thailand.	The	importance	of	cli-
mate	(II)	is	higher	in	maritime	Southeast	Asia	such	as	Indonesia	and	
Philippines.	 Indonesia	has	the	highest	JRW	for	biophysical	drivers,	
mainly	due	 to	 terrain,	 soil,	 and	water	 (I),	while	Philippines	has	 the	
greatest	JRW	of	climate	(II)	among	all	countries.

4  | DISCUSSION

4.1 | Results comparison

Here	we	use	a	quantitative	study	of	LULCC	drivers	in	India	(Meiyappan	
et	al.,	2017)	to	validate	our	results.	The	India	study	compiled	>200	
socioeconomic	variables	in	~630,000	villages	(~2	km	×	2	km	on	av-
erage)	to	identify	the	drivers	of	LULCC	(including	forest	area	losses	
and	gains).	The	 study	used	a	 “fractional”	binomial	 logit	model	 and	
synthesized	case	studies	to	evaluate	the	results.	The	“fractional”	bi-
nomial	logit	model	generates	similar	results	as	our	GWR	analysis,	by	
using	 regression	 coefficients	 to	 indicate	 the	 influence	of	different	
drivers	 (both	studies	used	the	same	z-score	standardization	 for	all	

driver	variables).	Here,	we	include	the	65	case	studies	compiled	 in	
Meiyappan	et	al.	(2017)	to	identify	the	drivers	of	forest	change.	This	
will	not	directly	affect	our	quantitative	driver	analysis	because	our	
33	biophysical	and	socioeconomic	proxy	data	are	collected	regard-
less	 of	 the	 frequencies	 of	 the	 drivers	mentioned	 in	 the	 literature.	
In	addition,	we	did	not	use	the	village	level	socioeconomic	dataset	
compiled	in	the	India	study,	as	we	did	not	have	the	same	level	of	in-
formation	in	other	countries.	Therefore,	our	quantitative	driver	anal-
ysis	(Figures	4	and	5)	is	independent	from	Meiyappan	et	al.	(2017),	
and	the	results	of	the	two	studies	are	comparable.

We	compared	 the	drivers	 for	 the	 forest	 to	 agricultural	 land	of	
this	study	with	the	drivers	for	forest	area	loss	in	India	(1995–2005)	
(Meiyappan	et	al.,	2017).	Most	of	the	driver	proxies	at	the	country	
scale	 used	 in	 this	 study	do	not	 directly	match	 the	 drivers	 used	 in	
Meiyappan	et	 al.	 (2017).	 Instead,	we	have	compared	 the	effect	of	
the	drivers	in	this	study	with	the	drivers	with	closely	related	proxy	
variables	in	Meiyappan	et	al.	(2017).

In	our	results,	mean	annual	precipitation	has	a	positive	 impact,	
meaning	an	increase	in	mean	annual	precipitation	causes	more	for-
est	to	be	converted	to	agricultural	land.	The	Meiyappan	et	al.	(2017)	
study	 used	 precipitation	 of	wettest	month	 or	 quarter	 rather	 than	
mean	annual	precipitation,	but	also	found	a	positive	impact	on	for-
est	loss,	suggesting	that	forests	are	more	likely	to	be	converted	to	
cropland	with	increases	in	precipitation.

In	our	study,	the	market	accessibility	index	has	a	negative	impact	
on	the	change	from	forest	to	agricultural	land.	The	negative	impact	

F I G U R E  2  Estimated	changes	from	
forest	to	agricultural	land	(right)	and	
agricultural	land	to	forest	(left)	over	
1992–2015	based	on	the	European	Space	
Agency	Climate	Change	Initiative	land	
cover	product	(Defourny	et	al.,	2017)



     |  9XU et al.

is	mainly	because	forests	in	the	region	that	are	difficult	to	reach	are	
unlikely	to	be	converted	to	cropland.	The	Indian	study	uses	a	“very	
steep	(>50%)	slope”	(of	the	land)	as	an	indicator	of	accessibility,	and	
finds	a	negative	relationship,	which	matches	with	this	study.

In	the	Indian	study,	the	availability	of	power	supply	for	domestic	
purpose	is	negatively	associated	with	forest	loss;	our	study	suggests	
that	urban	area	fraction	has	a	negative	impact	on	forest	loss.	If	we	as-
sume	that	urban	areas	in	India	have	a	higher	availability	of	power	sup-
ply	for	domestic	purpose,	the	results	from	the	two	studies	are	similar.

Our	 results	 suggest	 that	 the	 area	 of	 forest	 converted	 to	 agri-
cultural	 land	 is	greater	 in	regions	that	are	close	to	mining	facilities	
(negative	 impact	 from	 the	 distance	 to	 mining	 facilities),	 while	 in	
Meiyappan	et	al.	 (2017)	 the	occupation	 (building/mining	materials)	
has	a	positive	impact.	It	is	highly	possible	that	in	the	regions	close	to	
mining	facilities	(lower	value	of	the	distance	to	mining	facility),	more	
people	work	for	the	mining	industry	and	the	occupation	in	mining	is	
higher.	Therefore,	these	two	drivers	have	opposite	impacts	but	the	
same	interpretation.

The	distance	to	waterbodies	in	our	study	has	a	positive	impact	
on	the	change	from	forest	 to	agricultural	 land,	and	the	proportion	
of	 cropland	 irrigated	 has	 a	 negative	 impact	 on	forest	 area	 loss	 in	
the	 Indian	 study.	The	 regions	near	 to	waterbodies	 (lower	value	of	
the	 distance	 to	 waterbodies)	 have	 better	 irrigation	 conditions	 for	

cropland	 and	 greater	 proportions	 of	 cropland	 irrigated;	 this	 can	
promote	crop	yield	and	therefore	reduce	the	pressure	on	adjoining	
forests	(Meiyappan	et	al.,	2017).	Therefore,	the	area	of	forest	con-
verted	to	agricultural	land	is	smaller	in	such	regions.	The	two	studies	
match	with	each	other	in	this	dimension.

The	above	discussion	shows	that	our	results	on	the	drivers	for	
the	 conversion	 from	 forest	 to	 agricultural	 land	 in	 India	 are	 similar	
to	a	previous	national	scale	study	in	India	(Meiyappan	et	al.,	2017).

4.2 | Drivers for LULCC

4.2.1 | Forest to agricultural land

Terrain	(variable	1	in	Figure	4a)	has	a	positive	impact	on	the	conver-
sion	from	forest	to	agricultural	land	in	India,	which	is	different	from	
other	countries.	This	 is	mainly	because	the	hotspot	regions	of	this	
change	 in	 India	 concentrate	 in	 the	Orissa	 and	Chhattisgarh	 states	
in	center-east	of	the	country	(Figure	3),	where	forest,	as	well	as	its	
changes,	are	mainly	 located	in	higher	and	steeper	regions.	This	re-
gion	also	has	the	largest	area	of	shifting	cultivation	in	India	(Singh,	
Purohit,	&	Bhaduri,	2016).	Shifting	cultivation	mainly	occurs	in	high	
and	steep	regions;	therefore,	we	can	observe	more	forest	area	loss	
in	regions	with	high	terrain	index	values.

F I G U R E  3  Spatial	distribution	of	case	studies	and	hotspot	regions	land	use	and	land	cover	change	(LULCC)	drivers.	The	locations	and	
research	levels	of	the	case	studies,	as	well	as	the	number	of	case	studies,	are	extracted	from	the	213	publications	listed	in	Tables	S1	and	S2,	
as	well	as	Tables	S10	and	S11	in	Meiyappan	et	al.,	2017.	The	hotspot	regions	at	99%	confidence	interval	are	recognized	from	the	Hotspot	
analysis	with	the	Getis-Ord	Gi*	values	≥3
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Unlike	 most	 of	 the	 countries	 analyzed,	 most	 soil	 variables	
(variable	2–6	 in	Figure	4a)	have	positive	 influences	 in	Bangladesh.	
The	 hotspot	 regions	 of	 change	 from	 forest	 to	 agricultural	 land	 in	
Bangladesh	 are	 concentrated	 in	 the	 southwest	 coastal	 regions	
(Figure	 3).	 Our	 previous	 work	 in	 Bangladesh	 has	 shown	 that	 the	
forest	 in	 this	 region	was	mainly	mangrove	 forest,	 and	 agricultural	
land	is	mainly	used	for	aquaculture	(fish	or	shrimp	ponds).	Therefore,	
the	 changes	 from	 forest	 to	 agricultural	 land	 are	mainly	mangrove	
to	aquaculture	 in	 these	regions	 (Uddin,	Hoque,	&	Abdullah,	2014).	
Although	satisfactory	pond	bottom	soil	conditions	favor	aquaculture	
production	(Salam,	Khatun,	&	Ali,	2005),	our	results	indicate	that	soil	
conditions	do	not	directly	motivate	changes	from	mangrove	forest	
to	aquaculture.	In	Bangladesh,	the	mean	urban	and	rural	population	

densities	(variable	17–19	in	Figure	4a)	have	negative	impacts	on	this	
change,	which	is	also	different	from	most	other	countries.	This	may	
be	because	 regions	with	higher	population	have	more	urban	 land,	
which	crowds	out	other	land	types	such	as	forest;	therefore,	there	is	
less	forest	area	that	can	be	converted	to	agricultural	land	(Shehzad	
et	al.,	2014).

In	two	most	populous	countries	in	SSEA,	India	and	Indonesia,	live-
stock	(variables	24	to	29)	is	the	most	dominant	driver	category,	while	
population	 and	urbanization	 is	 the	 least	 important	 driver	 category	
(Figure	5a).	Our	results	agree	with	the	conclusion	of	a	meta-analysis	
by	Rudel,	Defries,	Asner,	and	Laurance	(2009)	that,	in	recent	years,	
well-capitalized	 ranchers,	 farmers,	 and	 loggers	 producing	 for	 con-
sumers	in	distant	markets	have	become	more	prominent	in	tropical	

F I G U R E  4  The	national	average	of	standardized	coefficients	of	each	driver	in	different	countries	for	the	conversions	(a)	from	forest	to	
agricultural	land,	and	(b)	from	agricultural	land	to	forest.	The	standardized	coefficient	refers	to	a	number	of	standard	deviations	change	in	
LULCCs,	per	standard	deviation	change	in	diving	factors.	The	description	of	variables	1–33	and	categories	I–VI	list	could	be	found	in	Table	2.	
The	size	of	the	black	dot	indicated	the	standard	deviation	of	the	standardized	coefficient	in	each	country
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forests,	and	this	globalization	has	weakened	the	historically	strong	
relationship	between	local	population	growth	and	forest	cover.

In	some	countries,	biophysical	drivers	are	more	 important.	For	
example,	in	Bhutan,	the	conversion	from	forest	to	agricultural	land	
has	 been	 controlled	mainly	 by	 biophysical	 drivers	 rather	 than	 so-
cioeconomic	 drivers,	 especially	 terrain,	 soil,	 and	water	 conditions.	
Bhutan	 has	 a	 traditional	 culture	 of	 protecting	 forest	 (Bruggeman,	
Meyfroidt,	&	Lambin,	2016),	and	local	residences	avoid	affecting	for-
est	when	developing	 their	 social	 economy.	Biophysical	 conditions,	
therefore,	have	a	greater	impact.

4.2.2 | Agricultural land to forest

Climate	conditions	(temperature	and	precipitation)	are	mostly	posi-
tively	or	neutrally	associated	with	the	change	from	agricultural	land	
to	forest,	indicating	that	wetter	and	warmer	conditions	with	higher	
variations	 are	 favorable	 for	 forest	 regrowth.	 However,	 the	 higher	
standard	deviations	of	the	standardized	coefficients	in	all	countries	
indicate	that	the	impacts	of	temperature	variations	and	mean	tem-
perature	 are	highly	heterogeneous	 (Figure	4b).	 In	 the	 tropical	 for-
est,	wetter	(when	mean	annual	precipitation	is	less	than	2,445	mm)	

F I G U R E  5  The	relative	importance	of	different	drivers	for	the	conversions	(a)	from	forest	to	agricultural	land	and	(b)	from	agricultural	
land	to	forest	in	SSEA	countries
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and	warmer	conditions	are	beneficial	for	tree	productivity	(Schuur,	
2003).	Therefore,	precipitation	and	 temperature	have	positive	 im-
pacts.	We	observe	negative	impacts	of	mean	annual	precipitation	in	
India	and	Myanmar	(variable	8	in	Figure	4b),	showing	that	this	change	
mainly	takes	place	in	relatively	drier	regions	in	these	two	countries.

Population	 and	 urbanization	 usually	 have	 smaller	 impacts,	 ex-
cept	 in	 India,	 Laos,	 and	Myanmar.	 In	 India,	 lower	 population	 and	
less	 urbanized	 regions	 favor	 reforestation	 and	 afforestation	 (Mon	
et	al.,	2012).	On	the	contrary,	we	observe	mostly	positive	 impacts	
from	population	and	urbanization	variables	in	Laos.	Phompila,	Lewis,	
Ostendorf,	and	Clarke	(2017)	suggest	that	population	increases	can	
simultaneously	lead	to	an	increase	in	forest	and	expansion	in	forest	
clearance	in	different	locations	of	Laos.

Livestock	variables	play	 important	roles	 in	this	change	in	India.	
The	 cattle	 count	 has	 a	 negative	 impact	 (variable	 25	 in	 Figure	4b).	
Given	that	cattle	is	common	agricultural	labor	in	India	(Basu,	2011),	
we	can	infer	that	the	regions	with	lower	cattle	count	have	less	culti-
vating	activities	and	human	disturbance.	Agricultural	land	in	regions	
with	less	human	disturbance	is	more	likely	to	be	converted	to	forest;	
thus	we	observe	a	negative	impact	from	cattle	count.

In	Bangladesh,	socioeconomic	drivers	are	more	 important	than	
biophysical	 drivers,	 especially	 the	 economy	 category,	 particularly	
in	 the	 southern	 coastal	 regions	 of	 Bangladesh	where	 aquaculture	
ponds	are	concentrated.	Aquaculture	has	higher	profits	(Ali,	2006),	
the	changes	from	aquaculture	to	forest	(mangrove)	could	have	large	
impacts	on	the	economy.	Therefore,	we	note	greater	importance	of	
the	economy	on	land	conversions	in	Bangladesh.	We	also	find	that	
climate	 is	 important	 because	 of	 its	 impacts	 on	 aquaculture	 (Huq,	
Huge,	Boon,	&	Gain,	2015).

4.3 | Implications

Our	results	have	several	practical	implications.	First,	both	biophysi-
cal	 and	 socioeconomic	 drivers	 strongly	 influence	 the	 inter-change	
between	forest	and	agricultural	land.	However,	our	synthesis	of	case	
studies	 indicates	 that	 there	 are	more	 studies	discussing	 socioeco-
nomic	drivers	than	biophysical	drivers	(Figure	1	and	Figure	S5).	Our	
results	emphasize	the	 importance	of	the	biophysical	drivers,	espe-
cially	for	the	change	from	agricultural	 land	to	forest.	When	opting	
to	afforest	and	reforest,	decision-makers	should	consider	the	 local	
terrain,	soil,	water,	climate	conditions,	as	well	as	the	impacts	of	natu-
ral	disasters.

Second,	the	spatially	explicit	results	show	the	high	heterogene-
ity	 and	complexity	of	 the	drivers	of	 forest	 change.	To	understand	
deforestation,	afforestation,	and	reforestation,	one	has	to	first	get	
a	 thorough	 understanding	 of	 local	 conditions	 from	 both	 biophys-
ical	 and	 socioeconomic	 aspects.	We	 have	 reported	 and	 discussed	
the	dominant	drivers	for	16	countries	with	large	differences	in	so-
cioeconomic	conditions.	The	results	 improve	our	understanding	of	
the	key	 factors	 influencing	deforestation,	afforestation,	and	 refor-
estation	in	each	country.	For	example,	livestock	(category	V)	is	the	
most	dominant	driver	category	for	India	and	Indonesia	for	the	con-
version	from	forest	to	agricultural	land.	Meanwhile,	for	the	changes	

from	agricultural	land	to	forest,	livestock	variables	(category	V)	play	
important	 roles	 in	 this	change	 in	 India,	but	 terrain,	 soil,	 and	water	
conditions	 are	more	 important	 in	 Indonesia	 (category	 I).	 Both	 de-
forestation	and	afforestation	 (reforestation)	are	strongly	 impacted	
by	 livestock	 in	 India,	suggesting	 local	stakeholders	could	 influence	
deforestation,	 afforestation,	 or	 reforestation	 through	 changes	 in	
livestock	or	grazing	activities.	In	Indonesia,	similar	strategies	may	be	
effective	 in	preventing	deforestation.	Meanwhile,	 terrain,	soil,	and	
water	conditions	are	more	critical	for	afforestation	and	reforestation	
in	Indonesia.

Finally,	the	detailed	drivers	of	forest	change	can	be	incorporated	
into	 land	 use	 downscaling	models	 such	 as	 spatial	 dynamic	 alloca-
tion	model	 to	 improve	 their	 projections	 (Meiyappan	 et	 al.,	 2014).	
Improvement	of	land	use	downscaling	models	can	help	bridge	scales	
between	 human	 and	 earth	 systems,	 providing	 better	 LULCC	 pro-
jections	 in	 the	 future.	 In	 addition,	 these	 detailed	 drivers	 can	 also	
be	incorporated	in	economic	models	estimating	future	LULCC,	like	
GCAM	 (Wise,	 Dooley,	 Luckow,	 Calvin,	 &	 Kyle,	 2014).	Models	 like	
GCAM	typically	 rely	on	profit	 to	determine	LULCC,	but	 this	study	
has	shown	that	many	other	factors	are	important	for	driving	these	
changes.	Such	integration	is	challenging	in	many	aspects,	such	as	the	
uncertainties	 of	 the	 spatially	 explicit	 driver	 datasets	 are	 high,	 the	
lack	 of	 future	 datasets,	 and	 the	 non-linear	 relationships	 between	
these	 drivers	 and	 other	 socioeconomic	 processes.	 To	 overcome	
these	 challenges,	we	 could	 use	 the	 historical	 results	 (such	 as	 this	
study)	as	references	for	the	future	projection,	adopt	socioeconomic	
scenarios	 (such	 as	 the	 Shared	 Socioeconomic	 Pathways	 [SSPs])	 to	
generate	 consistent	 biophysical	 and	 socioeconomic	 variables,	 and	
further	study	the	relationships	between	LULCC	drivers	and	different	
socioeconomic	processes.

4.4 | Uncertainties and limitations

This	study	quantifies	the	biophysical	and	socioeconomic	drivers	of	
changes	from	forest	to	agricultural	land	and	agricultural	land	to	for-
est	in	SSEA	for	the	first	time.	However,	there	are	some	caveats	and	
limitations	in	this	study.

First,	although	we	have	collected	the	spatially	explicit	proxy	data	
to	represent	the	important	drivers	identified	from	case	studies,	how-
ever,	 there	 are	 still	 some	 important	 drivers	we	 do	 not	 have	 proxy	
data	for,	such	as	shifting	cultivation	(swidden),	fuelwood	(logging	and	
charcoal),	globalization	(international	trade),	and	forest	management	
(policy),	which	are	either	difficult	to	quantify	or	lacking	reliable	grid-
ded	data.	These	drivers	could	have	large	impacts	on	either	the	change	
from	 forest	 to	 agricultural	 land	 or	 from	 agricultural	 land	 to	 forest.	
For	example,	shifting	cultivation	has	large	impacts	on	both	changes	
(Bruun,	Neergaard,	Lawrence,	&	Ziegler,	2009);	globalization	(interna-
tional	trade)	is	linked	to	deforestation	(Lopez	&	Galinato,	2005).	The	
absence	of	the	proxy	data	for	these	drivers	may	influence	our	results.	
However,	the	current	availability	of	data	does	not	allow	us	to	include	
them;	thus,	we	leave	their	incorporation	to	future	studies.

Second,	we	should	note	that	spatial	and	temporal	inconsistencies	
existed	between	spatial	proxy	data	and	LULCC	data	(Table	2).	These	
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will	 introduce	uncertainties	 in	 the	driver	 analysis.	Additionally,	we	
have	collected	the	proxy	data	 for	 the	drivers	 from	global	datasets	
rather	than	regional	datasets.	Some	of	the	global	datasets	have	not	
been	calibrated	against	regional	data	in	SSEA	countries,	which	may	
have	a	relatively	lower	quality	in	our	study	area	and	thus	influence	
quantitative	driver	results.	We	use	these	global	datasets	for	several	
reasons.	First,	global	datasets	cover	the	entire	study	area.	Regional	
datasets	 covering	 the	 entire	 SSEA	are	 relatively	 rare.	 Second,	 our	
GWR	 analysis	 needs	 gridded	 driver	 proxy	 data	 to	match	with	 the	
gridded	 forest	 change	 data.	 Regional	 datasets	 are	 usually	 based	
on	 geopolitical	 units	 that	 may	 introduce	 additional	 uncertainties.	
Finally,	the	data	used	are	from	the	best	available	global	datasets	in	
literature	and	are	consistent	at	both	spatial	and	temporal	scales.	This	
means	 that	 these	datasets	 in	different	 countries	 and	 time	periods	
are	comparable.	In	contrast,	some	regional	datasets	may	not	be	con-
sistent	in	spatial	or	temporal	scale	due	to	the	different	data	sources	
and	data	quality.	Therefore,	while	there	are	still	inconsistencies	and	
missing	details	in	our	datasets,	our	quantitative	analysis	is	robust	at	
the	country	scale	in	SSEA	region.

Third,	 as	 mentioned	 in	 the	 “Synthesis	 of	 the	 Site	 Level	 Case	
Studies”	section,	we	assume	that	 the	synthesized	drivers	of	 forest	
area	loss	and	gain	represent	the	drivers	of	the	specific	changes	from	
forest	 to	agricultural	 land	and	vice	versa.	This	assumption	may	 in-
troduce	 noise	 and	 additional	 uncertainties	 into	 the	 driver	 synthe-
sis,	 because	 the	 drivers	 of	 other	 LULCC	 activities	 (except	 for	 the	
interchanges	between	forest	and	agricultural	land)	are	included	and	
counted	indiscriminately	(since	we	also	assume	all	mentioned	drivers	
in	case	studies	are	equally	important	unless	specified).	However,	the	
impacts	of	these	assumptions	on	our	quantitative	driver	results	are	
limited,	because	these	assumptions	only	 influence	the	frequencies	
of	different	drivers	(Figure	1),	but	are	not	directly	related	to	the	spa-
tial	 proxies,	which	 are	 collected	 regardless	 the	 frequencies	 of	 the	
drivers	mentioned	 in	 the	 literature.	Therefore,	we	believe	 the	col-
lected	case	studies	represent	the	drivers	of	the	changes	from	forest	
to	agricultural	land	and	vice	versa.

Lastly,	a	country-by-country	validation	will	further	reinforce	our	
findings.	However,	the	quantitative	studies	at	country	level	in	SSEA	
are	rare	(nine	studies),	and	the	driver	proxies	used	in	these	studies	
greatly	differ.	In	this	case,	we	have	validated	our	result	by	comparing	
to	a	quantitative	study	in	India	and	found	a	good	match	between	two	
studies,	strengthening	our	results.

By	 synthesizing	 the	 local-scale	 driver	 information	 of	 forest	
change	and	using	quantitative	models,	this	study	provides	insight	
into	 the	 complexity	 of	 LULCC	 processes.	 Unlike	 previous	 stud-
ies,	which	 focus	 on	 socioeconomic	 drivers,	 this	 study	 highlights	
the	 importance	 of	 both	 biophysical	 and	 socioeconomic	 drivers.	
Generally,	 socioeconomic	 development	 increases	 food	 and	 land	
demands,	 driving	people	 to	 convert	 forest	 to	 agricultural	 land	 if	
biophysical	 conditions	 are	 favorable.	 Agricultural	 land	 with	 less	
favorable	 biophysical	 conditions	may	 be	 abandoned	 for	 tree	 re-
growth	 or	 converted	 to	 forest	 plantations;	 reduced	 human	 dis-
turbance	and	 livestock	pressure	results	 in	more	forest	regrowth.	
These	 driving	 processes	 vary	 across	 regions	 and	 countries,	

emphasizing	the	needs	for	region-	and	country-specific	strategies	
for	 deforestation	 and	 afforestation.	 The	 biophysical	 and	 socio-
economic	drivers	 identified	can	help	 to	 improve	 the	accuracy	of	
the	LULCC	modeling	and	projections	that	are	important	inputs	to	
earth	system	models.
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