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Abstract Understanding the role of climate extremes and their impact on the carbon (C) cycle is
increasingly a focus of Earth system science. Climate extremes such as droughts, heat waves, or heavy
precipitation events can cause substantial changes in terrestrial C fluxes. On the other hand, extreme
changes in C fluxes are often, but not always, driven by extreme climate conditions. Here we present an
analysis of how extremes in temperature and precipitation, and extreme changes in terrestrial C fluxes are
related to each other in 10 state-of-the-art terrestrial carbon models, all driven by the same climate forcing.
We use model outputs from the North American Carbon Program Multi-scale Synthesis and Terrestrial
Model Intercomparison Project (MsTMIP). A global-scale analysis shows that both droughts and heat waves
translate into anomalous net releases of CO2 from the land surface via different mechanisms: Droughts
largely decrease gross primary production (GPP) and to a lower extent total respiration (TR), while heat
waves slightly decrease GPP but increase TR. Cold and wet periods have a smaller opposite effect. Analyzing
extremes in C fluxes reveals that extreme changes in GPP and TR are often caused by strong shifts in water
availability, but for extremes in TR shifts in temperature are also important. Extremes in net CO2 exchange
are equally strongly driven by deviations in temperature and precipitation. Models mostly agree on the sign
of the C flux response to climate extremes, but model spread is large. In tropical forests, C cycle extremes are
driven by water availability, whereas in boreal forests temperature plays a more important role. Models are
particularly uncertain about the C flux response to extreme heat in boreal forests.

1. Introduction

Environmental conditions such as temperature and water availability are strongly interlinked with ter-
restrial carbon fluxes. Overall, the terrestrial biosphere is currently providing a negative feedback to a
warming world [Friedlingstein et al., 2006]. However, the nature and magnitude of most feedback mecha-
nisms between the atmosphere and biosphere are still uncertain. Warmer temperatures, for instance, often
increase terrestrial gross carbon uptake [Beer et al., 2010] but also soil respiration [Mahecha et al., 2010],
resulting in a largely uncertain net carbon-cycle response to climate change. The last generation of coupled
climate-carbon models largely disagreed as to whether the terrestrial biosphere will act as a sink or a source
of carbon to the atmosphere in future [Friedlingstein et al., 2006]. This uncertainty still holds for the more
recent model runs collected in the Coupled Model Intercomparison Project Phase 5 (CMIP5) [Ahlström et al.,
2012; Jones et al., 2013].
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Climate extremes such as droughts, heat waves, or intense precipitation events can significantly affect car-
bon fluxes [Reichstein et al., 2013]. Their impacts might, in some cases, temporarily reverse the effect of
years of carbon sequestration [Ciais et al., 2005]. However, fast recovery can partly offset instantaneous
impacts of climate extremes and disturbance events [Amiro et al., 2010]. Identifying extremes directly in vari-
ables describing the state of the biosphere such as fraction of absorbed photosynthetically active radiation
or enhanced vegetation index can lead to new insights about the relationship between extreme climate
drivers on the one hand and extreme responses on the other [Zscheischler et al., 2013; Reichstein et al., 2013].
It has recently been shown that extremes in gross primary production (GPP) are the main driver of GPP’s
interannual variability at the global [Zscheischler et al., 2014a] and the continental scale [Zscheischler et al.,
2014b], with water scarcity driving most of the negative extreme events. While droughts often significantly
influence carbon uptake, higher water availability can also mitigate the impacts of heat waves [Bauweraerts
et al., 2014]. In a warming climate, the intensity and frequency of climate extremes and their geographi-
cal distribution will change substantially [Seneviratne et al., 2012; Sillmann et al., 2013; Fischer et al., 2013],
suggesting concurrent changes in carbon cycle variability.

So far little attention has been given to model performance during extreme events. Keenan et al. [2012]
discuss model performance and lagged impacts in response to one extreme event within a model-data
intercomparison study. Zscheischler et al. [2014a, 2014b] analyze GPP extreme events on four different
GPP data sets and find that droughts are the main driver for extreme decreases on the global and con-
tinental scale. In a model environment, it can be analyzed whether GPP extremes translate into changes
in the net carbon uptake. Hence, in this study, we investigate how extremes in climate and the carbon
cycle are related in current Terrestrial Biosphere Models (TBMs). In particular, we work with a suite of 10
state-of-the-art TBMs from the North American Carbon Program (NACP) Multi-scale Synthesis and Terrestrial
Model Intercomparison Project (MsTMIP) described in Huntzinger et al. [2013] and Wei et al. [2013].

While simulated outputs are not direct observations of the carbon cycle, they integrate our current under-
standing of carbon exchanges between terrestrial ecosystems and the atmosphere, and therefore are a
useful tool for several reasons. First, simple plausibility checks of the relationships found in the models can
confirm model performance or foster reevaluation of specific model mechanisms. Second, analyzing model
agreement can identify individual models that stand out against the rest. This can be useful if one can trace
back the specific mechanisms that make a model an outlier in a particular situation, especially because some
models that participated in MsTMIP are also used in coupled and/or offline projections of future carbon
uptake. Third, due to the framework of MsTMIP [Huntzinger et al., 2013], specific differences in the model
output can be attributed to differences in intrinsic model structural characteristics, parameters, and initial
states. Finally, model results can yield novel hypotheses based on our current understanding of the pro-
cesses at work. While we cannot address each of the above points in full detail in this study, we provide first
results about how MsMTIP models behave during large-scale extreme events. Results from this study can
then later be evaluated against observations, e.g., from carbon flux data obtained by eddy-covariance flux
towers (compiled in FLUXNET) [Baldocchi et al., 2001; Baldocchi, 2008].

In this contribution, we analyze how current carbon cycle models translate extreme events in climate vari-
ables into (possibly extreme) responses in carbon fluxes. We address this question by looking from both
driver and impact perspectives [Smith, 2011]. More specifically, we first identify temperature (T) and precipi-
tation (P) extremes and estimate their immediate impact on the terrestrial carbon fluxes. Some extremes in
temperature and precipitation can be strongly coupled, for instance, heat extremes and droughts [Mueller
and Seneviratne, 2012]. We will therefore discuss whether the impact of a compound event (T and P simul-
taneously extreme) exceeds the expected additive impact (sum of impacts when either T or P is extreme).
Besides their immediate impact, climate extremes can have strong lagged impacts on terrestrial carbon
fluxes [Reichstein et al., 2013]. Warm seasons can enhance heterotrophic respiration in grasslands a year later,
soil frost can increase sensitivity of heterotrophic respiration of forests to summer drought and tree mor-
tality can increase after severe droughts [Reichstein et al., 2013]. Such lagged and legacy effects of extreme
climate events, however, are still poorly understood [McDowell, 2011] and thus rarely correctly imple-
mented in current carbon cycle models. Thus, we also analyze whether climate extremes cause large-scale
lagged impacts.

Droughts and heat waves, as well as wind throw, fires, and insect infestation can trigger strong alterations
in GPP and/or TR [Reichstein et al., 2013], but not all extreme changes in terrestrial carbon fluxes need to be
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Table 1. MsTMIP Terrestrial Biosphere Models (TBMs) Used in This Study Including Model Run (BG1 and SG3 Are the Best Esti-
mates From the Global Runs, Models That Have BG1 Include a Nitrogen Cycle), Model Output Version (Internal MsTMIP Versioning),
References, and C Fluxes That Are Included in Defining NEEa

Model Run Run Version Reference NEE Includes

Biome-BGCb BG1 v2 Thornton et al. [2002] fire emissions
CLM4c BG1 v1 Shi et al. [2011] and Mao et al. [2012] fire emissions, land use change, product decay,
CLM4VICd BG1 v1 Li et al. [2011] maintenance respiration deficit
DLEMe BG1 v3 Tian et al. [2011, 2012] land use change, product decay
GTECf SG3 v2 Ricciuto et al. [2011] product decay
ISAMg BG1 v3 Jain et al. [1996] land use change
LPJ-wslh SG3 v3 Sitch et al. [2003] fire emissions, land use change
ORCHIDEE-LSCEi SG3 v3 Krinner et al. [2005] land use change, product decay
VEGASj SG3 v2.2 Zeng et al. [2005] fire emissions, land use change, product decay
VISITk SG3 v3.1 Ito and Inatomi [2012]

aBest estimates in MsTMIP always include annually changing land use cover as a driver. Hence, land use change only appears in
the last column if a model additionally tracks emissions from land use and land cover changes.

bBIOME-BGC = Global Biome Model-Biogeochemical Cycle.
cCLM4 = Community Land Model.
dCLM4VIC = CLM with Variable Infiltration Capacity.
eDLEM = Dynamic Land Ecosystem Model.
fGTEC = Global Terrestrial Ecosystem Carbon model.
gISAM = Integrated Science Assessment Model.
hLPJ-wsl = based on the Lund–Potsdam–Jena managed Land (LPJmL) model.
iORCHIDEE = Organising Carbon and Hydrology In Dynamic Ecosystems.
jVEGAS = Vegetation Global Atmosphere and Soil.
kVISIT = Vegetation Integrative SImulator for Trace gases.

driven by extreme drivers [Handmer et al., 2012]. Hence, in a second assessment, we identify extremes in
C fluxes and analyze the concurrent climate conditions. More specifically, using driver data of MsTMIP, we
investigate the concurrent state of T and P during C flux extremes.

Ecosystems in different regions are limited by different environmental factors. Cold temperatures often limit
growth in boreal and temperate regions, whereas in tropical areas it is often warm enough but growth can
be limited by water availability or cloud cover [Nemani et al., 2003]. Tropical forests also operate close to
their optimal photosynthesis temperature, however, and could be impacted by hot temperatures [Clark,
2004; Corlett, 2011]. In fact, the interannual correlation between (tropical) CO2 anomalies and temperature
anomalies is larger than with precipitation anomalies [see, e.g., Wang et al., 2013]. To investigate whether dif-
ferent ecosystems react differently to extreme climate conditions, we compare C flux responses to extreme
conditions of T and P between tropical, temperate, and boreal forests.

2. Material and Methods
2.1. MsTMIP
We use a suite of models from the North American Carbon Program (NACP) Multi-scale Synthesis and
Terrestrial Model Intercomparison Project (MsTMIP) described in Huntzinger et al. [2013] and Wei et al. [2013].
The model simulations all follow the same experimental design and, more importantly, are all driven with
the same set of climate drivers. This setting allows for an investigation of modeled impacts of climate
extremes across a variety of different C cycle models. For this study, we use the global runs with “everything
turned on,” meaning that models are driven with time-varying climate and atmospheric CO2 concentrations,
land use and land-cover change (SG3), and nitrogen deposition (BG1; note that not all models include a
nitrogen cycle). In the framework of MsTMIP, these runs are the “best estimates” of C fluxes submitted by the
modeling teams. We use the 10 models shown in Table 1.

We restrict ourselves to temperature (T) and precipitation (P) as climatic drivers. For C fluxes we use GPP,
total respiration (TR), and net ecosystem exchange (NEE). TR is defined as the sum of autotrophic and het-
erotrophic respiration. NEE is the sum of TR, disturbance fluxes (e.g., fire), product emissions, and aquatic
fluxes, minus GPP [Huntzinger et al., 2013]. By including disturbances, product emissions and aquatic C
fluxes, the definition of NEE used in MsTMIP follows the recommendations of Hayes and Turner [2012] [see
also Chapin et al., 2006]. Depending on the model architecture, the factors included in NEE differ between
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models (Table 1). We use the following sign conventions for GPP, TR, and NEE. GPP is always positive and
describes a C flux from the atmosphere to the biosphere. TR is always positive and describes a C flux from
the biosphere to the atmosphere. Positive NEE means a C release from the biosphere to the atmosphere,
and vice versa. In this study we focus on the last 30 years (1981–2010), although MsTMIP output data are
available for the period 1901–2010. We choose this period because, first, 30 years is the common time span
to define climate reference periods (according to the World Meteorological Organization) [Burroughs, 2003]
and second, because in this time span, environmental drivers are well constrained by observations. To assess
changes in C fluxes relative to the long-term mean, prior to any further analysis, we subtract the linear trend
of the time series of GPP, TR, and NEE at each location and subsequently subtract the average seasonal cycle
of the years 1981–2010. We also linearly detrend T at each location. Throughout the paper, we call a point in
a three-dimensional data cube (latitude × longitude × time) a voxel (short for volumetric pixel, used, e.g., in
Neuroscience or computer gaming).

2.2. Climate Extremes
We focus on the impacts of T and P extremes. To identify extremes in P we rely on the standardized pre-
cipitation index (SPI) [McKee et al., 1993], which is widely used to assess droughts [e.g., Lloyd-Hughes, 2012]
and to study land-atmosphere interactions [Mueller and Seneviratne, 2012; Holmgren et al., 2013]. The SPI
is calculated for each month and location based on monthly precipitation data, which are typically well
approximated by a gamma distribution. As in the standard approach, monthly precipitation time series are
fitted to a gamma distribution to obtain a probability density function of precipitation [McKee et al., 1993].
This distribution is then transformed to a standard normal distribution. The mean SPI value for the reference
period is thus zero. Positive (negative) values hence signify higher (lower) than average precipitation. SPI is
also frequently used as a proxy for soil moisture [Seneviratne et al., 2010; Mueller and Seneviratne, 2012] and
compares well with more sophisticated meteorological drought indicators [Joetzjer et al., 2013].

To be able to compare time series of T at different locations and to make T and P extremes comparable, we
define the standardized temperature index (STI) in the spirit of the SPI. Because T anomalies can be assumed
to be normally distributed [see, e.g., Hansen et al., 2012], however, we omit fitting a gamma distribution and
directly fit a standard normal distribution to each detrended monthly temperature time series.

For P we use a time scale of 3 months which is a common choice in drought assessments [Mueller and
Seneviratne, 2012; Lloyd-Hughes, 2012]. Hence, before fitting a gamma distribution, each P value is replaced
by the average over the current and the two preceding P values. Time scales of 6, 12, and 24 months are also
common for analyzing long-lasting droughts [McKee et al., 1993]. For T extremes, on the other hand, we con-
sider the instantaneous response of terrestrial carbon fluxes most relevant due to the immediate decrease
in photosynthetic activity of plants in response to extreme temperatures [Berry and Bjorkman, 1980]. Hence,
for T, we choose a time scale of 1 month.

To identify extremes we set a threshold of 2, which is, in the case of SPI, associated with extreme drought
[McKee et al., 1993] and a commonly used threshold [Lloyd-Hughes, 2012]. This corresponds to approximately
the 2.3% highest and lowest SPI and STI. We thus consider four different categories of climate extreme
events: (1) drought: SPI < −2 (−P), (2) extremely wet period: SPI > 2 (+P), (3) cold spell: STI < −2 (−T), and
(4) heat extreme: STI > 2 (+T).

The identifiers in parentheses are used in figures throughout the paper.

2.3. Extremes in Carbon Fluxes
To identify extremes in GPP, TR, and NEE we use a definition that mimics the statistical properties of SPI. Let
X be a time series of a certain month across all years in the record, we define x ∈ X as extreme if

|x − X̄| > k𝜎(X) (1)

where X̄ and 𝜎(X) are the empirical mean and standard deviation of X , respectively. We choose k = 2 here
to obtain a similar degree of extremeness between carbon cycle and climate extremes. In fact, if C cycle
anomalies are normally distributed, k = 2 corresponds to the criterion used to identify climate extremes.
Tests using k = 1.8 and k = 2.2 confirmed that our conclusions remain consistent for a less strict and
a stricter definition of extreme conditions, respectively. Similarly, our conclusions are not sensitive to the
choice of time scales for SPI and STI.
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2.4. Aggregation
For most of our analyses, we aggregate point extremes to spatiotemporal extreme events. We use the aggre-
gation scheme initially suggested for droughts by Lloyd-Hughes [2012] and further elaborated for the case
of Earth observation data by Zscheischler et al. [2013]. Individual voxels that are extreme are joined if they
are adjacent in space or in time to form three-dimensional extreme events. The newly formed events can
then be ordered according to their spatial extent or their overall impact, i.e., their integrated deviation from
“normal” conditions (normal here refers to the averaged seasonal cycle). Throughout this paper we will sort
extreme events according to their overall impact. The size of an extreme event is thus given as the integral
of the SPI, STI, or C flux anomalies over the spatiotemporal extent of that event.

2.5. Attribution
For the forward assessment we compute the impact of extreme climate events by integrating carbon
cycle flux anomalies (GPP, TR, and NEE) over the spatiotemporal domain of an extreme event in T or P. We
calculate the cumulative impact of extreme climate events by adding the impacts of the n largest events.

We further propose a simple scheme to detect large-scale lagged impacts of extreme climate events. The
temporal extent and shape of climate extremes can confound small-scale lagged impacts. Moreover, the
differences in C flux sensitivity across models further impede a straightforward assessment of lagged effects.
Because a detailed analysis of various small-scale lagged impacts of climate extremes is beyond the scope of
this study, here we suggest an approach to detect lagged impacts of a magnitude that dominates both the
shape of extreme events and the model sensitivity.

To determine whether a climate extreme has a lagged impact on C fluxes, we first integrate the C flux
anomalies over the spatiotemporal extent of the climate extreme event itself. We then integrate the C
flux anomalies over an equivalent spatiotemporal extent, but shifted by 1 to 12 months backward in time
relative to the span of the actual climate extreme. Finally, we repeat the same analysis, but shifting the spa-
tiotemporal extent 1 to 12 months forward in time. The resulting integrated C flux anomalies (Figure 6)
therefore represent the C flux anomalies over periods that extend before (after) the start (end) of the climate
anomaly. Because the actual climate extremes extend over more than a single month, the C flux anoma-
lies are nonzero even when looking at spatiotemporal extents shifted backward in time. Any asymmetry
between the impact of shifts backward in time (due only to the fact that the extreme climate events have
a greater than 1 month duration) and the impact of shifts forward in time (due not only to the fact that the
extreme climate events have a greater than 1 month duration, but also to any lagged effects of these climate
extremes on C fluxes), is therefore a qualitative measure of the lagged effects of various types of climate
extremes on C fluxes.

In the spirit of the forward assessment, for our backward assessment, we compute the mean SPI and STI over
the spatiotemporal domain spanned by an extreme event in GPP, TR, or NEE as diagnosed from each model’s
output. For each C flux extreme event we can then draw a point onto the two-dimensional plane spanned
by SPI and STI. To visualize climate conditions during C flux extremes, we fit a bivariate Gaussian distribution
to the points generated in this manner where we use the 100 largest C flux events. We then plot the contour
line of the first standard deviation for each model or region.

2.6. Carbon Flux Sensitivity to Climate Extremes
We investigate modeled flux sensitivity to compound extreme events (T and P extreme simultaneously). To
do so, we divide the mean anomaly of GPP (TR, NEE) over each of the four conditions hot and dry (STI> 2,
SPI< −2), hot and wet (STI> 2, SPI> 2), cold and dry (STI< −2, SPI< −2), cold and wet (STI< −2, SPI> 2)
by the mean SPI and mean STI over the same voxels. The resulting unit measures the change of C flux per
unit SPI per unit STI and gives us an idea about the general sensitivity of C fluxes to climate extremes. For
example, for dry and hot extremes we compute

Sens−2,2 =
xSPI<−2,STI> 2

|SPISPI<−2,STI> 2STISPI<−2,STI> 2|
, (2)

where x are C flux anomalies (GPP, TR, or NEE).

2.7. Compound Impact Versus Additive Impact
Compound events are defined as “(1) two or more extreme events occurring simultaneously or successively,
(2) combinations of extreme events with underlying conditions that amplify the impact of the events, or
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Figure 1. Forest biomes used for regional analysis, including tropical forests (green), temperate forests (orange), and
boreal forests (purple).

(3) combinations of events that are not themselves extremes but lead to an extreme event or impact when
combined” [Seneviratne et al., 2012; see also Leonard et al., 2013]. In the framework of MsTMIP, we make an
attempt to quantify the effects of (2) and (3). As compound extreme we define voxels where T and P are
simultaneously extreme and call their impact a compound impact. The additive impact is the impact of
extremes in T plus the impact of extremes in P (also includes the compound events). To estimate the differ-
ence between compound and additive impacts, we plot the compound against the additive impact for each
model (10), each flux (GPP, TR, and NEE), and each extreme climate condition (hot and dry, hot and wet, cold
and wet, cold and dry). The distance to the 1:1 line is a measure of the difference between the compound
impact and the additive impact.

2.8. Regional Analysis
We compute sensitivities according to equation (2) but only for one climate variable (T or P) in tropical,
temperate, and boreal forests (Figure 1). We further conduct the backward assessment (section 2.5) on
these three regions to analyze whether the climatic conditions leading to extreme C flux responses differ
across biomes.

Figure 2. Impact of the 100 largest extreme events in (top) precipitation (P) and (bottom) temperature (T) on the carbon
fluxes GPP (green), TR (red), and NEE (blue), shown as an average across the 10 examined models.
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Figure 3. Cumulative impact of the 1000 largest extremes in (top) precipitation (P) and (bottom) temperature (T) on GPP
(green), TR (red), and NEE (blue). Climate extreme impacts are averaged over the whole study period (1981–2010). Shown
are the model averages and the model interquartile range (spread over five models, shaded areas).

3. Results
3.1. Forward Assessment
This section deals with extreme events computed at the global scale. For extremes at biome scale refer
to section 3.3.
3.1.1. Impacts of Large Extreme Climate Events
Overall, droughts lead to the strongest responses in the carbon fluxes (−P in Figure 2). GPP strongly
decreases in response to drought. The concurrent smaller decrease in TR partly compensates the effect
of GPP, resulting in an anomalous increase in NEE of up to 0.19 ± 0.06 Pg C/yr (model mean ± standard
deviation) for the 1000 largest −P extremes (Figure 3). Droughts, hence, promote net carbon release to
the atmosphere or a decrease in C sink. Wet periods show the opposite behavior, although much less pro-
nounced. Temperature extremes yield a less clear C flux signal (Figure 2), but the cumulative impact of
heat extremes tends to reduce GPP and increase TR. This compounding effect results in an increase in NEE
comparable to that of droughts (0.15 ± 0.05 Pg C/yr, Figure 3). While the carbon flux response to climate
extremes tends to point in the same direction for most models, model spread is relatively large.
3.1.2. C Flux Sensitivity to Compound Extreme Extremes
The way in which modeled carbon fluxes respond to varying climate conditions largely differs across mod-
els. Figure 4 shows the sensitivities of C fluxes for all 10 models for the four compound extreme conditions
hot and dry (STI> 2, SPI< −2), hot and wet (STI> 2, SPI> 2), cold and wet (STI< −2, SPI> 2), and cold and
dry (STI< −2, SPI< −2) for GPP, TR, and NEE. Models are sorted according to the impact of hot and dry
extremes on NEE (Figure 4i). The model LPJ-wsl is most sensitive to this condition and also shows the largest
response for most of the other variables and conditions. At the other end of the spectrum, VEGAS shows the
smallest response of NEE to hot and dry extremes, but it is close to the model average in terms of its sensi-
tivity of GPP and TR. Further analyses showed that the relative sensitivity of each model to different types
of extremes is mostly consistent, i.e., C fluxes are generally more sensitive to changes in T and P in some
models and less sensitive in others.
3.1.3. Compound Versus Additive Impact
Model responses to extreme climate conditions largely agree on whether or not the impact of compound
extremes exceeds their additive impact (i.e., in Figure 5, points lie mostly on the same side of the 1:1 line),
though responses differ substantially in magnitude. The impact of drought and extreme heat (SPI< −2 and
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Figure 4. Sensitivity of modeled C fluxes to compound climate extremes. Models are sorted according to their NEE response to hot and dry.

STI> 2) on GPP, TR, and NEE exceeds the sum of the individual impacts by 5.2 ± 2.7, 2.3 ± 1.6, and 2.9 ± 1.1
g C m−2 per month, respectively (Figures 5a, 5e, and 5i). Both the compound impacts of cold and wet as well
as cold and dry conditions on GPP are similar to the sum of the individual impacts (Figures 5b and 5c). The
positive effects of cold and wet periods on NEE exceed the expected effect from the sum of impacts of cold
or wet conditions (Figure 5l).
3.1.4. Time Lags
As expected, the cumulative impact over the 1000 largest climate extreme events peaks when the cor-
responding C flux anomalies are integrated over the spatiotemporal extent of the climate extreme itself,
indicating that the largest C flux impacts are experienced during the extreme climate events themselves
(Figure 6).

Because extremes in P last longer than extremes in T, the impact of P extremes on C fluxes is observed
even when the spatiotemporal extent over which C fluxes are integrated is shifted by several months either
forward or backward in time. Most noteworthy, however, is any asymmetry in the integrated C flux anoma-
lies when the spatiotemporal extent is shifted forward versus backward in time relative to the extent of
the actual P extremes. The C flux anomalies persisting for longer positive time shifts relative to negative
time shifts for P extremes indicates a lagged impact of P extremes on C fluxes. This is especially evident for
positive precipitation extremes (Figure 6, top right).

3.2. Backward Assessment
At the global scale, extreme events in GPP and TR are more closely associated with changes in water avail-
ability (SPI) relative to changes in temperature (STI; Figure 7, contour lines are shifted more along the

Figure 5. Impacts of compound climate extremes versus additive impact of P and T extremes. Shown is the response of GPP, TR, and NEE of all 10 models to the
four compound extreme climate conditions hot and dry, hot and wet, cold and wet, and cold and dry.
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Figure 6. Lagged impacts of the 1000 largest extreme events in (top) precipitation (P) and (bottom) temperature (T) on
GPP (green), TR (red), and NEE (blue). Carbon fluxes are integrated over the spatiotemporal extent of extreme climate
events shifted in time by up to 12 months before, relative to the events themselves and up to 12 months after. Shown
are the model averages and their interquartile range (spread over five models, shaded areas).

Figure 7. Climatic conditions (T and P) during extremes in carbon fluxes. Ellipses depict contour lines of 1 standard
deviation of bivariate Gaussian distributions fitted to the SPI/STI values averaged over the spatiotemporal domain of
each of the 100 largest positive (+) and negative (−) extreme events in GPP, TR, and NEE, for each model. Percentages in
the corners show the fraction of events falling in the respective quadrant across all models.
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Figure 8. Sensitivity of C fluxes to extreme climate conditions globally and in tropical, temperate, and boreal forests. Boxplots depict the spread in the GPP, TR,
and NEE response to dry, wet, hot, and cold conditions across all 10 models.

moisture axis than along the temperature axis). Negative extremes in GPP coincide with dry conditions in
all models (Figure 7). This is also true for negative extremes in TR. Dry conditions also accompany nega-
tive extreme events in the gross fluxes (GPP and TR) more often (89.8% and 89.9%) than wet conditions
accompany positive extremes (81.9% and 80.1%, respectively). Positive extreme events in NEE (net carbon
release to the atmosphere or decrease of carbon sink) are most often associated with dry and hot conditions
(71.4%). The fraction of negative extreme events in NEE associated with the opposite climate conditions,

Figure 9. Similar to Figure 7. Here Gaussian distributions are fitted to SPI/STI values averaged over the spatiotemporal
domain of each of the 100 largest positive, + (negative, −) extreme events in GPP (TR, NEE) in each of the 10 models.
The contours represent the temperature and precipitation conditions across the resulting 1000 events (i.e., 10 models ×
100 events). Extreme events are computed on the globe (gray), tropical forests (green), temperate forests (orange), and
boreal forests (purple), using the division of Figure 1. Percentages in the corners show the fraction of events falling in the
respective quadrant for each region separately.
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cold and wet, is much lower (52.3%). Overall, model spread is largest for negative extremes in NEE (i.e.,
increased uptake or decreased source; Figure 7, top right).

3.3. Regional Assessment
C fluxes in tropical forests show a strong response to extremes in water availability. In contrast, in boreal
forests C fluxes respond more strongly to extremes in temperature (Figure 8). The C flux response in temper-
ate forests always lies between those of boreal and tropical forests. Models mostly agree in sign in their C
flux response to extreme climate conditions. Model spread is particularly high for the GPP and TR response
to heat extremes in the boreal forests, leading to a highly uncertain NEE response ranging from −2.2
(GTEC) to 3.7 (LPJ-wsl) g C m−2 month−1 (Figures 8d, 8h, and 8l). There was no relationship between process
inclusion of fire emissions and NEE response. Note that C fluxes in boreal regions are generally much smaller
compared to the tropics; hence, we also expect a smaller change during extreme climate conditions.

Negative extremes in GPP and TR are mainly associated with dry conditions in tropical forests but with cold
conditions in boreal forests (Figure 9). Positive extremes in NEE are associated with dry and hot conditions in
tropical forests, whereas in boreal forests there is no clear trend visible. For boreal forests also, NEE extremes
can be accompanied by largely differing environmental conditions (Figure 9, area in contour line larger).
Temperate forests are always located in between tropical and boreal forests (Figure 9).

4. Discussion
4.1. Forward and Backward Assessment
Drought and heat extremes in MsTMIP simulations differ in their impacts on GPP and TR, which shape
their impact on NEE. Drought reduces both GPP and TR. This is consistent with observational studies [Law
et al., 2001; Ciais et al., 2005; Meir et al., 2008; Schwalm et al., 2010, 2012]. The impact of heat stress on
GPP depends on whether the ecosystem in question is temperature limited [Nemani et al., 2003; see also
section 3.3] but tends to reduce GPP at the global scale. TR, on the other hand, increases with higher tem-
peratures, which is in agreement with observations [Rustad et al., 2001; Zhao and Running, 2010; Mahecha
et al., 2010; Anderson-Teixeira et al., 2011]. Models mostly agree in the direction of their response to extreme
climate conditions, but the absolute magnitude of the response differs greatly, in particular, for GPP and
TR. Differences in model mechanisms probably contribute to this spread, although it is hard to draw gen-
eral conclusions solely from whether a model includes a particular characteristic or not [Huntzinger et al.,
2013, Tables S1–S4]. Sensitivity analyses of model parameters would probably help to explain the model
spread. Moreover, the MsTMIP protocol includes model runs with reduced complexity (e.g., no land use and
land cover change, constant CO2). If a similar analysis on these runs would show a smaller model spread one
could narrow down the mechanisms responsible for the large model spread observed here.

Although the anomalies in GPP and TR caused by climate extremes may seem small compared to the respec-
tive global values of 128 ± 28 and 121 ± 26 Pg C/yr (model mean ± standard deviation), these numbers
are averaged over the whole study period such that the maximum impact in a given year may be much
larger. Moreover, the main interest here lies in NEE, and GPP and TR anomalies can translate into an NEE
anomaly with a much higher relative impact. In fact, an average increase of about 0.19 and 0.15 Pg C/yr in
NEE (droughts and heat waves, respectively) is substantial, given that global NEE is around 2.3 ± 2.6 Pg C/yr
(estimates of the residual land sink lie around 2.3 Pg C/yr, averaged over the same time period) [Le Quéré et
al., 2013].

Despite a relatively large model spread in the gross fluxes GPP and TR in response to extreme climate events,
model agreement for the NEE response at global scale is relatively high. This behavior has been observed
before [Huntzinger et al., 2012; Raczka et al., 2013]. Models can produce plausible values for NEE even if they
overestimate (or underestimate) GPP and heterotrophic respiration, for instance, if they are “tuned” to flux
tower observations of net ecosystem productivity [Mahecha et al., 2010; Huntzinger et al., 2012].

A metaanalysis of manipulated ecosystem experiments with higher T and altered P demonstrated that
warming increases both photosynthesis and respiration but showed no significant effects on net C uptake
[Wu et al., 2011]. Most of the experiments were performed in temperate and boreal regions where systems
are temperature limited. The MsTMIP model results from temperate and boreal forests agree well with these
findings (Figure 8). Wu et al. [2011] also found that decreased P suppressed soil respiration, ecosystem pho-
tosynthesis, and net C uptake, whereas increased P stimulated respiration, ecosystem photosynthesis, and
net C uptake. This is also in accordance with MsTMIP results.
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Our analysis of compound extremes showed that, for heat waves and droughts in particular, their com-
bined impact is larger than the sum of their individual impacts. The metaanalysis of Wu et al. [2011] showed
that the combined effect of elevated T and alterations in P tends to be smaller than expected from the
single-factor responses. However, because their analysis mainly focused on temperate and boreal areas
and temperatures were elevated and not extreme, T might rather exhibit a compensatory effect in the
interaction with decreases in precipitation.

In the backward assessment, as in the forward assessment, the negative effects of drought and extreme heat
on NEE are more apparent than the positive effects of excessive water availability and colder temperatures.
In particular, we observe a large model spread for the attribution of negative extremes in NEE (abnormal
C sink or decrease in C source) to specific climate conditions. This might be a result of Liebig’s law of the
Minimum [von Liebig, 1847] or similar formulations of growth as a function of limited resources, which are
implemented in most TBMs [Rastetter, 2011]. According to such a formulation of limiting factors, to achieve a
net carbon uptake (and ultimately growth) that is abnormally high, a number of accompanying factors have
to be optimal, whereas drought or extreme heat alone can suffice to reduce growth drastically. Negative
extremes in NEE also directly affect soil organic carbon (SOC), whereas positive extremes are first the result
of increases in GPP, and then through time this can increase SOC and wood pools. Consequently, the larger
disagreement between the models about the environmental conditions favoring excessive growth might
reflect their different treatments of limiting factors.

The forward and backward assessments provide a complementary picture on impacts of climate extremes
and possible causes of extremes in carbon fluxes that is derived from our current understanding of the ter-
restrial carbon cycle. While droughts and heat waves decrease GPP, and wet periods increase GPP, negative
(respectively positive) extremes in GPP are driven by dry (wet) conditions. In the forward analysis, droughts
decrease GPP more than heat waves do. This is supported by the backward analysis where GPP extremes
are associated more frequently with stronger deviations in water availability than with changes in tempera-
ture, which is in good agreement with recent studies about GPP extremes [Zscheischler et al., 2014a, 2014b].
Moreover, the increase in GPP due to wetter or colder conditions is smaller than the decrease due to dryer
or hotter conditions. This is mirrored in the backward analysis by a smaller deviation of T and P for positive
GPP extremes compared to negative GPP extremes. For TR, all the above is also true, except that here heat
extremes increase TR. Also, compared to GPP extremes, TR extremes are to a larger extent driven by devi-
ations in T. Droughts and heat waves increase NEE similarly strongly, whereas cold temperatures and wet
periods decrease NEE to a smaller degree. Again, in the backward analysis the attribution of positive NEE
extremes to hot and dry conditions supports the findings from the forward analysis. Accordingly, the shift
toward wet and cold conditions for negative extremes is less pronounced.

Overall, both perspectives (forward and backward) show that the relationship between droughts and heat
waves with increasing NEE (abnormal C source or decrease in C sink) is stronger than the link between
colder or wetter periods and decreases in NEE (abnormal C sink or decrease in C source). This is also because
for high temperatures, decreases in GPP and increases in TR compound each other, leading to a strong
NEE response, whereas for wet periods the effect of increasing GPP is nearly offset by a similar increase in
TR (Figure 3). This differential behavior of GPP and TR in response to different climate extremes can also
explain the very weak relationship between GPP extremes and independent NEE estimates [Zscheischler et

al., 2014a].

At this point we would like to emphasize that most of our conclusions are drawn from the global mean
behavior averaged across 10 models. In particular, cold and hot temperatures can have opposing effects
on C fluxes, depending on the underlying ecosystem (see also section 3.3). This might also explain why at
global-scale changes in C fluxes seem to be more tightly coupled to deviations in P than to deviations in T.

One might argue that the differences in how the models treat fire might be one reason for differing results,
in particular for NEE. We repeated the analysis using NEP = GPP−TR instead of NEE. The differences between
the results from NEE and NEP were very small, and model spread was not substantially reduced. We assume
this is because most fires and other disturbances are small compared to the scale of extreme events we are
looking at in this study and thus do not affect the results significantly.
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4.2. Time Lags
The largest impact of climate extremes takes place during the climate extreme itself. Nevertheless, we
observe a longer response of C fluxes to P extreme events compared to T extreme events, explainable by a
combination of the longer duration of P events and the longer time scales that P controls soil moisture than
the response of ecosystem processes to changes in T. Droughts and extremely wet periods last on average
4.8 and 3.6 months compared to 1.8 and 1.7 months for cold spells and heat extremes, respectively (maxi-
mal duration of each event averaged over the 1000 largest extreme events). We further detected a strong
lagged response in C fluxes for positive P extreme events. This is possibly related to excessive (re-)growth
triggered by high water availability. A slight asymmetry can also be seen in response to droughts (−P),
potentially caused by lagged impacts of some of the events. However, instantaneous impacts from a few
very long droughts cannot be ruled out. It is difficult to draw general conclusions from our simple analysis
of lagged impacts due to the confounding effects of the model sensitivity and the shape of specific extreme
events (in the 3-D latitude × longitude × time space). Yet it seems that, despite their longer temporal extent,
P extremes have longer-lasting impacts compared to T extremes. While some processes responsible for
long-term lag effects following climate extremes are known [e.g., Anderegg et al., 2013; Hartmann et al.,
2013; Reichstein et al., 2013], they are often not (yet) implemented into current TBMs [McDowell, 2011]. Thus,
we expect the identified lagged impacts to be a lower bound for what is occurring in reality.

4.3. Regional Analysis
Our results showed that C fluxes in tropical forests are more sensitive to P anomalies, whereas C fluxes in
boreal forests respond more strongly to extreme changes in temperature. This is supported by the backward
assessment, where negative extremes in GPP and TR are mainly associated with dry conditions in tropical
forests but with cold conditions in boreal forests. Due to the small temperature variability in the tropics,
temperature regimes which could have a significant impact on C fluxes are rarely realized. Hence, by using
our definition of extremes based on local time series, temperature extremes in the tropics can be very small.
Regardless, our results are in good agreement with experimental studies suggesting that tropical forest
might generally be more sensitive to changes in water availability than to changes in temperature [Clark,
2004; Clark et al., 2010]. Particularly, droughts have been shown to largely impact tropical forest mortality
[Phillips et al., 2010] and carbon stocks [Brando et al., 2008]. Yet, it is expected that ongoing climate change
will soon push temperatures in the tropics beyond current variability [Mora et al., 2013], thus generating
heat extremes that have not been experienced before, with uncertain impacts on tropical forests [Clark,
2004; Corlett, 2011].

In contrast to the global analysis, our results showed high uncertainty in the NEE response to extremely hot
conditions in boreal forests. Climate predictions in the arctic and boreal regions are highly uncertain [Stroeve
et al., 2012; Schneider von Deimling et al., 2012]. The strength and timing of the carbon-climate feedback
to global warming in permafrost regions, for instance, continue to pose challenges to researchers [McGuire
et al., 2009; Schaefer et al., 2011; Koven et al., 2011]. Here, in the framework of MsTMIP, the climatic forcing
is equal for each model. Nevertheless, model response to warming strongly diverges in boreal forests. This
suggests that uncertainties in carbon cycle predictions in boreal regions are not only due to an incomplete
understanding of climate regimes but also driven by incomplete knowledge about the processes governing
the carbon cycle in these areas.

5. Conclusions

We have presented an analysis of climate and C flux extremes using model output data from MsTMIP. The
two perspectives used give complementary results that further the understanding of the relationships
between extremes in drivers and extreme impacts, as they are implemented in current TBMs. At the global
scale, droughts and heat waves lead to large temporary net carbon release or decrease in C sink (increase
in NEE), while colder and wetter periods lead to a comparably smaller net carbon uptake or increase in C
sink (decrease in NEE). The models largely agree in this behavior, although the magnitude of the responses
differs greatly across models.

We demonstrated that compound extremely hot and dry conditions have a larger impact on C fluxes than
one would expect from their individual impacts. Compound events in which not all driving variables are
extreme but which lead to an extreme impact are increasingly the focus of impact analyses [Leonard et al.,

ZSCHEISCHLER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 13



Global Biogeochemical Cycles 10.1002/2014GB004826

2013]. Such analyses largely extend the space of possible causes for extreme impacts and call for new tools
to analyze extremes as multivariate probability distributions.

The biome-dependent analysis revealed that C flux extremes in tropical forests are more strongly coupled
to water availability whereas C flux extremes in boreal forests are more driven by changes in temperature.
The NEE response to heat extremes in boreal forests still poses a challenge to modelers. Also, the response
in boreal regions is likely to vary considerably with season. Breaking down the anomalies by season might
yield some insight into the sources of variation among the models, and should be the topic of future work.

Currently, model intercomparison and benchmarking studies often focus on annual averages, seasonal
cycles, or a general measure of interannual variability [Randerson et al., 2009; Kelley et al., 2013; Piao et al.,
2013; Schwalm et al., 2013]. Recent studies identified droughts as the main driver for extreme decreases in
GPP [Reichstein et al., 2013; Zscheischler et al., 2014a, 2014b], which is in good agreement with our results
here. Using all three terrestrial carbon fluxes provided by the model environment we show that the impacts
of climate extremes on GPP and TR can either compound or compensate each other (Figure 3), impeding an
easy translation of GPP impacts into changes in the net carbon balance [cf. Zscheischler et al., 2014a].

If processes are only marginally incorrectly represented in models, this can translate into inaccurate repre-
sentations of higher order moments and extreme events. Equifinality in models [Beven and Freer, 2001; Tang
and Zhuang, 2008] due to too few data constraints poses challenges to modelers and exacerbates finding
the right parameter settings. Including explicit representations of the impacts of extreme climate events will
help constrain carbon flux extremes and reduce equifinality.
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