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A B S T R A C T   

El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) can exert abiotic stresses on biota to in
fluence regional terrestrial carbon cycling. Here, we investigated their interactive effects on tropical net 
ecosystem productivity (NEP) when ENSO and IOD simultaneously occur (mainly El Niño & positive IOD [pIOD] 
and La Niña & negative IOD [nIOD]), based on TRENDYv9 multi-model simulations. Results suggest that NEP 
anomalies were dominated by IOD over South America near 20◦S and Africa south of the Equator, but by ENSO 
over India and northern South America, and controlled by their amplifying effects over eastern Africa, the Indo- 
China peninsula, and most of Australia during September-October-November (SON). In the following December- 
January-February (DJF), IOD legacy effects generally enhanced ENSO-induced NEP anomalies over most of 
South America, eastern and southern Africa, and Australia. During March-April-May (MAM), the influence of IOD 
gradually disappeared. Our analysis revealed the dominant role of gross primary productivity (GPP) in these NEP 
anomalies. We further found asymmetric effects of soil moisture and temperature on NEP anomalies, showing 
higher correlation coefficients with soil moisture in El Niño & pIOD, but basically with temperature in La Niña & 
nIOD. Additionally, considering the simultaneous extreme of pIOD and El Niño activity in 1997/98, we calcu
lated their seasonal individual contributions to NEP anomalies. We found that the pIOD event had the greatest 
influence in SON. During SON in 1997, individual contributions of pIOD and El Niño to NEP caused a land carbon 
source of − 0.34 ± 0.15 and − 0.35 ± 0.32 PgC yr− 1 over South America, a carbon sink and source of 0.5 ± 0.19 
and − 0.54 ± 0.14 PgC yr− 1 over Africa, and source of − 0.08 ± 0.25 and − 0.42 ± 0.37 PgC yr− 1 over Asia- 
Pacific, respectively. Understanding interactive effects of IOD and ENSO on regional carbon cycling is crucial 
due to the more frequent extreme IOD and ENSO events under future climate warming.   

1. Introduction 

Large-scale oceanic and atmospheric oscillations can greatly affect 
terrestrial ecosystems and their carbon fluxes (Bacastow, 1976; Bastos 
et al., 2016; Bousquet et al., 2000; Wang et al., 2021). The El 
Niño-Southern Oscillation (ENSO), a leading mode of Earth’s interan
nual climate variability, is characterized by sea surface temperature 
(SST) and surface pressure anomalies across the tropical Pacific Ocean 

(Trenberth et al., 2007). ENSO events can alter temperature, precipita
tion, and solar radiation over land, thereby affecting terrestrial carbon 
cycling (Bousquet et al., 2000; Kim et al., 2017; Piao et al., 2020; Wang 
et al., 2016, 2018a; Zeng et al., 2005). Terrestrial ecosystems, especially 
over the tropics, tend to release carbon into the atmosphere during El 
Niño episodes while removing carbon from the atmosphere during La 
Niña episodes (Liu et al., 2017; Wang et al., 2018b; Zeng et al., 2005). 
This contributes to the observed interannual variation in the 
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atmospheric CO2 growth rate (CGR) (Bousquet et al., 2000; Peylin et al., 
2013). Many studies have indicated that during El Niño drier and 
warmer conditions throughout the tropics lead to increased tree mor
tality and decreased aboveground carbon stocks (Phillips et al., 2009), 
inhibited photosynthesis (Bastos et al., 2018; Luo et al., 2018; Wang 
et al., 2018a; Yang et al., 2018), increased soil respiration (Zeng et al., 
2005), and increased wildfires (Bowman et al., 2009; van der Werf et al., 
2004). Nevertheless, there is a debate on the dominant climate factor 
driving the interannual variability of the atmospheric CGR or net 
land-atmosphere carbon flux among the temperature, precipitation (or 
soil moisture), and vapor pressure deficit (VPD) (He et al., 2022; 
Humphrey et al., 2021, 2018; Jung et al., 2017; Wang et al., 2016, 
2013). 

More recently, the Indian Ocean Dipole (IOD), another coupled 
ocean-atmosphere mode, received some attention in its role in the 
regional carbon cycling (Wang et al., 2021; Williams and Hanan, 2011). 
The IOD is characterized by the positive (negative) phase of the warm 
(cold) SST over the western tropical Indian Ocean (WTIO) and cool 
(warm) SST in the southeastern tropical Indian ocean (SETIO) during 
boreal summer and fall (Saji et al., 1999). Although IOD has been 
recognized for about two decades (Saji et al., 1999), existing studies 
focused mainly on its impact on the climate, especially the Indian Ocean 
(IO) rim countries (Ashok et al., 2004; Cai et al., 2011; Saji and Yama
gata, 2003). In a positive IOD (pIOD) event, a warm pole over the WTIO 
tends to cause heavy rainfall or flooding in Eastern Africa and India 
associated with active convection. On the other hand, cold SSTs over the 
SETIO can cause hot droughts in Australia, Indonesia, and the 
Indo-China Peninsula (Kim et al., 2019; Preethi et al., 2015). In terms of 
terrestrial carbon cycling, Cai et al. (2009) suggested that the pIOD 
event increased temperate forest fire occurrence over southeastern 
Australia, and associated release of CO2 to the atmosphere (van der 
Velde et al., 2021; Wang et al., 2020). Wang et al. (2021) analyzed the 
effect of pIOD on historical and future gross primary productivity (GPP) 
over the IO rim countries. They revealed that partial correlation co
efficients between IOD and GPP, controlling for the effect of ENSO, are 
significantly positive in most of Africa and India, but significantly 
negative in southern China, the Indo-China Peninsula, the maritime 
continent, and Australia, which were mainly related to precipitation 
variations. 

Although IOD events were suggested as a coupled ocean-atmosphere 
interaction independent from that of ENSO (Saji et al., 1999), historical 
IOD events tend to occur with ENSO in addition to the single events (the 
occurrence of IOD events in the absence of an ENSO event) (Ham et al., 
2016; Yang et al., 2015). A compound event (the occurrence of IOD 
simultaneously with ENSO events) can increase constructively the im
pacts of the ENSO event, even exceed the climate impact of extremely 
strong sole El Niño events (Hameed et al., 2018). A previous study 
(Williams and Hanan, 2011) investigated the interactive effects of ENSO 
and IOD on African GPP, based on the Simple Biosphere model, Version 
3 (SiB3) with the offline mode. They found that IOD could induce large 
departures of GPP across much of Africa, which can suppress or even 
reverse ENSO signals in GPP anomalies. However, the interactive effect 
of ENSO and IOD events on the net land-atmosphere carbon flux remains 
unclear. 

This study aims to give new insights into the interannual variability 
of tropical terrestrial carbon cycling. Specifically, we will investigate the 
interactive effect of ENSO and IOD events during periods of simulta
neous ENSO and IOD activity on the tropical net ecosystem productivity 
(NEP, the positive value denotes a land carbon sink) and compared it to 
the impacts of individual ENSO or IOD events based on the multi-model 
simulations from the “Trends and drivers of the regional scale sources 
and sinks of carbon dioxide” (TRENDY) project. Composite analysis will 
be adopted to qualitatively analyze the roles of ENSO and IOD in NEP 
anomalies over different tropical regions in different seasons during 
periods of simultaneous IOD and ENSO activity. In addition, due to the 
high impact of extreme events, we will focus on the compound event in 

1997/98, in which simultaneous extreme El Niño and pIOD occurred, to 
quantitatively show their individual contributions to NEP anomalies 
over the three tropical sub-continents. 

2. Datasets and methods 

2.1. TRENDYv9 multi-model simulations 

We used outputs from the state-of-the-art terrestrial biosphere 
models (TBMs) under the auspices of the TRENDY Project (Sitch et al., 
2015). There are three main experimental protocols in the TRENDY 
project, including S1 with dynamic CO2 only, S2 with dynamic CO2 and 
climate, and S3 with dynamic CO2, climate, and land-use (Sitch et al., 
2015). And the S3 run in TRENDYv9 was adopted in this study. 

We screened out some models with opposite spatial patterns of NEP 
from the multi-model ensemble mean result and satellite-derived 
pattern revealed by the previous study (Wang et al., 2021). Eleven 
TBMs were retained here, including CLASSIC (Melton et al., 2020), 
DLEM (Tian et al., 2015), ISAM (Jain et al., 2013), ISBA-CTRIP (Delire 
et al., 2020), LPJ (Poulter et al., 2011), LPX-Bern (Lienert and Joos, 
2018), OCN (Zaehle et al., 2010), ORCHIDEE (Krinner et al., 2005), 
ORCHIDEE-CNP (Goll et al., 2017), ORCHIDEEv3 (Vuichard et al., 
2019), and SDGVM (Walker et al., 2017) (Table 1). We analyzed four 
variables, gross primary productivity (GPP), total ecosystem respiration 
(TER, sum of autotrophic and heterotrophic respiration), net ecosystem 
production (NEP = GPP − TER), and root zone soil moisture (denoted as 
‘MRSO’ in outputs). Considering the different horizontal resolutions 
among different TBMs, we first interpolated all the variables consis
tently to a 1◦x1◦ spatial resolution by using the first-order conservative 
remapping scheme (Jones, 1999) in Climate Data Operators (CDO) with 
the formula as below: 

Fk =
1
Ak

∫∫

fdA (1)  

where Fk represents the area-averaged destination flux, Ak is the area of 
cell k, and f is the original flux in an old grid which can have an over
lapping area with the destination grid. 

Table 1 
Terrestrial biosphere models (TBMs) used in this study.  

Models Spatial 
resolution 

GPP TERa NEPb MRSO References 

CLASSIC T42 √ √ √ √ Melton et al. 
(2020) 

DLEM 0.5◦ × 0.5◦ √ √ √  Tian et al. 
(2015) 

ISAM 0.5◦ × 0.5◦ √ √ √ √ Jain et al. 
(2013) 

ISBA-CTRIP 1◦ × 1◦ √ √ √ √ Delire et al. 
(2020) 

LPJ 0.5◦ × 0.5◦ √ √ √  Poulter et al. 
(2011) 

LPX-Bern 0.5◦ × 0.5◦ √ √ √ √ Lienert and 
Joos (2018) 

OCN 1◦ × 1◦ √ √ √ √ Zaehle and 
Friend (2010) 

ORCHIDEE 0.5◦ × 0.5◦ √ √ √ √ Krinner et al. 
(2005) 

ORCHIDEE- 
CNP 

2◦ × 2◦ √ √ √ √ Goll et al. 
(2017) 

ORCHIDEEv3 0.5◦ × 0.5◦ √ √ √ √ Vuichard 
et al. (2019) 

SDGVM 1◦ × 1◦ √ √ √ √ Walker et al. 
(2017)  

a TER denotes the total ecosystem respiration, calculated by the sum of 
autotrophic and heterotrophic respiration (Ra + Rh). 

b NEP denotes the net ecosystem productivity. Some are provided directly 
from the model, and some are computed from GPP minus TER (GPP-TER). 
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2.2. Surface air temperature and sea surface temperature 

We used surface air temperature from the gridded Climatic Research 
Unit (CRU) Time-series (TS) data version 4.05 (Harris et al., 2020). This 
monthly temperature dataset spans the period from 1901 to 2020 with a 
0.5◦x0.5◦ horizontal resolution. For consistency with TRENDY datasets, 
we resampled the temperature data to 1◦x1◦ using the bilinear method. 

The sea surface temperature (SST) dataset came from the NOAA’s 
Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5) 
(Huang et al., 2017). It was produced at a 2◦x2◦ grid with spatial 
completeness enhanced through statistical methods. This monthly SST 
dataset begins in January 1854, continues to the present, and includes 
anomalies computed with respect to a 1971–2000 monthly climatology. 

2.3. Calculation of anomalies 

To calculate anomalies, we first removed the long-term climatology 
to eliminate the seasonal cycle, and detrended the resulting data using 
linear regression in each grid for all the variables. We then derived the 
ensemble mean anomalies based on the eleven models (Table 1). We 
further smoothed terrestrial carbon fluxes and climate anomalies using 
the 3-month running average. 

In the spatial correlation coefficient calculation, since the models 
accounted for varying soil depths, which caused divergence in magni
tudes of simulated MRSO, we consistently standardized NEP, surface air 

temperature, and soil moisture anomalies in each grid for all models, 
with the following formula: 

Z − Score =
X − X

σ (2)  

where X and X denote the original anomalous variation and time 
average, respectively. σ represents the standard deviation of the anom
alous variation. 

2.4. Definitions of climate events 

We adopted the Oceanic Niño Index (ONI) (Fig. 1a) to define ENSO 
events. The ONI is the 3-month running mean SST anomaly for the Niño 
3.4 region (5◦N-5◦S, 120◦− 170◦W). Events are defined as five consec
utive overlapping 3-month periods at or above the +0.5 K anomaly for 
warm (El Niño) events and at or below the − 0.5 K anomaly for cool (La 
Niña) events. The event severity level can be further categorized into 
weak (0.50 to 0.99 SST anomaly), moderate (1.00 to 1.49 SST anomaly), 
strong (1.50 to 1.99 SST anomaly) and very strong (≥ 2.00 SST anom
aly). To be classified as a certain level, an event must equal or exceed the 
threshold for at least three consecutive overlapping 3-month periods. 

For IOD events, we used the Indian Ocean Dipole Mode Index (DMI) 
(Saji et al., 1999), which was calculated from the SST difference between 
the western equatorial Indian Ocean (10◦S-10◦N, 50◦E-70◦E) and the 
south-eastern equatorial Indian Ocean (10◦S-0◦N, 90◦E-110◦E) (Fig. 1b). 

Fig. 1. Time series of Oceanic Niño Index (ONI) (a) and Dipole Mode Index (DMI) (b) from 1960 to 2019. All El Niño events are filled with orange, and La Niña 
events are filled with blue in (a). Similarly, the positive IOD (pIOD) events are filled with orange and negative IOD (nIOD) events are filled with blue in (b). The 
moderate, strong, and very strong ENSO events, and all IOD events are denoted by a two-digit year. The red and blue dotted lines in (a) and (b) represent the positive 
and negative thresholds for ENSO and IOD, respectively. Years with the simultaneous ENSO and IOD activity are marked with the gray background. 
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The standard deviation of DMI in SON (0.52 K from 1960 to 2019) was 
used as the criterion for IOD events. A pIOD event occurs when the 
absolute value of DMI is greater than or equal to 0.52 K for three 
consecutive 3-month periods. Accordingly, a strong pIOD event in this 
study is defined if a DMI value is greater than two standard deviations 
(1.04 K). 

2.5. Composite analysis 

In counting the years of ENSO events, we retained years of ENSO 
events of moderate intensity and above due to the high occurrence 
frequency. On the other hand, we kept all the years of IOD events 
because of fewer events. We classified individual events and compound 
events in Table 2. The compound event in this study mainly refers to the 
El Niño & pIOD and La Niña & negative IOD (nIOD). In addition, we 
discarded the year of 1991 because of the strong eruption of Mount 
Pinatubo, which greatly affected the global carbon cycle (Mercado et al., 
2009). TRENDY models were also unable to capture this signal well, 
with most TBMs generally lacking consideration of changing light 
quality (diffuse radiation fertilization) (Wang et al., 2016). 

According to the classifications of climate events (Table 2), we per
formed the composite analysis using data from all years for an event 
classification. Since the intensity of the two types of events was rela
tively low in June-July-August (JJA), we mainly analyzed and discussed 
seasonally averaged anomalies in September-October-November (SON) 
(yr0), December(yr0)-January(yr1)-February(yr1) (DJF), and March- 
April-May (MAM) in the following year (yr1) (Fig. 2), which was in 
accord with the behaviors that IOD and ENSO events ordinarily peak in 
SON and DJF, respectively (Saji et al., 1999; Trenberth et al., 2002; 
Wang et al., 2018). The Student’s t-test was employed to estimate the 
significance levels in the composite analysis. However, due to the 
limited number of pIOD, nIOD, and La Niña & nIOD events (≤ 3 events, 
Table 2), we only performed the significance test for the El Niño, La 
Niña, and El Niño & pIOD events. 

2.6. Disentangling the individual effects 

We constructed a simple linear regression model to understand the 
individual effects of ENSO and IOD in the specific compound event. In 
the early stage of an ENSO or IOD event, vegetation may not exhibit 
abnormalities immediately due to its resistance to environmental 
changes and self-regulation. Vegetation anomalies tend to occur at a 
certain time after the event (perhaps a month to a few months, 
depending on the type of vegetation). With the development of the 
event, vegetation would be affected by both the previous legacy effects 
and the concurrent effects. Therefore, concurrent and previous effects of 
events were both simply included in constructing the linear model. The 
model can be expressed as 

NEPc
i,j = αc

i,j⋅DMIc + αl
i,j⋅DMIl + βc

i,j⋅ONIc + βl
i,j⋅ONIl + εi,j (3)  

where DMI and ONI represent Dipole Mode Index and Oceanic Niño 
Index, respectively. The superscripts of c and l denote their values in the 
concurrent and previous seasons, respectively. The slopes of α and β 

represent the sensitivities of NEP to these indices. The subscripts of i and 
j represent the locations on a grid at 1◦x1◦ spatial resolution. Therefore, 
we regarded the terms of αc

i,j⋅DMIc and βc
i,j⋅ONIc as the concurrent effects 

of IOD and ENSO, and the terms of αl
i,j⋅DMIl and βl

i,j⋅ONIl as the legacy 
effects of IOD and ENSO in the previous season. ε represents the residual, 
such as effects of atmospheric circulation other than ENSO and IOD. 

3. Results and discussion 

3.1. Tropical NEP anomalies and their drivers in compound events 

3.1.1. Differences in spatial patterns 
We find that IOD events played a more important role in compound 

events relative to ENSO during SON when IOD peaked (Figs. 3e and n). 
Specifically, the anomalous carbon absorption occurred in El Niño in the 
vicinity of 20◦S in South America, and over southern Africa (Fig. 3a), 
while the anomalous carbon release occurred there in pIOD (Fig. 3d). 
However, NEP in the compound events there showed anomalous release, 
indicating the dominant role of pIOD (Fig. 3e). In contrast, in the 
equatorial region of South America and India, NEP showed the anom
alous carbon release in El Niño and anomalous carbon uptake in pIOD, 
while anomalous carbon release in the compound events, showing the 
dominant role of El Niño. Further, El Niño and pIOD did not always 
cancel out each other in every region. For example, anomalous carbon 
uptake over eastern Africa and anomalous carbon release over the Indo- 
China peninsula and most of Australia resulted from the additive effect 
of pIOD and El Niño in the compound events (Figs. 3a, d, and e). These 
characteristics were basically reflected of opposite sign in La Niña & 
nIOD compound events, with some small differences in certain places 
like southern Africa (Fig. 3n). 

In DJF, ENSO got mature (Fig. 2). Here, we analyzed La Niña, nIOD, 
and their compound events (Figs. 3i, l, and o) considering the avail
ability of their positive counterparts. In this period, the magnitude of 
NEP anomalies increased from their amplifying effects, notably over 
most of South America, eastern and southern Africa, Indonesia, and 
Australia. However, the slightly negative NEP anomalies over western 
Africa were dominated by the nIOD. In addition, the positive NEP 
anomalies over India and negative anomalies over the Indo-China 
peninsula in the compound events were different from those in indi
vidual events (La Niña and nIOD, Figs. 3i and l), perhaps because the 
cases of La Niña & nIOD events were too few (only two years) to be fully 
representative. 

In MAM, the impact of La Niña slightly weakened (Fig. 3j). NEP 
anomalies were influenced by the amplifying effects of La Niña and 
nIOD mainly over eastern and southern Africa, and the Indo-China 
peninsula (Figs. 3j, m, and p). In contrast, positive NEP anomalies 
were predominantly controlled by La Niña over South America and 
northeastern Australia, whereas negative NEP anomalies over western 
Africa were controlled by nIOD. 

Table 2 
Occurrence years of individual and compound events from 1960 to 2019.  

Events Years 

El Niño 1965, 1982, 1986, 1987, 2002, 2009 
La Niña 1964, 1970, 1971, 1973, 1975, 1984, 1988, 1999, 2007 
pIOD 2019 
nIOD 1960, 1996, 2016 
El Niño & pIOD 1972, 1994,1997, 2015 
El Niño & nIOD – 
La Niña & pIOD – 
La Niña & nIOD 1998, 2010  

Fig. 2. Schematic diagram for the seasonal composite analysis. The red and 
blue lines denote the evolving processes of a pIOD event and an El Niño event, 
respectively. 
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We calculated the total NEP anomalies for the pan-tropics (Trop, 
30◦S-30◦N) and three sub-continents including tropical South America 
(TSA, 120◦W-25◦W), tropical Africa (TAf, 25◦W-60◦E), and tropical 
Asia-Pacific (TAP, 60◦E-180◦E). NEP anomalies over the pan-tropics and 
these three sub-continents induced by El Niño, pIOD, and El Niño & 
pIOD were always negative, whereas the anomalies induced by La Niña, 
nIOD, and La Niña & nIOD were always positive (Fig. 4). Owing to the 
different years of cases (Table 2), we focus on their phases (the seasons 

with the maximum/minimum NEP anomaly) in different classifications. 
We found that the minimum NEP anomalies in El Niño (the 

maximum NEP anomalies in La Niña) over the tropics generally 
occurred in DJF. But there were some exceptions. The minimum NEP 
over TAf in El Niño occurred in MAM (Fig. 4a) which was consistent with 
the vast areas of negative NEP anomalies (Fig. 3c). And the NEP anomaly 
of TSA in La Niña was slightly higher (by approximately 0.01 PgC yr− 1) 
in MAM than in DJF (Fig. 4d), possibly because of the smaller negative 

Fig. 3. Spatial distributions of seasonal composite tropical net ecosystem productivity (NEP) anomalies for different event classes. The black slashes indicate areas 
with significance at p ≤ 0.1 relative to non-event years from 1960 to 2019 based on the Student’s two-sample t-test. Numbers in subplots (first column) denote the 
years for composite analysis.The spatial patterns of compound events (El Niño & pIOD and La Niña & nIOD) in different seasons can be different from those of single 
events. Compared with single events, the amplifying effects in some regions between IOD and ENSO could show stronger impacts, while their counterbalancing could 
make the NEP anomalies close to neutral or dominated by the stronger event. Here we only compared the spatial differences qualitatively among different classi
fications because of different years used in composite analysis. 

Fig. 4. The total seasonal anomalies of NEP in different classified events for tropics (abbreviated as “Trop”), tropical South America (“TSA”), tropical Africa (“TAf”), 
tropical Asia and Pacific (“TAP”), respectively. The error bars represent the standard deviation of different events in the composite analysis. Numbers in each subplot 
denote the selected years. 
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anomaly in the vicinity of 20◦S during MAM (Fig. 3g). In IOD (mainly 
nIOD here) events, the maximum NEP anomalies mainly occurred in 
MAM except TSA in SON (Fig. 4e). Additionally, it is worth noting that 
anomalous carbon release occurred in SON and DJF in nIOD events 
while anomalous carbon uptake occurred in MAM over TAf. 

During El Niño & pIOD events, the tropical negative NEP anomaly in 
MAM was slightly lower (by approximately 0.01 PgC yr− 1) than that in 
DJF. Interestingly, seasons with minimum negative NEP anomalies were 
distinct in the three sub-regions, showing the minimum values in DJF 
over TSA, MAM over TAf, and SON over TAP, respectively (Fig. 4c), 
which can be seen in their spatial patterns (Figs. 3e–g). However, in La 
Niña & nIOD events, the maximum NEP anomalies were all positive and 
occurred in DJF (Fig. 4f). 

These quantitative results showed that the phases of NEP anomalies 
in compound events were different from those in single ENSO and IOD 
events. It potentially indicated that changes of NEP anomalies in com
pound events were influenced by the interaction of ENSO and IOD. 

3.1.2. Biological processes and climate drivers 
In general, GPP dominated NEP anomalies rather than TER over the 

pan-tropics and sub-continents in individual and compound events 
(Figs. 5 and S1). Specific characteristics during El Niño & pIOD and La 
Niña & nIOD are discussed below. 

During the composite El Niño & pIOD event, the minimum pan- 
tropical NEP anomaly occurred in MAM with the magnitude of − 1.18 
± 0.76 PgC yr− 1, caused by a greater reduction of GPP (− 1.70 ± 0.53 
PgC yr− 1) than that of TER (− 0.66 ± 0.15 PgC yr− 1) (Fig. 5a). Signifi
cant regional differences existed, as mentioned above. In TSA, seasonal 
differences among NEP, GPP, and TER anomalies were small owing to 
insignificant changes in temperature and soil moisture anomalies 
(Fig. 6). The minimum NEP anomaly occurred in DJF with the magni
tude of − 0.65 ± 0. 30 PgC yr− 1, while the minimum GPP (− 0.79 ± 0.42 
PgC yr− 1) and TER (− 0.31 ± 0.14 PgC yr− 1) anomalies happened in 
MAM (Fig. 5b). In TAf, warmest temperature and driest soil moisture 
occurred over southern Africa in DJF (Figs. 6b and h), which could 
inhibit photosynthesis and enhance respiration (Figs. S2f and S3f), as 
also suggested by previous studies (Wang et al., 2016; Zeng et al., 2005), 
causing strong anomalous carbon release in the area (Fig. 3f). Simulta
neously, wettest anomalous conditions occurred over eastern Africa 
(Fig. 6h), which could strongly enhance GPP (Fig. S2f), causing signif
icant anomalous carbon uptake (Fig. 3f). The strong spatial compensa
tion of TAf in DJF caused the occurrence of minimum values of NEP, 
GPP, and TER in MAM, with anomalies of − 0.53 ± 0.27, − 0.81 ± 0.53, 
and − 0.34 ± 0.35 PgC yr− 1, respectively (Fig. 5c). There were more 

positive and negative cancellations of NEP anomalies within Africa. 
Perhaps because Africa is distributed symmetrically around the equator, 
the climate is different between the north and south of the equator in the 
same season, and the vegetation is affected differently. In TAP, the 
minimum NEP, GPP, and TER anomalies all occurred in SON with their 
magnitudes of − 0.27 ± 0.17, − 0.59 ± 0.42, and − 0.34 ± 0.27 PgC yr− 1, 
respectively (Fig. 5d). Spatially, the widespread drought over Indonesia 
and Australia mainly contributed to these anomalies (Figs. 3e, S2e, S3e, 
and 6 g). 

During its counterpart, La Niña & nIOD, the maximum composite 
pan-tropical NEP anomaly occurred in DJF which was caused by more 
enhancement of GPP (2.28 ± 0.35 PgC yr− 1) than that of TER (0.97 ±
0.16 PgC yr− 1) (Fig. 5e). For the three sub-continents, although the 
maximum NEP anomalies consistently occurred in DJF, with composite 
total anomalies of 0.57 ± 0.05, 0.18 ± 0.20, and 0.84 ± 0.12 PgC yr− 1 

over TSA, TAf, and TAP, respectively (Figs. 4f and 5f–h), the maximum 
anomalies of GPP and TER appeared in different seasons. Specifically, in 
TSA, GPP and TER were both inhibited in SON (Figs. 5f, S2n, and S3n) 
owing to drier and warmer conditions (Figs. 6d and j). However, they 
were enhanced in the following seasons associated with lower temper
ature and wetter soil moisture (Figs. 6e, f, k, and l), causing relatively 
stronger positive anomalies in GPP and TER in DJF than in MAM 
(Fig. 5f). In TAf, although GPP and TER anomalies had strongest positive 
or negative values in specific regions in DJF (such as eastern and 
southern Africa) among these three seasons (Figs. S2o and S3o), the 
strong spatial compensation resulted in minimum negative total anom
alies in GPP (− 0.29 ± 0.72 PgC yr− 1) and TER (− 0.31 ± 0.43 PgC yr− 1) 
in MAM (Fig. 5g). In TAP, the maximum total GPP (1.63 ± 0.07 PgC 
yr− 1) and TER (0.95 ± 0.10 PgC yr− 1) anomalies happened in SON 
(Fig. 5h), mainly located over India and Australia (Figs. S2n and S3). 
They were largely caused by wetter soil moisture (Fig. 6j). 

We further calculated spatial correlation coefficients between NEP 
and temperature/soil moisture to explore which climate factor played 
the most important role in shaping the NEP anomalous patterns in 
different classifications and seasons (Table 3 and S1). Due to the strong 
spatial autocorrelation, it was difficult for us to calculate the degree of 
freedom and give out the reasonable significance. We considered that 
the spatial correlation coefficient calculated from the composite was 
significant when the signs of correlation coefficients calculated from all 
the single cases were consistent with that from the composite. 

In El Niño & pIOD, the NEP anomalous patterns consistently had 
higher spatial correlation coefficients with soil moisture in different 
seasons over the entire tropics and three sub-continents, indicating the 
greater importance of soil moisture (Table 3). This was somewhat 

Fig. 5. Total seasonal anomalies of NEP, gross primary productivity (GPP), and total ecosystem respiration (TER) in El Niño & pIOD and La Niña & nIOD events. The 
error bars represent the standard deviation of different variables in different events in each classification for the composite analysis. Numbers in (d) and (h) denote 
the selected years. 
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different from the mechanisms in El Niño which showed a higher cor
relation coefficient between NEP and temperature in MAM over the 
entire tropics (Table S1). For La Niña & nIOD over the pan-tropics, soil 
moisture played a more important role in SON, while temperature and 
soil moisture had comparable effects in DJF and MAM (Table 3). It was 
also different from the individual events (La Niña or nIOD), especially in 
DJF (Table S1). For the sub-continents, except TSA in DJF and TAf in 
SON and MAM, other regions were more controlled by temperature. 
These correlation coefficients suggested asymmetric effects of soil 
moisture and temperature on NEP anomalies during El Niño & pIOD and 
La Niña & nIOD, as suggested by a previous study for El Niño and La 
Niña (Fang et al., 2017). 

3.2. Revisiting the tropical carbon flux anomalies during 1997/98 

In the above content, we mainly qualitatively discussed ENSO and 
IOD effects in compound events. However, since the events occurred in 
different years, we cannot directly determine individual contributions 
from ENSO and IOD. Here, we adopt the multi-variate linear regression 
model (Eq. (3)) to estimate individual contributions for specific cases. 
The F-test indicates that this simple linear model has good performance 
over most tropical vegetated areas (Fig. S4). Further, total NEP anom
alies for all the six compound events (Table 2) were calculated by this 
linear model over the entire tropics and three sub-continents, and the 
results generally matched well with the multi-model simulated 
ensemble NEP anomalies (Fig. S5). Among these six compound events, 
the extreme El Niño and pIOD events simultaneously occurred in 1997/ 
98 (Fig. 1 and Table 2), with the maximum magnitude of NEP anomalies 
(Fig. S6), which had significant impacts on the carbon cycle in the tro
pics. Hence, we focus on their individual effects for the 1997/98 com
pound event. 

3.2.1. NEP anomalies during SON in 1997 
Compared with the raw TBM NEP anomalies (Fig. 7a), the calculated 

NEP anomalies can capture most of the characteristics, except some 
deviations over southern Africa, India, and western Australia (Fig. 7b), 

with their root mean square errors (RMSE) of 0.05 kgC m− 2 yr− 1 and 
spatial correlation coefficient of 0.46. The decomposed spatial patterns 
of contributions from the pIOD and El Niño showed obvious different 
patterns, to a large extent consistent with patterns in the composite El 
Niño and pIOD (Figs. 3a and d). In SON, contributions from the pIOD in 
1997 was dominated by the concurrent pIOD effect (Fig. 7e), whereas 
the legacy effect of the pIOD in the preceding season was nearly neutral 
because pIOD developed in July and peaked in October (Fig. 7g). In 
contrast, both concurrent and legacy effects of the El Niño (developed in 
May 1997) were strong (Figs. 7f and h). 

In detail, over TSA, the calculated total NEP anomaly by the simple 
regression model was − 0.68 ± 0.41 PgC yr− 1, somewhat smaller than 
the raw NEP anomaly of − 0.92 ± 0.00 PgC yr− 1 (Fig. 7i). It was 
composed of − 0.34 ± 0.15 and − 0.35 ± 0.32 PgC yr− 1 contributed by 
the pIOD and El Niño, respectively. Spatially, negative NEP anomalies 
dominated by pIOD were located in the south and by El Niño in the north 
(Fig. 7c), as revealed in Fig. 3. The decomposed pIOD-induced NEP 
anomalies mainly originated from its concurrent impact (− 0.30 ± 0.14 
PgC yr− 1). However, the decomposed El Niño-induced NEP anomalies 
were significantly influenced by concurrent (0.67 ± 0.45 PgC yr− 1) and 
legacy effects (− 1.02 ± 0.59 PgC yr− 1), showing that the concurrent 
effect partially cancelled out the legacy effects. 

The total NEP anomalies over TAf were small, with comparable 
magnitudes of − 0.02 ± 0.00 PgC yr− 1 in raw and − 0.05 ± 0.15 PgC yr− 1 

in calculated NEP anomalies, largely owing to the compensation of the 
pIOD and El Niño effects. The total NEP anomaly caused by the pIOD 
was positive with its magnitude of 0.5 ± 0.19 PgC yr− 1, while that 
caused by El Niño was negative with a magnitude of − 0.54 ± 0.14 PgC 
yr− 1, composing of 0.35 ± 0.34 and − 0.89 ± 0.41 PgC yr− 1 estimated by 
the concurrent and legacy effects, respectively. 

Over TAP, the estimated total NEP was − 0.50 ± 0.46 PgC yr− 1, 
caused by the pIOD-induced − 0.08 ± 0.00 PgC yr− 1 and El Niño- 
induced − 0.42 ± 0.37 PgC yr− 1. This estimation was stronger than the 
raw NEP anomaly of − 0.08 ± 0.25 PgC yr− 1, and probably resulted from 
an overestimation of the role of El Niño in our linear regression model. 

Fig. 6. Spatial distributions of seasonal composite tropical normalized climate anomalies. (a-c) Normalized temperature in El Niño & pIOD. (d-f) Normalized 
temperature in La Niña & nIOD. (g-i) Normalized soil moisture in El Niño & pIOD. (j-l) Normalized soil moisture in La Niña & nIOD. The black slashes indicate areas 
with significance at p ≤ 0.1 relative to non-event years from 1960 to 2019 based on the Student’s two-sample t-test. Numbers in subplots (first column) denote the 
years for composite analysis. 
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3.2.2. NEP anomalies during DJF in 1997/98 
In DJF, except for some deviations over India and northeastern 

Australia, the spatial pattern of the calculated NEP well matched the 
spatial pattern of the raw NEP anomalies, with an RMSE of 0.05 kgC 
m− 2 yr− 1 and spatial correlation coefficient of 0.70 (Figs. 8a and b). We 
can find that both the concurrent and legacy impacts of the pIOD and El 
Niño played significant roles. In TSA, the linear model captured well the 
spatial features, showing a comparable total in negative NEP anomalies 
(− 0.76 ± 0.43 PgC yr− 1) with the raw value (− 0.75 ± 0.00 PgC yr− 1). 
This negative NEP anomaly was dominated by El Niño with an impact of 
− 0.58 ± 0.38 PgC yr− 1. Specifically, the concurrent and legacy contri
butions of El Niño had comparable magnitudes of impacts of − 0.30 ±
0.43 and − 0.28 ± 0.55 PgC yr− 1, respectively. Even so, their contribu
tions in spatial distributions had different characteristics (Figs. 8f and h). 
In addition, the negative NEP anomalies mainly caused by the pIOD 
legacy (pIOD disappeared in January) partially offset the effect of the El 
Niño in the south (Figs. 8c and g). 

In TAf, although the spatial patterns were similar, showing the strong 
anomalous carbon uptake over the eastern Africa and anomalous carbon 
release over the central and southern Africa (Figs. 8a and b), the 
calculated total NEP anomaly was − 0.25 ± 0.26 PgC yr− 1, in contrast 
with 0.17 ± 0.00 PgC yr− 1 in the raw NEP anomaly. The pIOD, mainly 
from the legacy effects, resulted in total positive NEP anomaly of 0.35 ±
0.47 PgC yr− 1, while El Niño resulted in total negative NEP anomaly 
(− 0.60 ± 0.35 PgC yr− 1), mainly due to legacy effects in the north and 
concurrent effects in the south (Figs. 8f and h). 

In TAP, the estimated NEP anomaly was − 0.54 ± 0.40 PgC yr− 1, 
stronger than − 0.02 ± 0.00 PgC yr− 1 in raw data. This departure was 
probably due to the overestimation of anomalous carbon release over 
India and northeastern Australia (Figs. 8a and b), mainly caused by the 
impacts of El Niño (Fig. 8d). In general, the pIOD, mainly from the 
concurrent impacts, caused anomalous carbon uptake north of 20◦N and 
eastern Australia (Fig. 8c), making the total positive NEP of 0.07 ± 0.14 
PgC yr− 1. The concurrent effects of El Niño were superimposed on its 
legacy effects, resulting in a total negative NEP anomaly of − 0.61 ±
0.32 PgC yr− 1 (− 0.14 ± 0.45 and − 0.47 ± 0.51 PgC yr− 1 by concurrent 
and legacy effects, respectively). 

3.2.3. NEP anomalies during MAM in 1998 
During MAM, the spatial pattern of the estimated NEP anomalies 

based on the linear model also matched well with the raw data, with the 

RMSE of 0.06 kgC m− 2 yr− 1 and spatial correlation coefficient of 0.68 
(Figs. 9a and b). Changes in NEP anomalies were predominantly 
controlled by El Niño throughout the tropics, except that pIOD domi
nated over eastern parts of South America, eastern Africa, and north
eastern Australia (Figs. 9c and d). The concurrent effects of the pIOD and 
El Niño were close to zero (Figs. 9e and f). Hence, NEP anomalies were 
mainly influenced by their legacy effects, in which El Niño played a 
greater role (Figs. 9h and i). In TSA, a negative NEP anomaly was mainly 
caused by El Niño legacy with the value of − 0.56 ± 0.28 PgC yr− 1. In 
TAf, pIOD had a stronger effect over the eastern Africa, causing total 
positive NEP anomaly of 0.22 ± 0.22 PgC yr− 1, partially offsetting the 
negative effect of El Niño (− 0.65 ± 0.20 PgC yr− 1). In TAP, although the 
total contribution of pIOD was close to zero (0.02 ± 0.29 PgC yr− 1), it 
can be seen that pIOD caused the obvious positive NEP anomalies in 
eastern Australia. And El Niño caused − 0.40 ± 0.35 PgC yr− 1 NEP 
anomaly, composing of − 0.06 ± 0.21 and − 0.34 ± 0.32 PgC yr− 1 

induced by the concurrent and legacy, respectively. 

3.3. Implications and limitation 

It is well known that large-scale atmospheric circulation oscillations 
can exert abiotic stresses on biota affecting the terrestrial carbon cycle. 
Many previous literatures have extensively studied the impacts of ENSO 
(especially El Niño) events on tropical terrestrial carbon flux variations 
(Bowman et al., 2017; Liu et al., 2017; Piao et al., 2019; Wang et al., 
2016, 2018a, b). In contrast, less attention has been paid to IOD, another 
mode of air-sea coupling, and its role in regulating terrestrial carbon 
fluxes, with only a limited number of studies focusing on IOD-affected 
GPP over IO rim countries (Wang et al., 2021; Williams and Hanan, 
2011). In the past six decades, there was a high probability for simul
taneous IOD and ENSO activity, especially El Niño & pIOD and La Niña 
& nIOD (Table 2). The spatial patterns of NEP anomalies influenced by 
the strong interference of simultaneous IOD and ENSO activity had its 
own characteristics. For example, IOD dominated NEP anomalies over 
eastern and southern Africa, and the vicinity of 20◦S in South America, 
and enhanced the impacts of ENSO in Australia and Indonesia during 
SON. The interferences between IOD legacy and ENSO also existed 
during DJF and MAM (Fig. 3). Therefore, when simultaneous ENSO and 
IOD activity occurred, we cannot fully understand the changes in trop
ical terrestrial carbon fluxes if we only consider ENSO events as was 
conventionally done. Moreover, previous studies have suggested that 

Table 3 
Spatial correlation coefficients of NEP anomalies with surface air temperature (Tas) and soil moisture (SM) anomalies in different events and seasons. All the data used 
for calculation were standardized. The values in brackets show the minimum and maximum spatial correlation coefficients for the selected cases listed in Table 1. The 
spatial correlation coefficient calculated from the composite was significant when the signs of correlation coefficients calculated from all the single cases were 
consistent with that from the composite, and these significant spatial correlation coefficients were shown in bold.  

El Niño & pIOD  
Trop TSA TAf TAP  
SM Tas SM Tas SM Tas SM Tas 

SON 0.46 
(0.48~0.61) 

¡0.42 
(¡0.47~¡0.15) 

0.34 
(0.31~0.57) 

¡0.26 
(¡0.55~¡0.21) 

0.52 
(0.48~0.69) 

¡0.11 
(¡0.48~¡0.02) 

0.53 
(0.22~0.49) 

¡0.42 
(¡0.38~¡0.17) 

DJF 0.57 
(0.43~0.53) 

¡0.46 
(¡0.44~¡0.20) 

0.58 
(0.36~0.56) 

¡0.41 
(¡0.45~¡0.24) 

0.67 
(0.45~0.66) 

¡0.47 
(¡0.60~¡0.18) 

0.22 
(0.25~0.48) 

− 0.21 
(− 0.47~0.12) 

MAM 0.66 
(0.48~0.62) 

¡0.38 
(¡0.55~¡0.26) 

0.64 
(0.34~0.62) 

¡0.51 
(¡0.51~¡0.28) 

0.69 
(0.46~0.67) 

¡0.19 
(¡0.62~¡0.09) 

0.59 
(0.50~0.70) 

¡0.42 
(¡0.56~¡0.12)  
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the frequency of extreme pIOD and El Niño events may increase under 
future greenhouse warming based on the Coupled Model Intercompar
ison Project phase 5 (CMIP5) multi-model simulations (Cai et al., 2014a, 
b). Additionally, Kim et al. (2017) pointed out that the sensitivity of 
interannual variation of tropical terrestrial carbon flux to ENSO will be 
enhanced under greenhouse warming. Wang et al. (2021) also suggested 
the larger impacts of IOD on terrestrial GPP in CMIP6 multi-model 
future projections over certain regions, such as central and eastern Af
rica, Sumatra, and western and southeastern Australia with enhanced 
explained variances. Hence, we believe that a comprehensive under
standing of the interactive effects of IOD and ENSO events on tropical 
terrestrial carbon flux variations is fundamental to understanding these 
future changes in sensitivity and impacts. 

There is a large inter-model spread in NEP anomalies in TRENDYv9 
TBMs, as mentioned by previous studies (Bastos et al., 2018; Fried
lingstein et al., 2020; Wang et al., 2018a), originating from their 
different parameterizations and processes considered, resulting in large 
differences in simulated responses of photosynthesis and respiration to 
CO2 concentration and climate (Rogers, 2014; Rogers et al., 2017). 
While we selected some models to partially reduce the uncertainty, we 
mainly focused on the ensemble result without enough consideration of 
the individual model performance. Furthermore, although results of the 
composite analysis based on the ensemble result can explain most of the 
interactive effects between IOD and ENSO in compound events, un
certainties remained over some regions (e.g. India and the Indo-China 
peninsula in DJF during La Niña & nIOD; Fig. 3o) because of the 
limited number of events (only one pIOD event, two La Niña & nIOD 
events, and three nIOD events). Additionally, a simple linear model was 
used to calculate the individual contributions of ENSO and IOD in 
1997/98 compounds events. The F-test demonstrated the model per
formed well and the calculated results showed a high spatial correlation 
coefficient with the original data. However, we admitted that there may 
be some underestimation or overestimation in total carbon fluxes over 
the sub-continents. 

In addition, ENSO can also be divided into eastern Pacific (EP) and 
Central Pacific (CP) El Niño, with different global teleconnections and 
different impacts on the terrestrial carbon cycle (Kao and Yu, 2009; 
Wang et al., 2018a). Therefore, more detailed classification of ENSO 
types may be suggested for future studies. 

4. Conclusion 

In this study we comprehensively investigated the interactive effects 
of ENSO and IOD on the tropical NEP interannual variations both 
qualitatively and quantitatively by the composite analysis and a multi- 
variate linear regression model from 1960 to 2019. The main conclu
sions are summarized as follows:  

1) In compound events, NEP anomalies were affected by the amplifying 
effects or counterbalancing between ENSO and IOD. In particular, 
NEP anomalies were dominated by IOD over South America near 
20◦S and Africa south of the Equator, dominated by ENSO over India 
and northern South America, and influenced by their amplifying 
effects over eastern Africa, Indo-China and most of Australia during 
SON. In DJF, their amplifying effects played the dominant roles, 
notably over most of South America, eastern and southern Africa, 
Indonesia, and Australia. In MAM, the influence of IOD legacy effects 
gradually disappeared, and tropical NEP anomalies were predomi
nantly controlled by ENSO events. These characteristics make the 
phases of NEP anomalies in compound events different from those in 
individual ENSO and IOD events.  

2) Attribution analysis suggested the dominant role of GPP in these NEP 
anomalies in different seasons rather than TER. However, the effects 
of temperature and soil moisture played different roles in different 
events. Specifically, spatial correlation coefficients suggested that 
NEP anomalies had higher correlation coefficients with soil moisture 
in El Niño & pIOD, but generally higher correlation coefficients with 
temperature in La Niña & nIOD.  

3) For the simultaneous extreme pIOD and El Niño activity in 1997/98, 
we estimated their individual contributions and found that the pIOD 
event had the greatest influence during SON, followed by DJF. This is 
consistent with the results of composite analysis. During the SON in 
1997, the individual contributions of pIOD and El Niño were − 0.34 
± 0.15 and − 0.35 ± 0.32 PgC yr− 1 in the tropical South America, 0.5 
± 0.19 and − 0.54 ± 0.14 PgC yr− 1 in the tropical Africa, − 0.08 ±
0.25 and − 0.42 ± 0.37 PgC yr− 1 in the tropical Asia-Pacific, 
respectively. Furthermore, during the DJF in 1997/98, the individ
ual contributions of pIOD and El Niño were − 0.18 ± 0.15 and − 0.58 
± 0.38 PgC yr− 1 in tropical South America, 0.35 ± 0.37 PgC yr− 1 and 
− 0.60 ± 0.35 PgC yr− 1 in tropical Africa, 0.07 ± 0.14 PgC yr− 1 and 
− 0.61 ± 0.32 PgC yr− 1 in tropical Asia-Pacific, respectively. 

La Niña & nIOD 
Trop TSA TAf TAP 
SM Tas SM Tas SM Tas SM Tas 

0.54 
(0.43~0.49) 

¡0.40 
(¡0.36~¡0.33) 

0.40 
(0.26~0.38) 

¡0.46 
(¡0.43~¡0.29) 

0.62 
(0.48~0.50) 

¡0.22 
(¡0.32~¡0.05) 

0.52 
(0.40~0.56) 

¡0.53 
(¡0.52~¡0.41) 

0.58 
(0.46~0.52) 

¡0.58 
(¡0.45~¡0.41) 

0.56 
(0.44~0.47) 

¡0.39 
(¡0.39~¡0.14) 

0.46 
(0.31~0.48) 

¡0.56 
(¡0.53~¡0.46) 

0.63 
(0.42~0.65) 

¡0.75 
(¡0.61~¡0.40) 

0.62 
(0.49~0.60) 

¡0.63 
(¡0.58~¡0.52) 

0.69 
(0.52~0.57) 

¡0.74 
(¡0.61~¡0.61) 

0.39 
(0.43~0.48) 

¡0.24 
(¡0.44~¡0.22) 

0.59 
(0.48~0.70) 

¡0.65 
(¡0.58~¡0.56)  
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Fig. 7. NEP anomalies during SON in 1997. (a) NEP anomalies originally derived from TRENDYv9 ensemble result. (b) Calculated NEP anomaly derived from the 
linear regression model. (c) Calculated NEP anomaly affected by the pIOD. (d) Calculated NEP anomaly affected by the El Niño. (e and g) Calculated NEP anomalies 
influenced by the concurrent and preceding pIOD, respectively. (f and h) Calculated NEP anomalies influenced by the concurrent and preceding El Niño, respectively. 
(i) Total NEP anomalies caused by the pIOD and El Niño over the three sub-continents: TAS, TAf and TAP. The values in (c) were the sum of values in (e) and (g), and 
the values in (d) were the sum of values in (f) and (h). The error bars in (i) represent the standard deviation of the results calculated from each TBM. 
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Fig. 8. Same as Fig. 7, but for DJF in 1997/98.  
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